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SUMMARY

The Implicit Continuous-fluid Eulerian (ICE) method is a successful and widely used semi-implicit finite-
volume method that applies to flows that range from supersonic to subsonic regimes. The classical ICE
method has been expanded to problems in multiphase flow whichspan a wide area of science and
engineering. The ICE method is utilized by the C-SAFE code Uintah written at the University of Utah
to simulate explosions, fires and other fluid and fluid-structure interaction phenomena. The ICE method
used in Uintah (referred to here as Production ICE) is described in many papers by Kashiwa at Los Alamos
and Harman at Utah. However, Production ICE does not performas well as many current methods for
compressible flow problems governed by the Euler equations.We show, via examples, that changing the non-
conservation form of the solver in Production ICE to a conservation form improves the numerical solutions.
In addition, the use of slope limiters makes it possible to suppress the nonphysical oscillations generated
by the ICE method in conservation form. This new form of ICE isreferred to as IMPICE, the IMproved
Production ICE method. The accuracy of IMPICE for one dimensional Euler equations is investigated by
using a number of test cases. Copyrightc© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ICE method was developed by Harlow and Amsden in 1968 [11] with the aimof calculating the

flows in all velocity ranges. The key idea for the method is to use a semi-implicit time discretization,

in which the acoustic waves are treated implicitly while the advection terms are treated explicitly.

As a result, the ICE method is able to remove the Courant stability limitation based on the speed

of sound in the fluid. According to Harlow and Amsden [11], this is a numerically stable and

efficient method for calculating transient, viscous fluid flows in several space dimensions. Harlow

†ltran@cs.utah.edu
‡mb@cs.utah.edu
∗Correspondence to: L.T. Tran, School of Computing, Universityof Utah, 50 S. Central Campus Drive, Salt Lake City,
UT 84112, U.S.A.

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared usingfldauth.cls [Version: 2010/05/13 v2.00]



2 L.T. TRAN, M. BERZINS

and Amsden in 1971 [12] simplified the method and also greatly extended its scope of applicability.

The ICE method by Harlow and Amsden was intended to simulate single-phase fluid dynamics

problems. There are several improved versions of the ICE method using apressure-correction

solution procedure as seen in [4, 18, 19, 31, 37], and one typical pressure-correction method

is referred as PISO (Pressure Implicit with Splitting of Operations). The ICE method was later

extended by Harlow and Amsden in 1975 [13] and Kashiwaet al. in 1994 [21] to work with

multiphase flow simulations. The ICE method by Harlow and Amsden used a staggered grid with

normal velocity components at cell faces and all other variables at cell centers. As mentioned in

Kashiwa and Lee [20], the main difficulties in the use of the staggered mesh include adding the

artificial terms corresponding to a bulk viscosity to the equations in order to obtain reasonably

smooth variation in density near shock waves and the development of spurious fluid as a result of

a purely nonphysical circumstance. Kashiwaet al. [21] devised a new implementation of the ICE

method by using a cell-centered scheme in which velocity is also located at the cell-center in an

ongoing effort to deal with the difficulties in the classical approach. In thecell-centered approach,

the velocity at cell faces is not computed directly, but is defined using the flow field or other

dependent variables. Kashiwa and Lee [20] mention that definition of the face-centered velocity in

the cell-centered scheme is a crucial matter for the robustness of the method.The fully cell-centered

implementation of the ICE method in Kashiwaet al.[21] employs a conservative advection operator

and a Lagrangian part which leaves a degree of freedom in the choice of conservation variables. The

conservation laws used include at least those of mass, linear momentum, and internal energy (or

alternatively the total energy). The Lagrangian part in most standard ICE implementations is fully

conservative and it usually conserves the internal energy rather thanthe total energy.

Due to its general applicability, the ICE method has been used to study numerous complex flow

problems, for example, fluidized dust beds, the flow of a liquid with entrainedbubbles, atmospheric

condensation with the fall of precipitation, the expansion and compression of a bubble formed

by high-explosive gases under water and dynamics resulting from intense atmospheric explosions

from the early time highly compressible flow [13, 21]. With its ability to handle complex flow

problems, the ICE method for multiphase flows is also utilized by the C-SAFE codeUintah written

at the University of Utah to simulate explosions, fires and other fluid and fluid-structure interaction

phenomena [9]. The ICE code in the Uintah Framework will be referred to hereafter as Production

ICE. The implementation of Production ICE is based on the cell-centered ICE method by Kashiwa

et al. [21] with a few exceptions that will be discussed in detail in Section 3. The numerical scheme

used in Production ICE [9, 10, 14, 27, 28] solves the conservation of mass, linear momentum and

internal energy. However, the Lagrangian part in Production ICE is in non-conservative form which

appears to be an exception to the standard ICE method. While this may not be a problem for

some cases, it appears to be a problem when applying this Production ICE code to single-fluid

cases that are governed by the Euler equations in which the obtained numerical solutions exhibit

some discrepancies in the shock speeds and they additionally show unphysical oscillations. The
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 3

Production ICE method for single-fluid cases solves the fluid flows that aregoverned by the one-

dimensional, time-dependent Euler equations of gas dynamics given by
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whereρ(x, t) is the density,u(x, t) is the velocity,p(x, t) is the pressure, ande(x, t) is the internal

energy per unit mass. The following equation of state is also employed:

p = (γ − 1)ρe, (2)

whereγ is the specific heat ratio with the value of 1.4 for ideal gas.

It has been mentioned in [17, 26, 35] that nonconservative schemes approximating hyperbolic

conservation laws do not converge to the correct solution in general. Sothe existence of

discrepancies in the numerical solutions for non-linear hyperbolic systemsusing Production ICE

is quite understandable. Therefore, in order to improve the Production ICE method, we first change

the method to solve the system of one-dimensional Euler equations in conservation form where

the total energy instead of the internal energy is conserved. The Improved Production ICE method,

will be referred to hereafter as IMPICE, is a cell-centered ICE method which solves the system of

one-dimensional Euler equations in conservation form that is given by
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and the equation of state is given by

p = (γ − 1)(ρE −
1

2
ρu2), (4)

where E(x, t) is the total energy per unit mass andE = e+ 1
2u

2. As a result of changing

the Production ICE method to solve the system of Euler equations in conservation form, the

computational results show the disappearance of the discrepancies in the obtained numerical

solutions (refer to Appendix C). In Appendix C, the original method of Kashiwa et al [21] is

referred to as Cell-centered ICE. However, Cell-centered ICE suffers from unphysical oscillations

when there are moving contact discontinuities. Typically, methods in the literature use a variety

of techniques such as constrained data reconstruction so as to avoid spurious oscillations; for

example, [1, 2, 5, 39, 40, 41, 42]. To suppress oscillations, we will usea similar approach in which

the data at the cell interface is the approximate Riemann solution to the local Riemann problem

that is constructed by using slope-limited interpolation of the left and right cell-centered data.

The approximate Riemann solver which was proposed by Hartenet al. [15] and used by Davis

[6] to satisfy consistency with the integral forms of the conservation law andentropy condition

will be used to solve the local Riemann problem. The slope limiter used is selected from the

extensive literature on the functions for slope limiters in the last few decades; see, for example,
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4 L.T. TRAN, M. BERZINS

[7, 16, 33, 36, 39, 40, 41, 43]. The IMPICE method is Cell-centered ICE with the oscillations being

suppressed using the above-mentioned technique. In effect, although the original ICE method is a

von-Neumann type method in which the fluxes are fully dependent on the time increment, we have

now introduced a Riemann solver approach in which the fluxes depend directly on the approximate

solution to the Riemann problem. The discussion of the methods in this paper will need the definition

of the speed of sound. The speed of sound,c(x, t), in an ideal gas is defined by

c =

√

γp

ρ
. (5)

As for many numerical methods for the solution of PDEs, the IMPICE method approximates the

Euler equations by a finite volume method using a spatial discretization of the problem and a time

integration technique. Besides the importance of having a non-oscillating numerical solution, the

numerical accuracy of the method in time and space is also important. The IMPICE method is first

order in space and time. However, first-order methods are known to be not accurate enough to be

used for large problems on relatively coarse grids. In order to increase the order of accuracy in time

and space, we need to employ a nonlinear spatial discretization combined with ahigh order time

discretization. Our goal is to obtain an IMPICE method with second-order accuracies in both time

and space. In this paper, we will study numerical accuracy of the IMPICE method and discuss how

to change the IMPICE method to achieve second-order accuracy in both space and time.

The content of this paper is organized as follows. In Section 2, we recapthe cell-centered ICE

method by Kashiwaet al. [21] which includes the spatial discretization and essential steps in the

time integration. In Section 3, we present a detail implementation of the ProductionICE method

and describe differences between it and the cell-centered ICE method byKashiwaet al. [21]. In

Section 4, we discuss the proposed method by Kwatraet al. [23] that can be applied to calculate

the time integration step of the semi-implicit ICE method. This method removes the restriction of

sound speed in calculating the time step, but still maintains stability. In Section 5, wepropose a

modification to the Production ICE method to remove the unphysical oscillations in the numerical

solutions. The numerical solutions of the IMPICE method are presented andcompared to the

numerical solutions of the Production ICE method in Section 6. The spatial andtemporal accuracies

of the IMPICE method are shown in Section 7. The issue of how to obtain second-order accuracy in

time and space is discussed in Section 8 and Section 9. As it will be discussed inSection 2, there are

many degrees of freedom in the implementation of the cell-centered ICE method by Kashiwaet al

[21], so the purpose of this paper is not only to find an improved implementationof the Production

ICE method but also to discuss how various choices in the implementation of the cell-centered ICE

method affect the obtained numerical solutions.

