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Summary. Piecewise linear interpolation of 2D scattered vector data is a classical,
simple and fast scheme to process the discrete information provided by experiments
or numerical simulations. Nevertheless, its major drawback is its low order that pre-
vents satisfying approximation of non linear behaviors. For topology-based methods
in particular, commonly applied in vector field visualization, it often restricts the
structural features found to very few possible configurations which may be insuffi-
cient for interpretation. In this paper, on the contrary, we consider piecewise linear
vector fields from the modeling viewpoint, showing that they can exhibit arbitrary
complex topological features.

1 Introduction

Piecewise linear vector fields are used in many applications. Their simple
mathematical description ensures a very good insight into the topological
structure. For scientific visualization in particular, it is the most suited way
to handle 2D scattered vector data for the depiction of the corresponding
flow: the given positions are first associated with a triangulation and a linear
interpolation is then processed in each triangle resulting in a vector field con-
tinuous over the domain. The computation of streamlines (or integral curves)
can then be done very accurately in the phase plane by using analytic formu-
las. Unfortunately, this simplicity usually restricts the encountered features
to very few possible behaviors (locally linear) which deprives the extracted
structure of most topological configurations existing in analytic vector fields.
The qualitative analysis of vector fields on the plane has been a subject of ma-
jor interest in pure and applied mathematics in this century. In [4], Poincaré
laid the foundations of this field. A major contribution was then the work of
Andronov ([1]). Topology concepts were next introduced in scientific visual-
ization in [2]: It was shown that focusing on the singularities of a vector field
leads to a synthetic depiction of the corresponding flow. The deficiencies of
the piecewise linear interpolant for that purpose is a problem that has been
considered in Scientific Visualization in the last years. In [6], an approxima-
tion method was used to enable the appearance of higher order singular points
in piecewise linear vector fields by transforming the field in domains made up
of neighboring triangles containing several critical points. The mathematics
involved referred to Clifford algebra. An higher order method was also in-
troduced in [5] to automatically detect flow features called vortex core lines.
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Furthermore, the lack of smoothness of piecewise linear interpolation mo-
tivated the application of Nielson’s C1-interpolant for vector field topology
depiction (see [7]).

In this paper, we propose an overview of 2D vector field topology taken
from the qualitative theory of second order dynamic systems, then we show
that complicated singularities may also occur in piecewise linear vector fields
and propose a method to model and properly analyze them. The paper is
thus structured as follows. First, we introduce the basic notions required
for the qualitative analysis of vector fields. Fundamental theorems are given
that enable the definition of possible sector types for a singular point in
the general case. Second, we focus on linear vector fields, exposing the few
singularity configurations that may appear in this special case. Third, we
consider piecewise linear interpolation: we show how to model any type of
topological sector and conversely how to depict the structure of complicated
topological features.

2 Topology of 2D Vector Fields

2.1 Definitions and Fundamental Theorems

In the following, we consider a steady vector field defined on the plane.

Definition 1. A steady planar vector field is a map

v : IR2 −→ TIR2 ≃ IR2

X 7−→ v(X)

that is, a map that associates a 2D-vector value with each point on the plane.

Practically, the vector field will be analyzed through its integral curves
(also called orbits or paths).

Definition 2. An integral curve through a point X0 ∈ IR2 of a vector field
v : IR2 −→ IR2 is a map

αX0
: IR ⊃ I −→ IR2

where
{

α̇X0
(t) = v(αX0

(t)), ∀t ∈ I

αX0
(0) = X0

One supposes that the considered vector field is continuous and satisfies the
Lipschitz condition around each point of the plane.

Definition 3. The continuous vector field v : IR2 −→ IR2 is said to satisfy
the Lipschitz condition around each point of IR2 if their exists K > 0 such
that

∀ (X, Y ) ∈ IR2 × IR2, ||v(X) − v(Y )|| < K||X − Y ||

If this condition is true, then K is called the Lipschitz constant of v.
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Remark 1. In the case of a piecewise linear vector field defined on a bounded
triangulation, the Lipschitz condition is satisfied. As a matter of fact, the field
is C∞ (being affin linear) over each triangle and thus satisfies the Lipschitz
condition over each triangle. Let Ki be a Lipschitz constant corresponding
to the ith triangle and consider the following configuration: One has:
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Fig. 1. Lipschitz constant in the piecewise linear case

||v(P ) − v(P0)|| ≤ ||v(P ) − v(C)|| + ||v(C) − v(B)|| + ||v(B) − v(A)||

+||v(A) − v(P0)||

≤ K4 × ||P − C|| + K2 × ||C − B|| + K3 × ||B − A||

+K0 × ||A − P0||

≤ (K0 + K2 + K3 + K4)||P − P0||

≤ (

N
∑

i=0

Ki)||P − P0||

where N is the total number of triangles. So if one sets K =
∑N

i=0
Ki, K is a

Lipschitz constant of the vector field for the whole triangulated domain and
one verifies the hypotheses in the following theorems.

