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Abstract
Vector fields can present complex structural behavior, especially in
turbulent computational fluid dynamics. The topological analysis
of these datasets reduces the information but one is usually still left
with too many details for interpretation. In this paper, we present a
simplification approach that removes pairs of critical points from
the dataset, based on relevance measures. In contrast to earlier
methods, no grid changes are necessary since the whole method
uses small local changes of the vector values defining the vector
field. An interpretation in terms of bifurcations underlines the con-
tinuous, natural flavor of the algorithm.

Keywords: vector field topology, flow visualization, unstructured
grid, simplification

1 Introduction
Topological methods are well-known techniques for the visualiza-
tion of planar vector fields [1, 2]. They provide analysts with syn-
thetic graph representations of vector data. This is achieved by the
extraction of special features of a vector field called critical points
and the integration of particular streamlines linking them in the
corresponding flow known as separatrices: The resulting graph is
a very reliable structural depiction. The theoretical framework is
given by the qualitative theory of dynamical systems initiated by
Poincaré [3] and continued by Andronov et al [4]. The success of
this approach is due to its ability to offer automatic and intuitive
depictions of large numerical data while dramatically reducing the
amount of information required for interpretation.

Nevertheless, when dealing with turbulent flows provided by
Computational Fluid Dynamics simulations (CFD) or experimen-
tal measurements of fluid mechanics, topology-based methods typ-
ically produce cluttered pictures that are of little help for physicists
or engineers. Indeed, the topology of such flows is characterized by
the presence of a large number of features of very small scale that
greatly complicate the global depiction of the data. This problem
explains the need for a simplification method that prunes insignifi-
cant features according to qualitative and quantitative criteria, spe-
cific to the considered application. Therefore, several techniques
have been introduced in the visualization community that are con-
cerned with vector field simplification. Nielson et al. have pro-
posed a multi-resolution approach for planar vector fields defined
over curvilinear grids [5]. Simplification is achieved by removing
higher order details. Yet, topology is not the focus of this technique.
The issue of topology simplification has been first addressed by de
Leeuw et al. [6]. Their method removes pairs of critical points
connected by the topological graph together with the correspond-
ing edge while preserving consistency with the original topology.
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The method ignores the underlying continuous data. Consequently,
no description of the vector field can be provided that corresponds
to the simplified topology. The major drawback induced by this
deficiency is that other classical flow visualization methods, e.g.
streamlines or LIC [7], cannot be applied afterward to offer consis-
tent depictions. In previous work [8], we proposed an alternative
approach that merges close critical points, resulting in a higher or-
der singularity that synthesizes the structural impact of several fea-
tures of small scale in the large. This reduces the number of critical
points as well as the global complexity of the graph. Nevertheless,
this simplification can lead to the disappearance of meaningful fea-
tures of the flow since only spatial criteria are taken into account.
Furthermore, this approach is not able to remove critical points due
to numerical noise.

The present method has been designed to overcome these draw-
backs as well as to offer a continuous way to simplify the visual-
ized topology. The basic principle, similar to the one used by de
Leeuw, consists in successively removing pairs of connected crit-
ical points while preserving the consistency of the field structure.
Each of these removals can be interpreted as a forced local defor-
mation that brings a part of the topology to a simpler, equivalent
structure. The mathematical background of such a deformation is
given by the theory of bifurcations (see e.g. [9]). Practically, the
method starts with a planar piecewise linear triangulation. We first
compute the topological graph and associate every connection in
the graph with numerical measures that evaluate its relevancy in the
global structure. Next, we sort the corresponding pairs of critical
points according to these criteria and retain those with values over
prespecified thresholds. Then we process all pairs sequentially: for
each of them, we first determine a cell pad enclosing both criti-
cal points. In this pad, we slightly modify the vector values such
that both critical points disappear. This deformation is controlled
by angular constraints on the new vector values imposed by those
kept constant on the frame of the pad. When every pair has been
processed, we draw the simplified topology.