2. THE CELL-CENTERED ICE METHOD BY KASHIWAET AL.[21]

2.1. General description of the cell-centered ICE method

The cell-centered ICE method described in detail in [21] is a finite-volume solver in which space is

discretized into N uniform cells of width∆x = (b− a)/N where[a, b] is the spatial domain. The
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 5

cells are centered aroundxj = a+ (j − 1/2)∆x wherej = 1..N . The boundaries of these cells are

located atxj+ 1
2
= a+ j∆x wherej = 0..N and also called face-centers or cell interfaces. With this

discretization, the domain boundaries are aligned with the first and last cell edges. A time integration

method is used to estimate the averages of cell variables at some timet = Tend from the averages

of cell variables att = 0. For each time integration step, assuming that the cell averages at timetn

are known, the goal is to compute the averages of cell variables at the next time steptn+1.

The ICE method invokes operator splitting in which the solution consists of a Lagrangian phase

and an Eulerian phase. The Lagrangian phase advances cell values without advection and maps

new values to cell variables and the Eulerian phase advects the cell variables. The essential point

that makes the ICE method an all-speed scheme is to use an implicit scheme for the Lagrangian

phase and an explicit scheme for the Eulerian phase. The cell-centered ICE method comprises the

following phases:

The Primary Phase:

With the spatial discretization as discussed above, the spatial derivativesin the governed equations

are approximated using finite differences of quantities at face-centers.Since an implicit scheme is

used for the Lagrangian phase, the variables involved in the Lagrangianphase are those evaluated at

face-centers attn + ∆t
2 and are determined in this phase. It is also necessary in this phase to estimate

the fluxing velocity which is going to be used in the Eulerian phase. The fluxingvelocity,u∗

j+ 1
2

, is

the flux of volume across the cell interface. In order to make clear which variables are defined at

face center, the superscript∗ is used here for these variables as required.

The Lagrangian Phase:

Let V n
j be the volume of cellj andUn

j be the vector of averaging cell variables attn. In particular,

V n
j is equal to∆x for the above discretization. Assume that the cell volume is changed during

the Lagrangian phase toV L
j andV L

j = V n
j +∆t(u∗

j+ 1
2

− u∗

j− 1
2

) whereu∗

j− 1
2

andu∗

j+ 1
2

are fluxing

velocities at cell interfaces. There is also a change in the vector of averaging cell variables toUL
j

after the Lagrangian phase has been completed. A numerical scheme obtained from neglecting the

convective effects is used to evaluate the change in the material state and in turn evaluateUL
j .

The Eulerian Phase:

For this phase, we have to evaluate the change in the solution due to advection. LetV n+1
j be the cell

volume attn+1 and assume that the mesh is stationary, thenV n+1
j = ∆x. The change in the solution

due to advection is as follows

V n+1
j Un+1

j = V L
j UL

j −∆t(u∗

j+ 1
2
〈U〉j+ 1

2
− u∗

j− 1
2
〈U〉j− 1

2
), (6)

where 〈U〉j+ 1
2
= 1

∆t

∫ tn+1

tn
U(xj+ 1

2
, t)dt is the vector of advected quantities and is numerically

determined. As suggested by [21], this numerical value may be determined using Un
j or UL

j ;

however, how to numerically determine this is not explicitly presented.
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6 L.T. TRAN, M. BERZINS

State Variables Update Phase:

In this phase we update the primitive cell variables usingUn+1
j and the equation of state as these

will be used for the following time integration step.

2.2. The cell-centered ICE implementation of Kashiwaet al.[21]

Kashiwaet al.’s improvements, [21], to ICE consist of changes to the above primary andLagrangian

phases. There are two important quantities that will be used in these phases, these are the face-

centered velocity and pressure as denoted byu∗

j+ 1
2

andp∗
j+ 1

2

. The face-centered velocity,u∗

j+ 1
2

, is

also the advected speed for the Eulerian phase, so [21] refers this as the fluxing velociy. The face-

centered fluxing velocity,u∗

j+ 1
2

, is calculated based on the time-advanced equation for velocity. For

the system of the Euler equations, the derived equation for velocity evolution is

ut + uux = −
px
ρ
. (7)

Equation (7) is written in Lagrangian form as

Du

Dt
= −

px
ρ
. (8)

The fluxing velocity in the cell-centered ICE method is obtained using the flow field and semi-

implicit Euler scheme in the Lagrangian frame by

u∗

j+ 1
2
= 〈〈un

j+ 1
2
〉〉ρ −

∆t

2∆x

p
n+ 1

2

j+1 − p
n+ 1

2

j

〈〈ρn
j+ 1

2

〉〉
, (9)

wherep
n+ 1

2

j is the cell-centered pressure attn + ∆t
2 , 〈〈un

j+ 1
2

〉〉ρ is the mass-weighted average face-

centered velocity and〈〈ρn
j+ 1

2

〉〉 is the average face-centered density at timetn. The mass-weighted

average velocity,〈〈un
j+ 1

2

〉〉ρ, of left and right states at face-center is given by

〈〈un
j+ 1

2
〉〉ρ =

ρnj u
n
j + ρnj+1u

n
j+1

ρnj + ρnj+1

, (10)

and the average face-centered density,〈〈ρn
j+ 1

2

〉〉, of left and right cell-centered densities is:

〈〈ρnj+ 1
2
〉〉 =

ρnj + ρnj+1

2
. (11)

As the face-centered pressure attn + ∆t
2 , p

n+ 1
2

j , is not readily available, it needs to be obtained from

correcting the face-centered pressure attn, p
n
j . Let δpnj = p

n+ 1
2

j − pnj be the difference between the

cell-centered pressures at these two time levels and which is referred to in Kashiwaet al. [21] as

“pressure corrector”, equation (9) is then rewritten as

u∗

j+ 1
2
= ũ∗

j+ 1
2
−

∆t

2∆x

δpnj+1 − δpnj
〈〈ρn

j+ 1
2

〉〉
, (12)
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where

ũ∗

j+ 1
2
= 〈〈un

j+ 1
2
〉〉ρ −

∆t

2∆x

pnj+1 − pnj
〈〈ρn

j+ 1
2

〉〉
. (13)

In order to determine the face-centered fluxing velocity,u∗

j+ 1
2

, the “pressure corrector” values,δpnj+1

andδpnj , need to be determined using the equation of pressure evolution,

pt + upx = −c2ρux, (14)

which is written in Lagrangian form as

Dp

Dt
= −c2ρux. (15)

In [21], two different ways to determine the “pressure corrector” values are discussed. The explicit

“pressure corrector” uses the explicit discrete form and the implicit “pressure corrector” uses the

semi-implicit discrete form of (15). The explicit form of “pressure corrector” is given by

δpnj = −
∆t

2
un
j

(

pnj+1 − pnj−1

2∆x

)

−
∆t

2∆x
(c2ρ)nj (〈〈u

n
j+ 1

2
〉〉ρ − 〈〈un

j− 1
2
〉〉ρ). (16)

The implicit “pressure corrector” is obtained using

δpnj = −
∆t

2
un
j

(

pnj+1 − pnj−1

2∆x

)

−
∆t

2∆x
(c2ρ)nj (u

∗

j+ 1
2
− u∗

j− 1
2
). (17)

The implicit “pressure corrector” is complicated since equations (12) and (17) show that the face-

centered fluxing velocities and the “pressure corrector” values are interrelated, so there is a need to

calculate the fluxing velocities using these two equations and this is not explicitly discussed in [21].

After having determined the “pressure corrector” values at cell centers, the face-centered fluxing

velocity,u∗

j+ 1
2

, is determined using equation (12) whereũ∗

j+ 1
2

is defined in (13).

There are several suggested choices for calculating the face-centered pressure,p∗
j+ 1

2

, in [21] and

[22]. Two of these choices, which are derived from the pressure equation in Kashiwaet al in 1994

[21], will be discussed in Appendix D. In this paper, we employ the choice that is mentioned in

Kashiwa in 2001 [22]. This choice aims to satisfy continuity of acceleration byequating acceleration

increments for the left/right half spaces. The equation as specified in [22]is:

p∗j+ 1
2
=





1
ρn
j+1

p
n+ 1

2

j+1 + 1
ρn
j

p
n+ 1

2

j

1
ρn
j

+ 1
ρn
j+1



 . (18)

In the above equation, the face-centered pressure is thus calculated using specific volumes-weighted

of the left and right time-advanced cell-centered pressures.

The Primary Phase is executed after the face-centered velocity and pressure,u∗

j+ 1
2

andp∗
j+ 1

2

,

are calculated. The choice of the vector of conserved variables,U , and the numerical procedure

to determine the vector of the face-centered advected quantities,〈U〉j+ 1
2
, are neccessary for the

implementation of the Lagrangian phase and the Eulerian phase.
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8 L.T. TRAN, M. BERZINS

3. PRODUCTION ICE IN UINTAH COMPUTATIONAL FRAMEWORK

The term Production ICE is used to denote the ICE method as implemented in Uintah Computational

Framework by [9, 10, 14, 27, 28] to simulate fluid flows that are governedby the Euler and Navier

Stokes equations. Production ICE solves the Euler system in non-conservation form (1) with the

vector of variablesU = [ρ, ρu, ρe]
T . The detail implementation of the phases in Production ICE

follows the description given in Kashiwaet al. [21] with some exceptions that will be pointed out

explicitly in the following discussion.

3.1. The Primary Phase

The first exception is that the face-centered quantities in Production ICE are not time-centered.