Theorem 1. Let v : IR2 −→ IR2 be a continuous vector field satisfying the

Lipschitz condition around each point of IR2. Then there exists a unique inte-

gral curve through any X0 ∈ IR2. Furthermore, every integral curve is defined

over IR.

Actually, in the theorem above, two different curves through a position X0 ∈
IR2 may only differ by the choice of their parameterization. One can then
define the phase portrait of the vector field as the family of all its paths over
the plane. A fundamental property for the study of the structure of a vector
field is given in the following theorem.
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Theorem 2. Let v be as before and let α and β be two integral curves of v

on the closed interval [t0, t1]. Then, for all t ∈ [t0, t1] one has

||α(t) − β(t)|| ≤ ||α(t0) − β(t0)|| exp(K(t − t0))

That is, one has continuity of integral curves with respect to initial conditions.
In the domain of study, one distinguishes two types of point:

Definition 4. A singular point (also called equilibrium state) of a vector field
v is a point at which the field is zero.

It results from the uniqueness of the integral curve of v through a point that
singular points are the only locations on the plane where two different integral
curves can meet. A point which is not singular is said to be regular.

Now, one focuses on the topology of the vector field, that is, geometrically,
the structure of its integral curves. As shown in [1], the knowledge of the
singular points of the field provides a very good characterization of the phase
portrait topology.

2.2 Singular Points Analysis

All the results in this section are taken from [1]. One should consult this
reference for a more rigorous understanding of these topics.

Center Type First consider the case of singular points that are approached
by no integral curve. Such singularities are said to be of center type. In this
case, on can find a neighborhood of the singular point where all paths are
closed, inside one another, and contain the singular point in their interior.

Fig. 2. center

Non Center Type In this case, one has not only a single path converging
to the singular point but actually at least two. To analyze the local structure
of such a point, consider the following configuration: where L∗

M and L∗

M ′ are
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(positive or negative) semi-paths tending to O. C is a circle with arbitrary
small fixed radius and g is the (open) region bounded by the integral curves
OM and OM ′ and the arc of MM ′ on C, called curvilinear sector.
The structure of a singular point of non center type is characterized by the
behavior of the integral curves passing through points of one of its sectors.
In fact, there exist three different types of curvilinear sectors.

• Case 1. If L∗

M tends to 0 for t −→ ∞ and if L∗

M ′ tends to 0 for t −→
−∞ and if every integral curve passing through the open g leaves g for
both t −→ ∞ and t −→ −∞, the sector will be called a hyperbolic or
saddle sector. In this case, both L∗

M and L∗

M ′ are called separatrices of
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Fig. 4. hyperbolic sector

the singular point O (more precisely, L∗

M is an ω-separatrix and L∗

M ′ is
an α-separatrix).

• Case 2. If L∗

M and L∗

M ′ both tend to O for t −→ ∞ (resp. t −→ −∞) and
if every integral curve through the open g tends to 0 for t −→ ∞ (resp.
t −→ −∞) without leaving g and leaves g for t −→ −∞ (resp. t −→ ∞),
the sector is known as an ω- (resp. α-) parabolic sector.
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Fig. 5. parabolic sector

• Case 3. If L∗

M and L∗

M ′ are two semi-paths on the same path and if all
the paths through a point inside this loop form nested loops tending to
O for both t −→ ∞ and t −→ −∞, the sector is called an elliptic sector.
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Fig. 6. elliptic sector

Consequently, any singular point may be characterized by the type, an-
gular location, and number of its curvilinear sectors. The precise meaning of
this characterization is described in the following.

Theorem 3. If the structures of two singular points are related through a

one-to-one correspondence between their respective ω-separatrices, α-separatrices

and elliptic regions then there exists a path-preserving topological mapping of

a neighborhood of the first onto a neighborhood of the second preserving ori-

entation and direction of t.

3 Piecewise Linear Interpolation

After having considered singular points from a general viewpoint, we now
focus on their possible structure in the special case of a piecewise linear vector
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field. We start with a review of the few basic topological features of a linear
vector field before presenting a method that makes use of the “flexibility”
introduced by the piecewise linearity to model any topological structure for
a singular point.