The paper is structured as follows. We review basic notions of
vector field topology and briefly present the notion of bifurcation
in section 2. In section 3, we show how we compute the topology
in a way suited for further processing. Numerical measures used
to evaluate the relevancy of critical points and separatrices are in-
troduced in section 4: This provides pairs of critical points to be
removed. The next section details how local deformations of the
vector field are conducted to suppress the selected pairs. Results
are proposed on a CFD dataset in section 6.

2 Vector Field Topology

In the present method, we deal with a triangulation of vertices ly-
ing in the plane associated with 2D vector values. The interpolation
scheme is piecewise linear. Therefore, we only consider topological
features of first order. In this case, topology is defined as the graph
built up of all first-order critical points, closed orbits and some par-
ticular integral curves connecting them, called separatrices. We re-
view these notations.



2.1 Critical Points
The critical points (or singular points) of a vector field are the posi-
tions where the field magnitude is zero. These points play a funda-
mental role in the field structure because they are the only locations
where streamlines can meet. The classification of critical points
is based, in the linear case, upon the eigenvalues of the Jacobian
matrix of the field at their position. Depending on the real and
imaginary parts of these eigenvalues, there exist several basic con-
figurations, as shown in Fig. 1. Of particular interest are the saddle
points because the separatrices start or end at their location along
the eigenvectors. Note that for every other critical point type, the
sign of the real parts of the eigenvalues is either positive or neg-
ative, corresponding to a repelling (source) or an attracting (sink)
nature, respectively. Thus separatrices emanate from saddle points
and end at sources or sinks. The basin of a source (resp. sink) is
defined as the set of all points lying on streamlines coming from
(resp. tending to) it.

Saddle Point:
R1<0, R2>0,
I1 = I2 = 0

Repelling Focus:
   R1 = R2 >0,
  I1 = -I2 <> 0

Attracting Focus:

   I1 = -I2 <> 0
R1 = R2 < 0,

Repelling Node:

    I1 = I2 = 0
R1, R2 > 0,

Attracting Node:
     R1, R2 < 0,
     I1 = I2 = 0

Figure 1: Basic configurations of 1st-order critical points

2.2 Closed Orbits
Some topological features play the role of a source or sink in a
vector field and are not reduced to single points: These are closed
orbits, also called limit cycles because of the asymptotic behavior
of the streamlines in their vicinity. Fig. 2 illustrates such a configu-
ration. These cycles are actually periodic streamlines.
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Figure 2: Attracting closed orbit (sink)

2.3 Poincaré Index
A fundamental concept in vector field topology is the so-called
Poincaré index of a simple closed curve: It measures the number
of rotations of the vector field while traveling along the curve in
positive direction. In a more mathematical way, one gets the fol-
lowing definition for the index of a simple curve γ:

indexγ =
1
2π

∮

γ

dφ, where φ = arctanvy

vx
.

(φ is the angle coordinate of the vector field $v(vx, vy).) Remind
that the index is always an integer. One can extend this definition
and introduce the index of a critical point: This is the index of a
simple closed curve around the critical point enclosing no other
singular point. For first order critical points (see section 2.1), the

possible index values are +1 and -1: A saddle point has index -1
whereas every other critical point has index +1. Note that the index
of a closed orbit is always +1. We give now two fundamental the-
orems related to the notion of index, see Andronov et al. [4] for a
rigorous presentation.

Theorem 2.1 A simple closed curve that encloses no critical point
has index 0.

Theorem 2.2 The index of a simple closed curve that encloses sev-
eral critical points is the sum of the respective indices of those crit-
ical points.

In our case, the critical points that may be encountered in the inte-
rior domain of each linearly interpolated triangle cell are of first or-
der and have therefore either index +1 or -1. Consequently, consid-
ering the edges of a triangle as simple closed curve in theorem 2.1,
and using the fact that at most one singular point can be found in a
linear vector field, we get the following property.

Property 2.1 There is no singular point in a triangle cell if and
only if this cell has index 0.