The face-centered fluxing velocity,u∗

j+ 1
2

, and pressure,p∗
j+ 1

2

, for the time step[tn, tn+1] are

approximated at the face-center at timetn+1. For this reason, we use the notationsu∗∗

j+ 1
2

andp∗∗
j+ 1

2

for the face-centered fluxing velocity and pressure in Production ICE.Using a different approach

from equation (9), the face-centered fluxing velocity in Production ICE,u∗∗

j+ 1
2

, is approximated as:

u∗∗

j+ 1
2
= 〈〈un

j+ 1
2
〉〉ρ −

∆t

∆x

pnj+1 − pnj
〈〈ρn

j+ 1
2

〉〉
, (19)

where the mass-weighted average velocity and the average face-centered density,〈〈un
j+ 1

2

〉〉ρ and

〈〈ρn
j+ 1

2

〉〉, are defined in (10) and (11). So another exception in calculating the fluxing velocity in

Production ICE is that the scheme in (19) is not semi-implicit when the pressures used are defined

at tn.

The face-centered pressure,p∗∗j+1/2, in Production ICE is calculated using the following equation

p∗∗j+ 1
2
=

( 1
ρn
j+1

pn+1
j+1 + 1

ρn
j

pn+1
j

1
ρn
j

+ 1
ρn
j+1

)

. (20)

This is similar to equation (18), but with the cell-centered pressures at timetn+1, pn+1
j , wherepn+1

j

is evaluated using an explicit scheme applied to the Lagrangian form of the equation of pressure

evolution in (15), which is given by

pn+1
j = pnj −

∆t

∆x
(c2ρ)nj (〈〈u

n
j+ 1

2
〉〉ρ − 〈〈un

j− 1
2
〉〉ρ). (21)

3.2. The Lagrangian Phase

Production ICE chooses the vector of conserved variables to include mass, linear momentum and

internal energy. The use of the non-conservative form of the systemof Euler equations in (1) means

that the Lagrangian part in Production ICE is given by

V L
j UL

j = V n
j Un

j −∆t







0

p∗∗j+1/2 − p∗∗j−1/2

pn+1
j (u∗∗

j+1/2 − u∗∗

j−1/2)






. (22)
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3.3. The Eulerian Phase

The change in solution values due to advection over the step[tn, tn+1] is given by

V n+1
j Un+1

j = V L
j UL

j −∆t(u∗∗

j+ 1
2
〈U〉j+ 1

2
− u∗∗

j− 1
2
〈U〉j− 1

2
). (23)

However, the numerical values of face-centered advected quantities in the following definition:

〈U〉j+ 1
2
=

1

∆t

∫ tn+1

tn

U(xj+ 1
2
, t)dt (24)

has not been quantified so far in this paper and we will now show how to approximate it. Normally

U(xj+ 1
2
, t) is not constant for the step[tn, tn+1], but a first-order accuracy is obtained by assuming

that this is constant and is an upwinded cell-centered value. However, there are the cell-centered

values at two different time levels that are available for the Eulerian phase.These are attn and the

value after the Lagrangian step. By chosing the upwinded cell-centered values at timetn for the

face-centered advected quantities, we have

〈U〉j+ 1
2
=







Un
j+1 if u∗

j+ 1
2

< 0

Un
j otherwise.

(25)

Alternatively, if the upwinded cell-centered values at Lagrangian time levelare considered for face-

centered advected quantities, we have

〈U〉j+ 1
2
=







UL
j+1 if u∗

j+ 1
2

< 0

UL
j otherwise.

(26)

The Production ICE code uses (25) to define the face-centered advected quantities, [14, 27, 28].

3.4. State Variables Update Phase

The averages of cell primitive variablesρ,u,e, andp are then updated using the averages of cell

variablesρ,ρu,ρe and the equation of state (2).

4. CFL CONDITION

The choice of the time step∆t in time integration affects the stability of the ICE method. As

mentioned in [34], one requirement for the method to be stable is the fastest wave at a given time is

allowed to travel, at most, one cell length∆x in the chosen time step∆t. For the system of Euler

equations, the time step∆t is chosen to satisfy the condition:

∆t =
Ccfl∆x

Sn
max

, (27)

whereCcfl is a Courant or CFL coefficient satisfying0 < Ccfl < 1 andSn
max is the largest wave

speed present through the domain at timetn. A practical choice ofSn
max as mentioned in Toro [34]
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10 L.T. TRAN, M. BERZINS

is

Sn
max = max

j
(|un

j |+ cnj ). (28)

However, Kwatraet al. [23] proposed a novel method for alleviating the stringent CFL condition

imposed by the sound speed in simulating highly nonlinear compressible flow with shocks, contacts

and rarefactions. It is mentioned in [23] that the maximum speed in equation (28) is too restrictive

for flows where the sound speed,c, may be much larger than|u|, so the stringent CFL time step

restriction imposed by the acoustic waves can be avoided and only the materialvelocity CFL

restriction is used in calculating the maximum speed. The proposed method of [23] is well suited to

the semi-implicit solver like the ICE method where only the advection step is the explicit part. The

proposed maximum speed calculation in [23] is:

Sn
max = max

j
|un

j |. (29)

The time step used in this paper for both Production ICE method and IMPICE method is determined

using (27) whereSn
max is calculated using (29).

5. IMPICE METHOD

The IMPICE method improves the numerical solutions to the one-dimensional, time-dependent

Euler equations of gas dynamics by solving the conservation form in (3). However, as will be

validated by numerical experiments in Appendix C, the numerical solutions obtained using the

cell-centered ICE method in conservation form have unphysical oscillations that need to be reduced

or eliminated. The oscillations in the numerical solutions of the cell-centered ICEmethod cannot be

diminished by decreasing the time step , so in this section, we will describe the algorithm used to

suppress these oscillations numerically by using a simple approximate Riemann solver.

5.1. Numerical Discussion

To help explain the IMPICE method, we start with a discussion of schemes thatapproximate

conservation laws as follows and consider a one-dimensional system in a conservation law form

∂U(x, t)

∂t
+

∂F (U(x, t))

∂x
= 0, x ∈ [a, b] and t ≥ 0, (30)

whereU(x, t) is the vector of conserved variables andF (U(x, t)) is the vector of fluxes. In order to

approximate the solution of (30) with the initital condition

U(x, 0) = U0(x), (31)

we discretize space into N uniform cells as in Section 2. The cell average ofthe cell[xj− 1
2
, xj+ 1

2
]

at timetn is denoted byUn
j , where

Un
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

U(x, tn)dx. (32)
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 11

A standard approach is used in integrating system (30) in space and time in thecontrol volume

[xj− 1
2
, xj+ 1

2
]× [tn, tn+1] to give:

∫ x
j+1

2

x
j− 1

2

[U(x, tn+1)− U(x, tn)] dx = −

∫ tn+1

tn

[

F (U(xj+ 1
2
, t))− F (U(xj− 1

2
, t))
]

dt.

This can then be written in the standard conservation form:

∆xUn+1
j = ∆xUn

j −∆t
(

Fj+ 1
2
− Fj− 1

2

)

(33)

where

Fj+ 1
2
=

1

∆t

∫ tn+1

tn

F (U(xj+ 1
2
, t))dt. (34)

Equation (33) is used by finite volume methods to solve the system (30) approximately. In order to

use this relation, a spatial integration of the initital condition is required and the approximations of

the fluxes at the cell interfaces are needed.

The numerical flux derivation follows the cell-centered ICE method of Kashiwa et al.[21] will be

derived shortly. The system of Euler equations (3) of gas dynamics is written in the form (30) where

U = (ρ, ρu, ρE)T andF (U) = (ρu, ρu2 + p, ρuE + up)T . The face-centered flux (34) in this case

is written as

Fj+ 1
2
=







1
∆t

∫ tn+1

tn
(ρu)(xj+ 1

2
, t)dt

1
∆t

∫ tn+1

tn
(ρu2 + p)(xj+ 1

2
, t)dt

1
∆t

∫ tn+1

tn
(ρuE + pu)(xj+ 1

2
, t)dt






. (35)

A Taylor series approximation ofu(xj+ 1
2
, t) is given by

u(xj+ 1
2
, t) = u(xj+ 1

2
, tn+ 1

2
) + (t− tn+ 1

2
)ut(xj+ 1

2
, tn+ 1

2
) +O(∆t2). (36)

Using the notationsu
n+ 1

2

j+ 1
2

= u(xj+ 1
2
, tn+ 1

2
) and(ut)

n+ 1
2

j+ 1
2

= ut(xj+ 1
2
, tn+ 1

2
), we have:

1

∆t

∫ tn+1

tn

(ρu)(xj+ 1
2
, t)dt =

1

∆t

∫ tn+1

tn

ρ(xj+ 1
2
, t)
[

u
n+ 1

2

j+ 1
2

+ (t− tn+ 1
2
)(ut)

n+ 1
2

j+ 1
2

+O(∆t2)
]

dt

= u
n+ 1

2

j+ 1
2

(

1

∆t

∫ tn+1

tn

ρ(xj+ 1
2
, t)dt

)

+O(∆t2).

With a similar approach, we also have

1

∆t

∫ tn+1

tn

(ρu2 + p)(xj+ 1
2
, t)dt = u

n+ 1
2

j+ 1
2

(

1

∆t

∫ tn+1

tn

(ρu)(xj+ 1
2
, t)dt

)

+ p
n+ 1

2

j+ 1
2

+O(∆t2)

and

1

∆t

∫ tn+1

tn

(ρuE + up)(xj+ 1
2
, t)dt = u

n+ 1
2

j+ 1
2

(

1

∆t

∫ tn+1

tn

(ρE)(xj+ 1
2
, t)dt

)

+ (up)
n+ 1

2

j+ 1
2

+O(∆t2).
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12 L.T. TRAN, M. BERZINS

Then face-centered fluxFj+ 1
2

vector in (35) is rewritten as

Fj+ 1
2
= u

n+ 1
2

j+ 1
2







1
∆t

∫ tn+1

tn
ρ(xj+ 1

2
, t)dt

1
∆t

∫ tn+1

tn
(ρu)(xj+ 1

2
, t)dt

1
∆t

∫ tn+1

tn
(ρE)(xj+ 1

2
, t)dt






+









0

p
n+ 1

2

j+ 1
2

(up)
n+ 1

2

j+ 1
2









+O(∆t2). (37)

The reader should note that equation (33) with the termsFj− 1
2

andFj+ 1
2

are defined by equation

(37) will be used in Section 7 to assess the numerical accuracy of the IMPICE method.