3.1 Linear Interpolation

An affin linear vector field v is described in the following way

v(X) = AX + b

where

X =

(

x

y

)

A =

(

αX βX

αY βY

)

and b =

(

γX

γY

)

(If v has a zero, then one takes its location as new coordinates origin and
thus considers the linear field v′(X) = AX).

An affin linear vector field is uniquely determined by its Jacobian (or
gradient matrix) at the location of its possible zero. That is, depending on
the eigenvalues of the matrix A, integral curves of v may have different aspects
over the plane. The following classification is taken from [3].

• Case 1. A has real eigenvalues of opposite signs. The zero is called a
saddle point.

Fig. 7. saddle point

• Case 2. All eigenvalues have negative real parts. The zero is called a sink,
because any integral curve tends to O for t −→ ∞.
– Case 2a. A is diagonalizable and its eigenvalues are different. The

zero is called a node sink. The special case where the eigenvalues are
equal is called a focus sink.
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Fig. 8. node sink Fig. 9. focus sink

– Case 2b. A is not diagonalizable but has one real negative eigenvalue.
The zero is called an improper node sink.

– Case 2c. A has two complex conjugate eigenvalues with negative real
parts. The zero is called a spiral sink.

Fig. 10. improper node sink Fig. 11. spiral sink

• Case 3. All eigenvalues have positive real parts. The zero is called a source,
because any integral curve tends to it for t −→ −∞.
– Case 3a. A is diagonalizable and its eigenvalues are different. The

zero is a node source. If both eigenvalues are equal, the zero is a focus

source.

Fig. 12. node source Fig. 13. focus source
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– Case 3b. A is not diagonalizable but has one real positive eigenvalue.
The zero is called an improper node source.

– Case 3c. A has two complex conjugate eigenvalues with positive real
parts. The zero is called a spiral source.

Fig. 14. improper node source Fig. 15. spiral source

• Case 4. A has pure imaginary eigenvalues. The zero is then called a center

(see Fig. 2).

Thus, in a linear vector field, the only singularities that can be found are
(possibly after a coordinate change) of the one of the eight configurations
above. Such singular points are said to be simple or of first order.

3.2 Higher Order Singular Points

So what is new, from the topological viewpoint, with piecewise linear inter-
polation?
One is given a triangulation of planar points associated with vector values
and inside each triangle cell, one builds a linear combination of the three
vectors at the vertices. So inside each triangle, the vector field is linear and
if a singularity exists in its interior, it has the topological structure of one of
the cases above. But the situation becomes fundamentally different when the
singularity is to be found on a triangle vertex. Indeed, in this case, there is
no neighborhood of the singular point lying in the definition domain of a lin-
ear field (i.e. one single triangle). Consequently, the analysis of the Jacobian
matrix is of no help in finding out the topological structure of such a singu-
lar point. Fundamentally, one has to face an arbitrary singular point (i.e. a
singular point in the neighborhood of which a linear approximation may no
longer be possible). In analytic vector fields, such singular points correspond
to points on the plane at which the Jacobian matrix has not full rank. Simple
examples are given by the so-called monkey-saddle(v(x, y) = (x2−y2,−2xy))
and dipole(v(x, y) = (x2 − y2, 2xy)). In the following, we first show how to
model any type of singularity (that is the number, positions and natures of
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Fig. 16. monkey saddle Fig. 17. dipole

the curvilinear sectors are arbitrary defined) and then we focus on the con-
verse problem, detecting the local topological structure of a given singularity
lying at a triangulation vertex.

Modeling of Singular Points In this section, one is dealing with the
following problem (see theorem 3): Given a list of angles (ωi)i=1,..,n1 of ω-
separatrices, a list of angles (αi)i=1,..,n2 of α-separatrices, and a list (gi)i=1,..,n3

of elliptic sectors, build a piecewise linear vector field that presents an equiv-
alent singular point. Here, the problem should be subdivided into modeling
a single curvilinear sector starting and stopping at prespecified angular po-
sitions, given by the sorted values of the angles introduced above.
Consequently, one considers the three possible sector type cases.
Remark: In the following, the neighborhood of the singular point is actually
the set of triangles that are incident to the considered “singular” vertex.