Furthermore, the linear interpolation greatly simplifies the practical
computation of the index of a triangle cell. As a matter of fact,
the angle coordinate change along a linearly interpolated edge is
always smaller than π, as shown in Fig. 3. Consequently, the index
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Figure 3: Angular rotation along a linear edge

of a triangle cell is given by the sum of the angle changes: Let φ0,
φ1 and φ2 be the angle coordinates (∈ [0, 2π[) of the vectors $v0,
$v1 and $v2 defined at the vertices of a linearly interpolated triangle.
The index of this triangle T is given by

index(T ) =
1
2π

(∆(φ0, φ1) + ∆(φ1, φ2) + ∆(φ2, φ0)) (1)

where ∆(φi, φj) =

{
φj − φi + 2π if φj − φi < −π,
φj − φi if |φj − φi| < π,
φj − φi − 2π if φj − φi > +π,

Remark: Vector magnitudes have no influence on the triangle in-
dex and therefore on the presence of a singularity inside the cell.

2.4 Parameter Dependent Topology
The mathematical concept behind our approach of topology simpli-
fication is the notion of parameter dependent topology. Indeed, the
definitions introduced previously deal with an instantaneous topo-
logical state of a vector field. Now, as we know from the theory
of dynamical systems, this stable state may evolve in another one
by slight changes of underlying parameters of the field. This is in-
tuitively clear when considering time-dependent vector fields: The
topology changes over time by the move, appearance or vanishing



of critical points. These changes always respect qualitative consis-
tency. In particular, the poincaré index acts as topological invari-
ant which explains its fundamental importance. Local qualitative
modifications in the field structure that respect this consistency are
known as local bifurcations. In the case of linear parameter changes
we are concerned with, one mostly encounters two kinds of local bi-
furcations. The first one consists in the pairwise annihilation of two
critical points of opposite indices (in our case a saddle point and a
sink or source). Since these singularities have global index 0 (in the
sense of theorem 2.2), they are equivalent to a configuration without
critical point and therefore disappear right after merging. An illus-
tration of this phenomenon is proposed in section 5.4. The reverse
transformation is also possible: This is a pairwise creation. The
second kind of common local bifurcation is the so-called Hopf bi-
furcation: A critical point of index +1, say a sink, becomes a source
(both have index +1). Global consistency of the flow is preserved
by the simultaneous creation of a sink closed orbit surrounding the
source. Once again, the reverse case may occur too: A source be-
comes a sink with disappearance of a surrounding source closed
orbit. This bifurcation is illustrated in Fig. 4.

Figure 4: Hopf bifurcation

Practically, since we want to reduce the number of critical points
while being consistent with the original topology, we locally force
pairwise annihilations of a saddle point and a sink or source. This
can be done by small local changes in the field values as we show
in the following. An illustration of this mathematical interpretation
of topology simplification is proposed in section 5.4.

3 Topology Computation
As a preprocessing step, our method requires the computation of the
topological graph. This computation must be conducted in a way
that provides all the information needed for pairing critical points
as explained in the next section.
Consequently, we process as follows: We start with the computa-
tion of all critical points in the grid. From each saddle point, we in-
tegrate the four related separatrices. For each separatrix, we check
if it leaves the grid or if it reaches a critical point or a closed or-
bit. An accurate and effective detection of closed orbits is achieved
thanks to a scheme described elsewhere [10]. If a critical point is
reached (sink or source, depending on the integration direction from
the saddle point), we identify it among the set of all critical points
and save this information for the current separatrix. Furthermore,
we mark this sink or source as connected. If a closed orbit is
reached, we must await the end of the complete topology compu-
tation to process this separatrix further. As a matter of fact, once
all separatrices have been integrated, we look over all singularities
for sinks or sources that are not connected and associate them
with the separatrix surrounding the cycle that contains them, if any.
This supposes that a single critical point (with index +1, c.f. in-
dex of a closed orbit) is present inside each limit cycle. Actually,
any topological structure of index +1 may be encountered inside
a closed orbit even if a single sink or source is most likely to oc-
cur. At last, the separatrix gets as length the Euclidean distance
between saddle point and isolated critical point. The reason for this
choice is explained in the next section. Possible cases are illustrated

in Fig. 5. This completes the topological information required for
further processing.

source

sink
connected

connected

boundary

saddle
source

length

Figure 5: Topological connections of a saddle point

4 Pairing Strategy
The basic idea behind our simplification technique is to use the
topological equivalence (in the sense of the index invariant) of a
region containing several critical points with index sum 0 (see the-
orem 2.2) with the same region without critical point. More pre-
cisely, we aim at removing pairs of first order critical points of op-
posite index (that is a saddle point - index -1 - and a source or sink -
index +1 -) to reduce the number of singularities present in the field
and thus simplify the resulting topology while keeping consistent
with the original structure. To achieve it, we first need to determine
which pairs of critical points may be removed in that way and to
classify them according to the significance of the singularities in
the field structure.