5.2. IMPICE Implementation

The scheme used for approximating the fluxing velocity,u∗

j+ 1
2

, in the IMPICE method is similar to

equation (9), that is:

u∗

j+ 1
2
= un

j+ 1
2
−

∆t

2∆x

(

p
n+ 1

2

j+1 − p
n+ 1

2

j

)

ρn
j+ 1

2

. (38)

This equation was obtained by replacing〈〈un
j+ 1

2

〉〉ρ in (9) with un
j+ 1

2

, and 〈〈ρn
j+ 1

2

〉〉 with ρn
j+ 1

2

.

While these quantities denote the velocity and density at face-center attn, their numerical values are

determined differently. While〈〈un
j+ 1

2

〉〉ρ and〈〈ρn
j+ 1

2

〉〉 are determined using the weighted averages

in (10) and (11), the valuesun
j+ 1

2

and ρn
j+ 1

2

are determined based on the simple approximate

Riemann solver that will be discussed in Section 5.3 below.

Since the pressures used in the (38) are time-advanced values, we needto perform a “pressure

corrector” to obtain these. The explicit “pressure corrector” in (16) isthe one used in our

implementation of the IMPICE method. However, it is worth looking at the implicit “pressure

corrector” and seeing the difference between the solutions of these two methods. By substituting

(12) into (17), the equation for cell-centered “pressure corrector” now becomes

δpnj = −
∆t

2
un
j

(

pnj+1 − pnj−1

2∆x

)

−
∆t

2∆x
(c2ρ)nj (ũ

∗

j+ 1
2
− ũ∗

j− 1
2
)

+

[

∆t

2∆x

]2

(c2ρ)nj

[

δpnj+1 − δpnj
ρn
j+ 1

2

−
δpnj − δpnj−1

ρn
j− 1

2

]

.

(39)

Let σ = ∆t
2∆x and rearrange the terms of above equation to get

[

1 + σ2
(c2ρ)nj
ρn
j+ 1

2

+ σ2
(c2ρ)nj
ρn
j− 1

2

]

δpnj − σ2
(c2ρ)nj
ρn
j+ 1

2

δpnj+1 − σ2
(c2ρ)nj
ρn
j− 1

2

δpnj−1 (40)

= −σun
j

(

pnj+1 − pnj−1

2

)

− σ(c2ρ)nj (ũ
∗

j+ 1
2
− ũ∗

j− 1
2
).

Therefore, the valuesδpnj are the solutions of the tri-diagonal linear system:

Ax = b (41)
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where:

A =

















b1 c1 0

a2 b2 c2

a3 b3 .

. . cN−1

0 aN bN

















b =

















d1

d2

d3

.

dN

















x =

















δp1

δp2

δp3

.

δpN

















(42)

andaj , bj , cj , dj are defined as follows:

aj = σ2
(c2ρ)nj
ρn
j− 1

2

for j = 2..(N − 1), (43)

bj = 1 + σ2
(c2ρ)nj
ρn
j+ 1

2

+ σ2
(c2ρ)nj
ρn
j− 1

2

for j = 2..(N − 1), (44)

cj = σ2
(c2ρ)nj
ρn
j+ 1

2

for j = 2..(N − 1), (45)

dj = −σun
j

(

pnj+1 − pnj−1

2

)

− σ(c2ρ)nj (ũ
∗

j+ 1
2
− ũ∗

j− 1
2
) for j = 2..(N − 1), (46)

and b1, bN , d1 anddN are obtained from the boundary condition. So in order to use the implicit

“pressure corrector”, we have to solve the tri-diagonal linear system in(41). While this obviously

takes more time to calculate than the explicit “pressure corrector” in (16), theresults computed

using the two methods show that there is not much different between the numerical solutions

obtained from using the implicit and explicit “pressure corrector” in the IMPICE method for the

Euler equations examples used here.

The IMPICE method calculates the face-centered pressure,p∗
j+ 1

2

, the same way as the cell-

centered ICE method does in Section 2.2. It uses the calculation described inequation (18).

The IMPICE method chooses to conserve the total energy instead of internal energy, so the vector

of conserved variables isU = [ρ, ρu, ρE]T . The Lagrangian and Eulerian phases of the IMPICE

method are then given by

V L
j UL

j = V n
j Un

j −∆t







0

p∗j+1/2 − p∗j−1/2

p∗j+1/2u
∗

j+1/2 − p∗j−1/2u
∗

j−1/2






, (47)

and

V n+1
j Un+1

j = V L
j UL

j −∆t(u∗

j+ 1
2
〈U〉j+ 1

2
− u∗

j− 1
2
〈U〉j− 1

2
), (48)

in which the terms〈U〉j− 1
2

and 〈U〉j+ 1
2

are given by equation (26) andV L
j = V n

j +∆t(u∗

j+ 1
2

−

u∗

j− 1
2

).

5.3. Application of Slope Limiters in the IMPICE Method

In common with many methods for conservative laws, slope limiters may be applied tothe

calculation of face-centered fluxing velocity,u∗

j+1/2. For the face-centered fluxing velocity, slope

limiters are used in the estimation of face-centered quantities attn; in particular, they are used in
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14 L.T. TRAN, M. BERZINS

the calculation ofρn
j+ 1

2

andun
j+ 1

2

. This approach originates from the idea of approximating the cell-

centered state by the reconstructed states obtained from the left and rightcell-averaged states of the

previous time-step. The slope limited, reconstructed states are used as inputsto a Riemann solver to

determine the state at the cell interface. This will be discussed in detail below.

While U is often used to denote the vector of conserved variables, the vectorW , W = (ρ, u, p),

is often used to denote of the vector of primitive variables, see Laney [24]and Toro [34]. LetWn
j be

the vector of average cell-centered values of primitive variables of cellj at timetn, then the value

of W on the spatial domain attn is represented by the piecewise constant data
{

Wn
j

}

. The simplest

and widely-used way to modify the piecewise constant data
{

Wn
j

}

is to replace the constant state

Wn
j by a piecewise linear functionsWn

j (x). The construction of the piecewise linear functions can

be found in many papers; the construction in Toro [34] will be used as described below.

As for the first-order Godunov method, one assumes thatWn
j represents an integral average in

cell Ij = [xj− 1
2
, xj+ 1

2
] as given by

Wn
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

Wn
j (x)dx. (49)

A piecewise linear, local reconstruction ofWn
j is

Wn
j (x) = Wn

j + (x− xj)∆Wn
j , x ∈ Ij , (50)

where∆Wn
j is a suitably chosen slope ofWn

j (x) in cell Ij . The integral ofWn
j (x) in cell Ij is

identical to that ofWn
j and thus the reconstruction process is conservative. The slope∆Wn

j can be

approximated by a simple finite difference formula given by

∆Wn
j =

Wn
j+1 −Wn

j

∆x
. (51)

However, to achieve a higher order scheme and to maintain bounded solutions, the slope at the

current node is usually limited based on adjacent slopes. The obtained slope is a “limited slope”

∆̄Wn
j which is used as :

Wn
j (x) = Wn

j + (x− xj)∆̄Wn
j , x ∈ Ij , (52)

to approximateW on Ij . The ratiorj represents the ratio of successive gradients on the solution

mesh atxj ,

rj =
Wn

j −Wn
j−1

Wn
j+1 −Wn

j

, (53)

and the limited slope∆Wn
j may be written in the form:

∆̄Wn
j = φ(rj)∆Wn

j , (54)

whereφ(rj) is some flux limiter function. For the results in this paper, we choose the Monotonized

Central(MC) limiter function for calculating the limited slope in (54). The MC limiter function by
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Van Leer [40] is

φ(r) = max[0,min(2r, 0.5 + 0.5r, 2)]. (55)

At each interfacexj+ 1
2
, we now may consider the so called Generalized Riemann Problem(GRP)

as follows

∂U

∂t
+

∂F (U)

∂x
= 0, (56)

W (x, tn) =







Wn
j (x) x < xj+ 1

2

Wn
j+1(x) x > xj+ 1

2
,

whereWn
j (x) is the limited local reconstruction in (52). Naturally, for non-linear systems theexact

solution of the GRP is exceedingly complicated, but for the purpose of evaluating face-centered

states, an approximate solution may be suffice. In this approach, we are not trying to evaluate

the solution of the GRP in (56) analytically but rely on the boundary extrapolated values at the

interfaces. The values ofWn
j+ 1

2

at cell boundaries using local reconstructionsWn
j (x) andWn

j+1(x)

are denoted asWn(L)

j+ 1
2

andWn(R)

j+ 1
2

where

W
n(L)

j+ 1
2

= Wn
j (xj+ 1

2
); W

n(R)

j+ 1
2

= Wn
j+1(xj+ 1

2
). (57)

The valuesWn(L)

j+ 1
2

andWn(R)

j+ 1
2

are left and right extrapolated values at the boundaryxj+ 1
2

at timetn.