Hyperbolic Sector A hyperbolic sector is bounded by two separatrices of op-
posite kind (an ω- and an α-separatrix). Consider an ω-separatrix located at
θ = ω and an α-separatrix located at θ = α. Building a triangle as in Fig. 18,
and setting v1 = −uω and v2 = +uα, one gets the expected hyperbolic
behavior for all integral curves starting inside the triangle ABC.

v1

0

v2
B(   )

O

A(   )

(   )

ω α

Fig. 18. piecewise linear hyperbolic sector
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Parabolic Sector According to the definition above, a parabolic sector is
bounded by two separatrices of the same kind (both ω- or both α-separatrices).
Consider two ω-separatrices located at θ = ω1 and θ = ω2 respectively. Build-
ing a triangle as in Fig. 19, and setting v1 = −uω1

and v2 = −uω2
, one gets

the expected parabolic behavior for all integral curves starting inside the
triangle ABC.

v1

0

ω1
ω2

v2
B(   )

O

A(   )

(   )

Fig. 19. piecewise linear parabolic sector

Elliptic Sector In this case, one is not given two angle coordinates of two
bounding separatrices but a curvilinear sector bounded by a loop integral
curve that tends to O for both t −→ ∞ and t −→ −∞. The modeling of
such a sector by a piecewise linear vector field requires the curve itself to be
described in terms of its tangential directions for t −→ ∞ and t −→ −∞.
Consider Fig. 20.

θ21θ
1θ θ2

B(v  )

C(v  ) A(v  )

+ 
 2

13

2

L*

Fig. 20. piecewise linear elliptic sector

The angle coordinates θ1 and θ2 are the tangential direction of the loop
curve L∗ that bounds the modeled elliptic sector. The vector values at A and
C are set as in the hyperbolic case. From the former case, one knows that
the linear sector defined by A, B and O is hyperbolic. This means that an
elliptic sector cannot be met in a linear field. To build such a sector, one has
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thus to split the triangle into two sub-triangles. By setting the vector value at
the corresponding additional point B as shown above, one gets the expected
elliptic behavior for all integral curves through points located inside the loop
L∗.

Fig. 21 illustrates the possible cases.

Fig. 21. modeled singular point

Local Topology Detection Conversely, suppose that a “piecewise linear”
singular point is given, that is a zero vector located at a vertex of a piecewise
linear interpolated triangulation. One wants to locate and analyze the differ-
ent topological sectors of such a singular point. According to what precedes,
it consists in seeking the boundary curves of hyperbolic sectors (called sepa-
ratrices) and the different sets of nested loop curves tending to the singular
point for both increasing and decreasing time.
The following lemma will be very useful for the processing.

Lemma 1. In the neighborhood of a singular point lying on a vertex of a

piecewise linear interpolated triangulation, the angle coordinate of the vector

field does not depend on the distance to the singular point.

Proof: Consider the situation in Fig. 22. In the triangle ABC, the vector
value at P is linear interpolated between O and Q. One thus gets

v(P ) = x v(Q) + (1 − x) v(O)
= x ∗ Q
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Fig. 22. Angular coordinate

That is, v(P ) is collinear to v(Q) and thus, taking O as coordinate origin,
both vectors have the same angle coordinate. Q.E.D.
In the remaining, one calls their common angular coordinate v(θ).

Using this property, one can locate the angular positions of all separatrices
by looking for angles where the vector field is collinear to the coordinate
vector and checking the type of the sectors on both sides to find out if one
has actually found a separatrix. Seeking the angular coordinates where the
vector field is orthogonal to the coordinate vector enables next the distinction
between a hyperbolic and an elliptic sector (see section 20). To simplify the
results, one adopts the following notations: at the angular coordinates where
the vector field is orthogonal to the coordinate vector, one distinguishes angles
where the cross-product uθ ∧v(θ) is positive (called orthogonal+) from those
where it is negative (called orthogonal-). At the angular coordinates where
the vector field is parallel to the coordinate vector, one distinguishes angles
where the scalar product uθ.v(θ) is positive (called parallel+) from those
where it is negative (called parallel-). (see Fig. 23).

One gets then the graph proposed in Fig. 24 for the determination of a
sector type.

4 Conclusion

A piecewise linear interpolation of 2D vector data is a simple and fast way
to reconstruct the information provided by simulations or experiments into
a continuous vector field. Nevertheless, this scheme is often regarded as in-
sufficient for the detection of complex topological features because of its low
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Fig. 23. remarkable positions
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Fig. 24. sector type determination graph



Higher Order Singularities... 15

degree. Yet, we have shown in this paper that a zero vector value located at a
vertex position results in a complex topological structure in its neighborhood.
Actually, one has shown that any possible topological behavior of a vector
field may be thus encountered and not only the few basic features existing
in linear fields. An interesting application of this result has been considered
which is the modeling of singularities of any type and complexity in piecewise
linear vector fields.
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