4.1 Connectivity
We require the singular points of a pair to be linked by a separatrix
in the topological graph. This ensures that the topological transition
associated with the disappearance of both singularities corresponds
to a local bifurcation (see section 2.4). Yet, this criterion must be
relaxed to handle isolated singularities lying in the interior domain
of a closed orbit. This explains why we decided previously to con-
nect a saddle point with an isolated critical point across the limit
cycles enclosing it.

4.2 Additional Criteria
The importance of critical points mainly depends on the interpre-
tation of the visualized vector field. For this reason, one can make
use of different measures to classify the relevance of critical points
and possibly consider a weighted combination of several of them to
fit the domain of application.
Relevancy measures are for instance the Euclidean distance be-
tween critical points, or the length of the edge (separatrix) connect-
ing them (both measures apply to a pair of critical points of oppo-
site indices), or the degree of a critical point of index +1 (sink or
source), that is the number of saddle points it is connected to. Fur-
thermore, in [6], the authors suggest to use the area of a source or
sink’s basin (see section 2.1) to evaluate the importance of critical
points of index +1. Yet this basin-based method implies a compu-
tational effort that makes it unsuited for our method. Another in-
teresting quantity based upon fluid dynamics considerations is the



absolute value of the vorticity of a sink or source. Spatial varia-
tion of vorticity in the vicinity of a critical point of index +1 also
gives insight into the action of a source or sink on the field structure.
Nevertheless, an accurate computation of such quantities is a tricky
task, especially in the quite common case of planar vector fields cut
off from 3D datasets: Higher order terms are involved and, when
dealing with simulations, the underlying numerical schemes must
be taken into account, and not only the given discrete values. Even-
tually, a simple numerical measure we are concerned with in the
present method is the maximal magnitude of the vector field in a
cell containing a critical point of index +1. This permits to remove
singularities that are due to numerical noise and inconvenience in-
terpretation.
Practically, we have adopted two complementary criteria: On one
hand we apply a threshold on the Euclidean distance of both points
of a pair and preserve the pairs with largest lengths. On the other
hand, we choose to maintain every source or sink lying in a cell
with minimum magnitude over a second threshold.

With this definition, critical points belonging to several valid
pairs will be simplified concurrently: We process the pairs in in-
creasing length’s order and skip those that contain singularities that
have been removed already.

5 Local Deformation
Once a pair of critical points has been identified that fulfills our
criteria, it must be removed. To do this, we start a local deforma-
tion of the vector field in a small area around the considered singu-
lar points. To preserve both the interpolation scheme and the grid
structure, we only modify vector values at grid vertices. In the fol-
lowing, we detail how we determine which vertices have to get a
new vector value and how we set the new values in order to ensure
the absence of a singularity in the concerned cells after processing.
At last, we illustrate the continuity of this deformation.

5.1 Cell-wise Connection
Consider the situation shown in Fig. 6. We first compute the inter-
sections of the straight line connecting the first critical point to the
second with the edges of the triangulation. For each intersection
point, we insert the grid vertex closest to the second critical point
(see vertices surrounded by a circle) in a temporary list . After this,
we compute the bounding box of all vertices in the list and include
all grid vertices contained in this box. This obviously includes ev-
ery vertex marked in the former step. The use of a bounding box

P0

P1

Figure 6: Cell-wise connection

is intended to ensure a well shaped deformation domain, especially

useful if many cells separate both singular points. This configu-
ration occurs if the threshold has been assigned a large value to
obtain a high simplification rate. The vertices concerned with mod-
ification are surrounded by squares. We call them internal vertices
in the following. Since the modification of a vertex vector value
has an incidence on the indices of all triangle cells it belongs to, we
include every cell incident to one of the selected vertices in a cell
group. These cells are colored in gray. Further processing will have
to associate the internal vertices with vector values that ensure the
absence of any singular point in the cell group with respect to the
vector values defined at the boundary vertices (marked by big dots
in Fig. 6) that will not be changed. Note that the connection may
fail if one of the included cells contains a critical point that does
not belong to the current pair: In this case, the global index of the
cell group is no longer zero. If it occurs, we interrupt the process-
ing of this pair. Nevertheless, such cases can be mostly avoided by
simplifying pairs of increasing distance.