In this way, one may instead consider the conventional Riemann Problem with piecewise constant

data in a new coordinate(ξ, τ) whereξ = x− xj+ 1
2

andτ = t− tn as

∂U

∂τ
+

∂F

∂ξ
= 0, (58)

W (ξ, 0) =







W
n(L)

j+ 1
2

ξ < 0

W
n(R)

j+ 1
2

ξ > 0.

The face-centered state attn, W (0, 0), is the value at the origin immediately after the interaction of

the piecewise constant dataWn(L)
j andWn(R)

j+1 where

W (0, 0) = lim
τ→0+

W (0, τ). (59)

By determiningW (0, 0) in (ξ, τ) coordinate, we have the values of face-centered states given by

Wn
j+ 1

2

= [ρn
j+ 1

2

, un
j+ 1

2

, pn
j+ 1

2

]T at tn. There are several ways to approximate the solution to the

piecewise constant data Riemann problem (58) and therefore to approximateW (0, 0). In this paper,

we use the simple approximate Riemann solver which was proposed by Hartenet al. [15] and

discussed in Davis [6] to approximateW (0, 0). In order to use the approximate Riemann solver
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16 L.T. TRAN, M. BERZINS

described in these papers, we rewrite equation (58) as

∂U

∂τ
+

∂F

∂ξ
= 0, (60)

U(ξ, 0) =







UL ξ < 0

UR ξ > 0,

whereUL andUR are obtained fromWn(L)

j+ 1
2

andW
n(R)

j+ 1
2

respectively. The approximate Riemann

solution of (60) is given by

U(x/t;UL, UR) =















UL for x/t < aL

ULR for aL < x/t < aR

UR for aR < x/t

(61)

whereaL and aR are lower and upper bounds, respectively, for the smallest and largest signal

velocity and

ULR =
aRUR − aLUL

aR − aL
−

F (UR)− F (UL)

aR − aL
. (62)

The boundsaR andaL for the Euler equations are defined in Davis [6] as:

aL = uL − cL, aR = uR + cR, (63)

whereuL, cL are the velocity and wave speed respectively obtained fromUL, anduR, cR are

the velocity and wave speed obtained fromUR. The solutionW (0, 0) in (59) is derived from the

approximate solutionU(0;UL, UR) in (61) which includes the approximations ofun
j+ 1

2

andρn
j+ 1

2

;

these in turn are used in equation (38) instead of using the mass-weighted quantities in equations

(10) and (11).

In summary, the face-centered fluxing velocity,u∗

j+ 1
2

, is estimated via the following steps. First,

using the local recontruction in (52), the left and right extrapolated values at this cell-center are

obtained using (57). These extrapolated values then form the piecewise constant data to the Riemann

problem (58). Second, this Riemann problem is solved approximately using the approach of Harten

et al.[15] and Davis [6]. The approximate Riemann solution includes the approximate face-centered

density,ρn
j+ 1

2

, and face-centered velocity,un
j+ 1

2

. Third, the “pressure correctors”,δpnj , are calculated

using equation (17). Finally, equations (12) and (13) are used to calculateu∗

j+ 1
2

.

6. NUMERICAL RESULTS AND COMPARISONS

The following well-known test problems are often used to test the accuracyand robustness of

many numerical methods in fluids. These tests for the one-dimensional, time-dependent Euler

equations for ideal gases can be found in Toro [34] where they are used to access the performance

of the numerical schemes being presented in the book and also employed here to illustrate the

performance of the Production ICE method and the IMPICE method. In thesechosen problems,

two constant states,WL = [ρL, uL, pL]
T andWR = [ρR, uR, pR]

T , are separated by a discontinuity
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Table I. Data for one-dimensional test problems with known exact solutions, for the time-dependent, one
dimensional Euler equations

Problem ρL uL pL ρR uR pR x0 Tend

P1 1.0 0.0 1.0 0.125 0.0 0.1 0.3 0.2
P2 1.0 0.75 1.0 0.125 0.0 0.1 0.3 0.2
P3 1.0 0.0 1000 1.0 0.0 0.1 0.5 0.011
P4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950 0.4 0.034
P5 0.445 0.698 3.528 0.15 0.0 0.571 0.3 0.16

at a positionx = x0. The statesWL and WR are given in Table I and the problem domain is

(x, t) ∈ [0, 1]× (0, Tend].

P1 is the well known Sod’s problem andP2 is a modified version ofP1. These tests are

considered very mild, but as mentioned in Toro [34] they are useful for assessing the entropy

satisfaction property of numerical methods .P3 is considered a very hard problem for numerical

methods. As mentioned in Toro [34], the solution toP4 represents the collision of two strong shocks

and consists of a left facing shock, a right travelling contact discontinuityand a right travelling shock

wave. ProblemP5 is Lax’s test problem [25].

Beside the problems with known exact solutions in Table I, we also include here the numerical

solutions to the Shu and Osher [32] test problem. This test problem containsdetailed features and

structures and is considered by Greenough and Rider [8] to be a good one-dimensional surrogate for

the interaction of a shock wave with a turbulent field. The initial condition att = 0 of the problem

is defined as

(ρ, u, p)(x, 0) =







(3.85714, 2.62936, 10.33333) if x < −4.0

(1.0 + 0.2sin(5x), 0.0, 1.0) otherwise,
(64)

on spatial domain[−5.0, 5.0]. The final time for this problem isTend = 1.8. As the analytical

solution of this test problem is not readily available, we use the “exact solution” in Martin et al.

[29] to show how accurate of the numerical methods in this paper. The “exact solution” of Shu and

Osher test problem in Martinet al. [29] is obtained with the unmodified WENO-JS scheme with

r = 3 andp = 2 on 1600 grid points.

The numerical results for the above test problems of the IMPICE method arecompared against

those of the Production ICE method and shown in Figures 1–6. A significantimprovement in

numerical solutions of the IMPICE method is clearly shown through these figures. As shown in

these figures, the profiles of the numerical solutions of Production ICE are not close to the exact

solutions. This is due to the use of the non-conservative form in Production ICE. It can also be seen

that, there are no existing oscillations at shock-front in the numerical solutions of the IMPICE

method. The improvement in the numerical solutions of the IMPICE method compared to the

Production ICE method comes from the use of a conservation form in the Lagrangian phase and

the application of slope limiters in the data reconstruction of the Riemann problem. In order to see

how the contribution of each source into the improvement of the IMPICE method, we include in

Appendix C the comparision between the numerical results of the IMPICE method and the cell-

centered ICE method. The cell-centered ICE method denotes the method that isimplemented using

the cell-centered ICE method of Kashiwaet al. [21] described in Section 2.2 which conserves mass,

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids(0000)
Prepared usingfldauth.cls DOI: 10.1002/fld



18 L.T. TRAN, M. BERZINS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

D
en

si
ty

(a)
 

 

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

V
el

oc
ity

(b)
 

 

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

x

In
te

rn
al

−
E

ne
rg

y

(c)
 

 

IMPICE
Production ICE
Exact

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

P
re

ss
ur

e

(d)
 

 

IMPICE
Production ICE
Exact

Figure 1. Production ICE and IMPICE numerical solutions forP1 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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Figure 2. Production ICE and IMPICE numerical solutions forP2 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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Figure 3. Production ICE and IMPICE numerical solutions forP3 test problem with N=800(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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Figure 4. Production ICE and IMPICE numerical solutions forP4 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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Figure 5. Production ICE and IMPICE numerical solutions forP5 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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Figure 6. Production ICE and IMPICE numerical solutions forShu and Osher test problem with
N=1600(cells) andCcfl = 0.2: (a) density and (b) velocity.
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linear momentum and total energy. From the results in Figures 1–6 and Figures 11–15, it may be

seen that the use of conservation form improves the solution profiles and the reconstruction of the

Riemann problem with the slope limiters helps to eliminate the non-physical oscillations.

7. ACCURACY IN SPACE AND TIME

There are two sources of errors in the numerical solutions of the IMPICEmethod: spatial and

temporal errors. The spatial error comes from the spatial discretization of the PDEs and the temporal

error comes from the time integration method. LeteUj (tn) be the total error in approximatingUn
j of

cell j at tn which is given by

eUj (tn) =
1

∆x

∫ x
j+1

2

x
j− 1

2

U(x, tn)dx− Un
j . (65)

Let Uj

[

tn; t0, U
0
j

]

be the exact solution of discretized system with the initial conditionUj(t0) =

U0
j . We then have

eUj (tn) = esUj (tn) + etUj (tn), (66)

where

esUj (tn) =
1

∆x

∫ x
j+1

2

x
j− 1

2

U(x, tn)dx−Uj

[

tn; t0, U
0
j

]

(67)

and

etUj (tn) = Uj

[

tn; t0, U
0
j

]

− Un
j (68)

are the spatial error and the temporal error respectively.

7.1. Temporal Error

Let leUj (tn) be the time local error of the step[tn−1, tn] of the IMPICE method which is defined by

leUj (tn) = Uj

[

tn; tn−1, U
n−1
j

]

− Un
j , (69)

and where from equation (33), the exact IMPICE local solutionUj

[

tn; tn−1, U
n−1
j

]

is given by

Uj

[

tn; tn−1, U
n−1
j

]

= Un−1
j −

∆t

∆x

(

Fj+ 1
2
− Fj− 1

2

)

, (70)

whereFj+ 1
2

is defined in (37). On the other hand, the IMPICE solution attn is

Un
j = Un−1

j −
∆t

∆x

(

F IMPICE
j+ 1

2
− F IMPICE

j− 1
2

)

, (71)

where

F IMPICE
j+ 1

2
= u∗

j+ 1
2
〈U〉j+ 1

2
+









0

p∗
j+ 1

2

u∗

j+ 1
2

p∗
j+ 1

2









. (72)
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Therefore

leUj (tn) =
∆t

∆x

[(

F IMPICE
j+ 1

2
− Fj+ 1

2

)

−
(

F IMPICE
j− 1

2
− Fj− 1

2

)]

. (73)

From equations (37) and (72), we have:

Fj+ 1
2
− F IMPICE

j+ 1
2

= u
n+ 1

2

j+ 1
2

(

1

∆t

∫ tn

tn−1

U(xj+ 1
2
, t)dt− 〈U〉j+ 1

2

)

+
(

u
n+ 1

2

j+ 1
2

− u∗

j+ 1
2

)

〈U〉j+ 1
2

+









0

p
n+ 1

2

j+ 1
2

− p∗
j+ 1

2

(up)
n+ 1

2

j+ 1
2

− u∗

j+ 1
2

p∗
j+ 1

2









+O(∆t2). (74)

As
(

u
n+ 1

2

j+ 1
2

− u∗

j+ 1
2

)

= O(∆t2) and
(

p
n+ 1

2

j+ 1
2

− p∗
j+ 1

2

)

= O(∆t2), we then have

Fj+ 1
2
− F IMPICE

j+ 1
2

= u
n+ 1

2

j+ 1
2

(

1

∆t

∫ tn

tn−1

U(xj+ 1
2
, t)dt− 〈U〉j+ 1

2

)

+O(∆t2). (75)

By considering the expansion ofU(xj+ 1
2
, t) about〈U〉j+ 1

2
:

U(xj+ 1
2
, t) = 〈U〉j+ 1

2
+ (t− tn)

(

〈U〉j+ 1
2

)

t
+

(t− tn)
2

2

(

〈U〉j+ 1
2

)

tt
+ ..., (76)

equation (75) now becomes

Fj+ 1
2
− F IMPICE

j+ 1
2

=
∆t

2
u
n+ 1

2

j+ 1
2

(

〈U〉j+ 1
2

)

t
+O(∆t2). (77)

Therefore

(

F IMPICE
j+ 1

2
− Fj+ 1

2

)

−
(

F IMPICE
j− 1

2
− Fj− 1

2

)

=
∆t

2

[

u
n+ 1

2

j+ 1
2

(

〈U〉j+ 1
2

)

t
− u

n+ 1
2

j− 1
2

(

〈U〉j− 1
2

)

t

]

+O(∆t2).

(78)

From equations (73) and (78),leUj (tn) is second-order in∆t for a fixed∆x. Therefore,etUj (tn)

is first-order in∆t. As U is a vector of conserved variables,etUj (tn) is also a vector of temporal

errors of these conserved variables whereetUj (tn) =
[

etρj (tn), et
ρu
j (tn), et

ρE
j (tn)

]T

. Define the

approximateL1-error norm of the vector of temporal errors for variableq, whereq = ρ, ρu, ρE, u,

or p, as follows

‖etq(tn)‖L1
= ∆x

N
∑

j=1

|etqj(tn)|, (79)

whereetq(tn) = [etq1(tn), et
q
2(tn), et

q
3(tn), ..., et

q
N (tn)]

T .

In order to calculate the temporal error in equation (68), we need to determine the IMPICE time-

integrated exact solutionUj

[

Tend; t0, U
0
j

]

in this equation. As we do not have the exact solution

Uj

[

Tend; t0, U
0
j

]

, we assume that the calculated solutionUn
j converges to the time-integrated exact

solutionUj

[

Tend; t0, U
0
j

]

when reducingCcfl. Therefore, we use a highly resolved solution as
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Table II. Temporal Error:L1-norms and the order of accuracyn of the conserved and primitive variables for
the test cases in Table I using N=200(cells). The time-integrated exact solutionsUj

[

Tend; t0, U
0
j

]

for the
discretized problems of these test cases are obtained by usingCcfl = 0.0001. The notation aE-b used here

stands fora× 10−b.

etρ(Tend) etρu(Tend) etρE(Tend) etu(Tend) etp(Tend)

Ccfl ‖.‖L1 n ‖.‖L1 n ‖.‖L1 n ‖.‖L1 n ‖.‖L1 n

0.4 6.92E-04 — 5.71E-04 — 1.16E-03 — 1.05E-03 — 4.42E-04 —
P1 0.2 3.37E-04 1.04 2.74E-04 1.06 5.54E-04 1.07 5.14E-04 1.032.11E-04 1.07

0.1 1.67E-04 1.01 1.36E-04 1.01 2.76E-04 1.00 2.55E-04 1.001.05E-04 1.00
0.05 8.36E-05 1.00 6.82E-05 1.00 1.39E-04 1.00 1.27E-04 1.00 5.29E-05 1.00

0.4 1.53E-03 — 1.42E-03 — 3.15E-03 — 1.98E-03 — 1.11E-03 —
P2 0.2 7.55E-04 1.02 6.96E-04 1.03 1.56E-03 1.01 9.90E-04 1.005.55E-04 1.00

0.1 3.74E-04 1.01 3.45E-04 1.01 7.78E-04 1.01 4.93E-04 1.002.76E-04 1.00
0.05 1.86E-04 1.01 1.71E-04 1.01 3.88E-04 1.00 2.46E-04 1.00 1.38E-04 1.00

0.4 1.08E-02 — 2.18E-01 — 3.44E-00 — 3.12E-02 — 6.61E-01 —
P3 0.2 5.20E-03 1.06 1.04E-01 1.06 1.63E-00 1.08 1.53E-02 1.033.11E-01 1.09

0.1 2.57E-03 1.02 5.16E-02 1.02 8.06E-01 1.02 7.64E-03 1.001.53E-01 1.02
0.05 1.27E-03 1.02 2.55E-02 1.01 4.00E-01 1.01 3.81E-03 1.01 7.59E-02 1.01

0.4 3.94E-02 — 3.24E-01 — 5.26E-00 — 1.85E-02 — 2.05E-00 —
P4 0.2 1.94E-02 1.02 1.59E-01 1.03 2.59E-00 1.02 8.87E-03 1.069.76E-00 1.07

0.1 9.45E-03 1.04 7.90E-02 1.01 1.26E-00 1.04 4.41E-03 1.014.85E-01 1.01
0.05 5.01E-03 0.91 3.94E-02 1.00 6.10E-01 1.05 2.23E-03 0.98 2.47E-01 0.98

0.4 2.11E-03 — 3.53E-03 — 6.32E-03 — 1.39E-03 — 1.64E-03 —
P5 0.2 1.04E-03 1.02 1.75E-03 1.02 3.21E-03 0.98 7.25E-04 0.948.55E-03 0.94

0.1 5.18E-04 1.01 8.67E-04 1.01 1.61E-03 1.00 3.66E-04 0.984.30E-04 0.99
0.05 2.58E-04 1.01 4.32E-04 1.01 8.03E-04 1.00 1.83E-04 1.00 2.15E-04 1.00

the time-integrated exact solutionUj

[

Tend; t0, U
0
j

]

with Ccfl = 0.0001. This solution meets the

criterion mentioned in Greenough and Rider [8] that the grid converged solutions should be at least

8 times finer than the finest grid examined for error. The temporal error norms and their orders of

accuracy of the conserved and primitive variables for the above test cases atTend are shown in Table

II. The results in Table II show that the orders of accuracy of the conserved variables for these test

cases are very close to 1, this is consistent with the above analysis. The orders of accuracy of the

primitive variables are also very close to 1.

7.2. Spatial Error

With the linear spatial discretization as discussed above, the spatial error of the vector of conserved

variablesU is first-order in∆x. In order to access the spatial errors of a test case, we need the

exact solutionUj

[

Tend; t0, U
0
j

]

, see equation (67). The result in Section 7.1 gives the rate at which

the computed solution approaches the true solution, so a more accurate approximation to the exact

solutionUj

[

Tend; t0, U
0
j

]

might be obtained by comparing the numerical solution to a finer-mesh

numerical solution. Therefore, we estimate the exact solutionUj

[

Tend; t0, U
0
j

]

in Table III using

the computed solutions of the IMPICE method withCcfl = 0.025 and one withCcfl = 0.0125.

Define theL1-error norm of the vector of spatial errors for variableq, whereq = ρ, ρu, ρE, u, or

p, as follows

‖esq(tn)‖L1
= ∆x

N
∑

j=1

|esqj(tn)| (80)
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Table III. Spatial Error:L1-norms and the order of accuracym of the conserved and primitive variables
for the test cases in Table I. The exact solutionsUj

[

Tend; t0, U
0
j

]

are the converged numerical solutions
discussed in Section 7.2.

esρ(Tend) esρu(Tend) esρE(Tend) esu(Tend) esp(Tend)

N ‖.‖L1 m ‖.‖L1 m ‖.‖L1 m ‖.‖L1 m ‖.‖L1 m

100 1.38E-02 — 1.15E-02 — 2.68E-02 — 2.15E-02 — 1.06E-02 —
200 9.16E-03 0.59 7.44E-03 0.63 1.56E-02 0.79 1.20E-02 0.846.10E-03 0.79

P1 400 5.83E-03 0.65 4.65E-03 0.68 9.10E-03 0.77 6.67E-03 0.853.48E-03 0.81
800 3.68E-03 0.66 2.92E-03 0.67 5.29E-03 0.78 3.63E-03 0.881.95E-03 0.84

1600 2.40E-03 0.62 1.89E-03 0.62 3.06E-03 0.79 1.95E-03 0.90 1.09E-03 0.84

100 2.17E-02 — 1.89E-02 — 4.47E-02 — 2.83E-02 — 1.66E-02 —
200 1.45E-02 0.58 1.26E-02 0.59 2.87E-02 0.64 1.63E-02 0.801.02E-02 0.71