5.2 Angular Constraints

To give insight into our deformation strategy, we first consider a
single internal vertex and its incident cells as shown in Fig. 7. Sup-
pose that every position marked in black is associated with a con-
stant vector value and that the corresponding global index of all
triangles (in the sense of theorem 2.2) is zero. The problem then
consists in determining a new vector value at the internal vertex (in
white) such that no incident cell contains a critical point. Accord-
ing to property 2.1, this is equivalent to the fact that every incident
triangle has index 0. Now, in each triangle, the angle coordinates

index = 0

Figure 7: Configuration with single intern vertex and incident cells

of the vectors defined at the black vertices induce an angular con-
straint for the new vector (We saw in section 2.3 that the index in a
cell does not depend on the magnitude of the vectors defined at its
vertices.) As a matter of fact, in equation 1, ∆(φ0, φ1) is already
set to a value that is strictly smaller than π. The two missing terms
must induce a global angle change smaller than 2π (for an index is
an integer). It will be the case if and only if the new vector value has
angle coordinate in ]φ1 +π,φ0+π[, with [φ0, φ1] being an interval
with width smaller than π, i.e. the angle change along a linear edge
occurs from φ0 to φ1 (see Fig. 8). This provides a constraint on the
new value for a single triangle. Intersecting the intervals induced by
all incident triangles, one is eventually able to determine an interval
that fulfills all the constraints. Note that this interval may be empty.
In this case, the simplification is (at least temporarily) impossible.
As far as the magnitude of the new vector is concerned, one simply
takes the mean value of the field magnitude on the exterior edges.
Once again, the linear interpolant defined on these edges facilitates
the computation of this quantity.
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Figure 8: Angular constraint in a triangle cell

5.3 Iterative Solution
When considering all internal vertices as shown in Fig. 6, one must
find, for each of them, a new vector value that fulfills all the con-
straints induced by the edges connecting their incident vertices.
These incident vertices are of two types: internal or boundary ver-
tices. Edges linking boundary vertices are considered constant and
induce therefore fixed constraints. Internal vertices on the contrary,
still must be provided a final vector value and introduce conse-
quently flexibility in the simplification scheme (see Fig. 9).

fixed constraints
flexible constraints

intern vertex

boundary vertex

Figure 9: Different types of constraints for an intern vertex

Our method is then as follows.

// initialisation
for_each (intern vertex)

interval = fixed constraints
if (interval is empty)

interrupt
endif
if (no fixed constraints)

interval = [0,2PI[
end if

end for_each

// iterations
nb_iterations = 0
repeat

succeeded = true
nb_iterations++
for_each intern vertex

compute mean vector of defined
incident vertices

if (interval is not empty)
if (mean vector in interval)

current_value = mean vector
else

current_value =
best approximation of
mean vector in interval

end if
else

succeeded = false
if (mean vector in fixed

constraints)
current_value = mean vector

else
current_value =

best approximation of
mean vector in interval

end if
end for_each

until (succeeded or
nb_iterations > MAX_NB_ITERATIONS)

If one of the internal vertices has incompatible fixed constraints,
our scheme cannot succeed. Therefore we interrupt the process dur-
ing initialization and move to the next pair. If the iterative process
failed at determining compatible angular constraints for every in-
ternal vertices, we maintain the current pair and move to the next as
well.

5.4 A Continuous Deformation

As said previously, each local deformation of the vector field asso-
ciated with the removal of a pair corresponds to a pairwise annihila-
tion of two critical points of opposite index. The continuity of this
transition can be illustrated by linearly interpolating, for each mod-
ified vertex, its value between the original vector value and the one
obtained after modification. Depicting each intermediate aspect of
the topology in the vicinity of both critical points shows how they
become closer to merge and finally disappear. Considering time as
third dimension, one gets the picture proposed in Fig. 10.