P2 400 9.87E-03 0.55 8.93E-03 0.50 1.80E-02 0.67 9.25E-03 0.826.11E-03 0.74
800 6.45E-03 0.61 5.98E-03 0.58 1.10E-02 0.71 5.15E-03 0.853.58E-03 0.77

1600 4.24E-03 0.60 4.13E-03 0.53 7.04E-03 0.64 3.13E-03 0.72 2.17E-03 0.72

100 1.80E-01 — 3.49E+00 — 8.06E+01 — 5.56E-01 — 1.16E+01 —
200 1.47E-01 0.29 2.96E+00 0.24 4.84E+01 0.73 3.38E-01 0.726.93E+00 0.74

P3 400 1.09E-01 0.43 2.20E+00 0.43 3.48E+01 0.48 1.95E-01 0.794.10E+00 0.76
800 7.60E-02 0.52 1.50E+00 0.55 2.26E+01 0.62 1.06E-01 0.872.33E+00 0.81

1600 5.44E-02 0.48 1.07E+00 0.49 1.29E+01 0.81 5.63E-02 0.92 1.25E+00 0.90

100 7.70E-01 — 6.80E+00 — 6.93E+01 — 2.11E-01 — 1.73E+01 —
200 5.76E-01 0.42 5.21E+00 0.39 4.23E+01 0.71 9.28E-02 1.198.83E+00 0.97

P4 400 3.93E-01 0.55 3.46E+00 0.59 2.47E+01 0.77 5.32E-02 0.804.42E+00 1.00
800 2.69E-01 0.55 2.39E+00 0.53 1.58E+01 0.65 2.47E-02 1.102.19E+00 1.01

1600 1.91E-01 0.50 1.67E+00 0.52 9.99E+00 0.66 1.41E-02 0.81 1.29E+00 0.76

100 3.90E-02 — 6.47E-02 — 1.53E-01 — 3.04E-02 — 3.35E-02 —
200 3.00E-02 0.38 4.93E-02 0.39 8.37E-02 0.87 1.82E-02 0.742.10E-02 0.68

P5 400 2.03E-02 0.56 3.26E-02 0.60 5.19E-02 0.69 1.00E-02 0.861.16E-02 0.86
800 1.41E-02 0.53 2.26E-02 0.53 3.52E-02 0.56 5.90E-03 0.776.95E-03 0.73

1600 9.80E-03 0.53 1.54E-02 0.55 2.17E-02 0.70 3.25E-03 0.86 3.82E-03 0.86

whereesq(tn) = [esq1(tn), es
q
2(tn), es

q
3(tn), ..., es

q
N (tn)]

T . The spatial error norms and their orders

of accuracy for the above test cases atTend are shown in Table III.

Theoretically the spatial error order of accuracy is first-order. However it is shown in Table III

that the order of accuracy is mostly below 1 due to the discontinuities in the solutions of these test

cases. Greenough and Rider [8] mention earlier work showing less than first-order accuracy for the

first-order version of Godunov’s method and suggest that this is due to the low resolution computed

solutions being very different from the highly resolved solution. For reference purposes, we include

in Appendices A and B of this paper the spatial errors and the orders of accuracy for the inviscid

and viscous Burgers’ problems. For the inviscid Burgers’ problem, the order of accuracy is below

1. For the viscous Burgers’ problem, the order is around 1.

As numerical solutions obtained with first-order methods are diffusive andnot accurate enough

to be used for some large problems on relatively coarse grids; for example, the numerical solution

to Shu and Osher test problem shown in Figure 6, we improve the order of accuracy of the IMPICE

method to 2nd-order in both space and time in the following sections.
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Table IV. Temporal Error using the 2nd-order-in-time IMPICE: L1-norms and the order of accuracyn of
the conserved and primitive variables for the test cases in Table I using N=200(cells). The exact solutions
Uj

[

Tend; t0, U
0
j

]

for the discretized problems of these test cases are obtained by usingCcfl = 0.0001.

Eρ
T (Tend) Eρu

T (Tend) EρE
T (Tend) Eu

T (Tend) Ep
T (Tend)

Ccfl ‖.‖L1 n ‖.‖L1 n ‖.‖L1 n ‖.‖L1 n ‖.‖L1 n

0.4 6.64E-005 — 5.20E-005 — 1.63E-004 — 1.19E-004 — 6.75E-005 —
P1 0.2 1.47E-005 2.17 1.16E-005 2.16 3.65E-005 2.15 2.71E-0052.14 1.50E-005 2.17

0.1 2.90E-006 2.35 2.39E-006 2.29 7.44E-006 2.30 5.71E-0062.25 3.03E-006 2.31
0.05 7.11E-007 2.03 5.98E-007 2.00 1.84E-006 2.01 1.46E-006 1.97 7.58E-007 2.00

0.4 1.56E-005 — 2.33E-005 — 4.99E-005 — 4.10E-005 — 1.45E-005 —
P2 0.2 4.89E-006 1.67 6.24E-006 1.90 1.50E-005 1.74 1.20E-0051.77 4.72E-006 1.62

0.1 1.06E-006 2.21 1.49E-006 2.07 3.38E-006 2.15 2.90E-0062.05 1.02E-006 2.21
0.05 2.92E-007 1.86 3.84E-007 1.96 9.04E-007 1.90 7.31E-007 1.99 2.88E-007 1.83

0.4 2.26E-004 — 4.91E-003 — 3.11E-001 — 4.96E-003 — 1.27E-001 —
P3 0.2 6.05E-005 1.90 1.27E-003 1.95 7.49E-002 2.05 1.18E-0032.08 3.01E-002 2.07

0.1 2.07E-005 1.55 3.82E-004 1.74 2.10E-002 1.84 3.39E-0041.79 8.30E-003 1.86
0.05 7.32E-006 1.50 1.19E-004 1.68 6.80E-003 1.63 1.10E-004 1.62 2.88E-003 1.53

0.4 5.99E-003 — 3.38E-002 — 9.27E-001 — 1.88E-003 — 3.93E-001 —
P4 0.2 1.65E-003 1.86 1.08E-002 1.65 2.35E-001 1.98 6.42E-0041.55 1.07E-001 1.88

0.1 6.23E-004 1.41 4.25E-003 1.35 0.67E-001 1.81 2.56E-0041.32 4.06E-002 1.40
0.05 2.37E-004 1.40 1.55E-003 1.46 2.10E-002 1.67 0.93E-004 1.46 1.40E-002 1.54

0.4 3.11E-005 — 5.99E-005 — 2.94E-004 — 8.45E-005 — 1.14E-004 —
P5 0.2 7.00E-006 2.15 1.44E-005 2.06 6.69E-005 2.13 2.02E-0052.06 2.62E-005 2.13

0.1 1.91E-006 1.87 3.72E-006 1.95 1.84E-005 1.86 5.44E-0061.89 7.19E-006 1.87
0.05 4.54E-007 2.08 8.77E-007 2.08 3.96E-006 2.22 1.11E-006 2.29 1.52E-006 2.25

8. HIGHER-ORDER ACCURACY IN TIME

In order to raise the order of accuracy globally in time, we use the method of extrapolation to

raise the order of accuracy locally. By raising the local order of accuracy of the temporal error to

3rd-order, we raise the order of accuracy of the temporal error to 2nd-order globally. The 2nd-order-

in-time IMPICE method is achieved using Richardson extrapolation. The stepsin IMPICE method

with 2nd-order temporal error to obtain the solution for next time stepUn+1
j from current time step

solutionUn
j are:

• Perform one step of the 1st-order IMPICE method with stepsize∆t to obtain the solution

U1n+1
j at tn+1.

• Perform two consecutive steps of the 1st-order IMPICE method with stepsize ∆t
2 to obtain the

solutionU2n+1
j at tn+1.

• Set the solution attn+1 of 2nd-order-in-time IMPICE method to
(

2U2n+1
j − U1n+1

j

)

.

The temporal error norms and the orders of accuracy of the conserved and primitive variables for the

above test cases using the 2nd-order-in-time IMPICE method are shown inTable IV. We use a highly

resolved solution as the exact solutionUj

[

Tend; t0, U
0
j

]

by settingCcfl = 0.0001 when calculating

temporal errors. It is shown in Table IV that the time integration accuracy for both conserved and

primitive variables is very close to second-order.

In doing so we note that this extrapolated method corresponds to the Runge-Kutta method whose

positivity properties are described by Mehdizadeh Khalsaraei [30].
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9. HIGHER-ORDER ADVECTION

The solutions with first-order accuracy of advection where advected quantities obtained from (26)

are highly smeared at contact discontinuities. We have improved the spatial errror accuracy of the

IMPICE method by using a higher-order advection method. A higher-order Van Leer advection

method is discussed in VanderHeyden and Kashiwa [38], in which the compatible fluxes are also

derived for this type of advection method. In this paper, the higher-order advection scheme is based

on a higher-order approximation of the advected quantities in (24). This is done by assuming that

U(xj+ 1
2
, t) in equation (24) is not a constant for the time step[tn, tn+1]. The advection equations of

conserved variables in the Eulerian phase in Section 5.2 are given by

Ut + (uU)x = 0. (81)

In order to determineU(xj+ 1
2
, t), we will use equation (81) and the constructed values,Wn

j (x, t),

of primitive variables in the control volume[xj− 1
2
, xj+ 1

2
]× [tn, tn+1]. Within this control volume,

the constructed values,Wn
j (x, t), are obtained by using Taylor series:

Wn
j (x, t) = Wn

j + (x− xj)

(

∂W

∂x

)n

j

+ (t− tn)

(

∂W

∂t

)n

j

+O(∆x2,∆t2). (82)

The extrapolated values at cell boundaries obtained by using the constructed values,Wn
j (x, t), are:

Wn
j (xj− 1

2
, t) = Wn

j −
∆x

2

(

∂W

∂x

)n

j

+ (t− tn)

(

∂W

∂t

)n

j

+O(∆x2,∆t2), (83)

Wn
j (xj+ 1

2
, t) = Wn

j +
∆x

2

(

∂W

∂x

)n

j

+ (t− tn)

(

∂W

∂t

)n

j

+O(∆x2,∆t2). (84)

Therefore, there are two existing extrapolated values at the cell boundary at xj+ 1
2

for the time

interval [tn, tn+1]. These values are denoted asWn
j (xj+ 1

2
, t) andWn

j+1(xj+ 1
2
, t), and one may be

chosen for the face-centered value based on the face-centered fluxing velocity at this cell boundary.