Figure 10: Continuous topological transition



6 Results
We show next the results of our method applied to a vortex break-
down simulation. More precisely, we deal with a swirling jet sim-
ulation: This type of flow is important to combustion applications
where they are able to create recirculation zones with sufficient res-
idence time for the reactions to approach completion. The grid is
rectilinear and has 124 x 101 vertices ranging from 0 to 9.84 in x
and from -3.864 to 3.864 in y. The triangulation has 24600 lin-
early interpolated cells. The original topology is shown in Fig. 11
together with the underlying grid structure. (Fig. 17 offers a depic-
tion of the topology over a LIC representation.) There are 94 crit-
ical points and 134 corresponding pairs. We first simplify without

Figure 11: Original topology

magnitude control. The only threshold is therefore the graphical
distance between critical points. We apply increasing thresholds
ranging from 1% to 50% of the grid width to select the pairs to
simplify. The table proposed next puts the corresponding results
together.

threshold satisfying pairs connected pairs removed pairs removed sing.
1% 13 (10%) 10 (7%) 10 (7%) 20 (21%)
5% 24 (18%) 19 (14%) 19 (14%) 38 (40%)

10% 40 (30%) 27 (20%) 27 (20%) 54 (57%)
20% 65 (49%) 36 (27%) 34 (25%) 68 (72%)
50% 90 (67%) 40 (43%) 38 (40%) 76 (81%)

The pictures associated with the thresholds 5% and 50% are shown
in Fig. 12 and Fig. 13 respectively. The first topology contains 56
critical points whereas there are only 18 singularities remaining in
the second one. If we focus on a small part of the topology, we
observe how features of small scale are removed: Compare Fig. 14
and Fig. 15.

If we choose, on the contrary, to restrict the simplification to a
filtering of computational noise by the use of a threshold on the field
magnitude, we get the results presented in the following table (the
threshold is expressed with respect to the largest norm of the vector
field).

threshold satisfying pairs connected pairs removed pairs removed sing.
0.5% 25 (19%) 8 (6%) 8 (6%) 16 (17%)
1% 30 (22%) 11 (8%) 11 (8%) 22 (23%)
5% 47 (35%) 15 (11%) 15 (11%) 30 (32%)

10% 77 (57%) 21 (16%) 21 (16%) 42 (45%)
20% 95 (71%) 28 (21%) 26 (19%) 52 (55%)
50% 115 (86%) 36 (27%) 33 (25%) 66 (70%)

Figure 12: Simplified topology: Small graphic threshold (5%)

Figure 13: Simplified topology: Large graphic threshold (50%)

The picture shown in Fig. 16 illustrates the topology obtained after
simplification with a very low threshold (0.5%) on the magnitude.
The graph presents then 78 critical points.

At last, we propose in Fig. 18 the topology obtained when the
simplification is applied without distance nor norm threshold. This
obviously leads to the highest simplification rate that can be reached
by our method for this particular dataset. The 14 critical points
remaining correspond to configurations that can be resolved by the
method. Nevertheless, in this depiction, no visual clutter is present
and the original structural complexity has been greatly clarified.

7 Conclusions
We have presented a method that simplifies the topology of tur-
bulent planar vector fields while respecting structural consistency
with the original data. It is based upon successive local modifica-
tions of the vector field that permit the disappearance of pairs of
critical points. These pairs are determined and sorted according to



Figure 14: Close up of the original topology

Figure 15: Close up of the simplified topology

graphical and numerical criteria that can be adapted to the domain
of application. The whole method can be seen as a continuous pro-
cess where local bifurcations are forced, that entail the merging and
annihilation of critical points of opposite index. We have tested our
algorithm on a numerical dataset provided by a CFD simulation.
The results demonstrate the ability of the method to filter numerical
noise on one hand and prune structural features of small scale on
the other hand. This clarifies the depiction and eases interpretation.
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Figure 17: Original topology and LIC representation

Figure 18: Simplified topology: Maximal simplification rate and LIC representation