The value of the vector of primitive variables at face-center is determined using

W (xj+ 1
2
, t) =







Wn
j+1(xj+ 1

2
, t) if u∗

j+ 1
2

< 0

Wn
j (xj+ 1

2
, t) otherwise.

(85)

Now, as the extrapolated primitive variables at the cell boundary atxj+ 1
2

are readily available, we

will show how to obtain the vector of advected quantities in (24). We derive the advected quantities

for the caseu∗

j+ 1
2

> 0. The advected quantities for the caseu∗

j+ 1
2

< 0 are derived similarly. The

vector of advected quantities〈U〉j+ 1
2

includes〈ρ〉j+ 1
2
, 〈ρu〉j+ 1

2
and 〈ρE〉j+ 1

2
. Equation (81) is
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rewritten as follows

∂ρ

∂t
= −u

∂ρ

∂x
− ρ

∂u

∂x
, (86)

∂u

∂t
= −u

∂u

∂x
, (87)

∂E

∂t
= −u

∂E

∂x
. (88)

Equations (84) and (86) are used to derive the mass advected quantity in equation (24); for the case

of u∗

j+ 1
2

> 0, we have

〈ρ〉j+ 1
2

=
1

∆t

∫ tn+1

tn

ρ(xj+ 1
2
, t)dt

=
1

∆t

∫ tn+1

tn

(

ρnj +
∆x

2

(

∂ρ

∂x

)n

j

+ (t− tn)

(

∂ρ

∂t

)n

j

)

dt+O(∆x2,∆t2)

= ρnj +
∆x

2

(

∂ρ

∂x

)n

j

+
∆t

2

(

∂ρ

∂t

)n

j

+O(∆x2,∆t2)

= ρnj +
∆x

2

(

∂ρ

∂x

)n

j

−
∆t

2

(

un
j

(

∂ρ

∂x

)n

j

+ ρnj

(

∂u

∂x

)n

j

)

+O(∆x2,∆t2).

Therefore

〈ρ〉j+ 1
2
= ρnj +

(

∆x

2
− un

j

∆t

2

)(

∂ρ

∂x

)n

j

−
∆t

2
ρnj

(

∂u

∂x

)n

j

+O(∆x2,∆t2). (89)

Equation (84) withW = ρ andW = u gives us

ρu(xj+ 1
2
, t) =

(

ρnj +
∆x

2

(

∂ρ

∂x

)n

j

+ (t− tn)

(

∂ρ

∂t

)n

j

)

×

(

un
j +

∆x

2

(

∂u

∂x

)n

j

+ (t− tn)

(

∂u

∂t

)n

j

)

+O(∆x2,∆t2)

=

(

ρnj +
∆x

2

(

∂ρ

∂x

)n

j

+ (t− tn)

(

∂ρ

∂t

)n

j

)

un
j

+ρnj

(

∆x

2

(

∂u

∂x

)n

j

+ (t− tn)

(

∂u

∂t

)n

j

)

+

(

∆x

2

(

∂ρ

∂x

)n

j

+ (t− tn)

(

∂ρ

∂t

)n

j

)(

∆x

2

(

∂u

∂x

)n

j

+ (t− tn)

(

∂u

∂t

)n

j

)

+O(∆x2,∆t2).
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The fluxed momentum at the face-center is then given by

〈ρu〉j+ 1
2

=
1

∆t

∫ tn+1

tn

ρu(xj+ 1
2
, t)dt

= 〈ρ〉j+ 1
2
un
j + ρnj

(

∆x

2
− un

j

∆t

2

)(

∂u

∂x

)n

j

+
∆x

2

(

∂ρ

∂x

)n

j

(

∆x

2
− un

j

∆t

2

)(

∂u

∂x

)n

j

+
∆x

2

∆t

2

(

∂u

∂x

)n

j

(

∂u

∂t

)n

j

+
∆t3

3

(

∂u

∂t

)n

j

(

∂u

∂t

)n

j

+O(∆x2,∆t2).

This gives us the approximation

〈ρu〉j+ 1
2
= 〈ρ〉j+ 1

2
un
j + ρnj+ 1

2

(

∆x

2
− un

j

∆t

2

)(

∂u

∂x

)n

j

+O(∆x∆t) +O(∆x2,∆t2). (90)

With a similar derivation, we also have

〈ρE〉j+ 1
2
= 〈ρ〉j+ 1

2
En

j + ρnj+ 1
2

(

∆x

2
− un

j

∆t

2

)(

∂E

∂x

)n

j

+O(∆x∆t) +O(∆x2,∆t2). (91)

We thus obtain second-order accuracy in space ifCcfl remains contant. Equations (89), (90), and

(91) are used to calculate the face-centered fluxed quantities for the time step [tn, tn+1] when the

face-centered fluxing velocity,u∗

j+ 1
2

, is greater than 0. A set of similar equations can be easily

derived for the case when the fluxing velocity is less than 0. However, when using these equations

to estimate the face-centered advected quantities, we need to have numericalestimations for
(

∂ρ
∂x

)n

j
,

(

∂u
∂x

)n

j
, and

(

∂E
∂x

)n

j
. These spatial numerical derivatives are limited to eliminate artificial extrema

and preserve monotonicity [38]. In this paper, we choose one limiter from one-parameter family of

minmod limiters [16, 41],

(

∂W

∂x

)n

j

= minmod(θ
Wn

j −Wn
j−1

∆x
,
Wn

j+1 −Wn
j−1

2∆x
, θ

Wn
j+1 −Wn

j

∆x
), (92)

to estimate the spatial derivatives of primitive variables by settingθ = 1. The multivariable minmod

limiter in (92) is defined as

minmod(z1, z2, z3, ...) =















min(z1, z2, z3, ...) if zj > 0 ∀j

max(z1, z2, z3, ...) if zj < 0 ∀j

0 otherwise.

(93)

The numerical solution of Shu and Osher test problem in Figure 7 is obtainedusing the 2nd-

order-in-space IMPICE method. Comparing to the numerical solution of this problem in Figure 6,

the solution using the 2nd-order-in-space IMPICE method is less diffusive and more accurate.

The spatial error norms and the orders of accuracy for the test casesin Table I using the 2nd-

order-in-space IMPICE method are shown in Table V. When calculating thespatial errors, we use

the converged numerical solutions of these test problems as described in Section 7.2 for the exact

solutions. The result in Table V shows that the 2nd-order-in-space IMPICE method does reduce the

spatial errors, increase the orders of accuracy in both conserved and primitive variables. However,
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Figure 7. The 2nd-order-in-space IMPICE numerical solution for Shu and Osher test problem with
N=1600(cells) andCcfl = 0.2: (a) density and (b) velocity.

the orders of spatial accuracy are not close to second-order as expected, but degenerate into first-

order and below. The observation concurs with those of Greenough and Rider [8] in that when

discontinuities are present high-order methods may not always deliver the expected advantages and

may reduce their order of accuracy to first order. In addition, Berzins[3] shows how unless there

is sufficient resolution in terms of meshpoints in a front then the positivity requirement will tend to

favor the use of lower order methods.

We also would like to estimate the spatial error in the numerical solutions of the Shuand Osher

test problem. Since the analytic solution to the Shu and Osher test problem is not readily available,

a highly resolved numerical solution is used to estimate the integral term in equation (67) when

calculating spatial errors. The highly resolved numerical solution is generated from running the 2nd-

order-in-space IMPICE method withN = 25, 600(cells) andCcfl = 0.2. The exact cell average in

equation (67), 1∆x

∫ x
j+1

2
x
j− 1

2

U(x, tn)dx, is the numerical integration obtained from the highly resolved

solution while the exact solution of time integration,Uj

[

tn; t0, U
0
j

]

, is the converged numerical

solutions as discussed earlier in Section 7.2. The spatial error norms and the orders of accuracy

of the Shu and Osher test problem are shown in Table VI. As shown in Table VI, there is also a

degeneration in the orders of accuracy for the result of the Shu and Osher test problem when the

mesh sizeN is below 1600 and an improvement in its orders when the mesh sizeN is above 1600.

This result is consistent with that of Greenough and Rider [8].

The numerical results of the 2nd-order-in-space IMPICE for inviscid and viscous Burgers’

problem are included in Appendices A and B. The spatial error norms andthe orders of accuracy for
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Table V. Spatial Error using the 2nd-order-in-space IMPICE: L1-norms and the order of accuracym of the
conserved and primitive variables for the test cases in Table I. The exact solutionsUj

[

Tend; t0, U
0
j

]

are the
converged numerical solutions as described in Section 7.2

esρ(Tend) esρu(Tend) esρE(Tend) esu(Tend) esp(Tend)

N ‖.‖L1 m ‖.‖L1 m ‖.‖L1 m ‖.‖L1 m ‖.‖L1 m

100 7.10E-003 — 5.97E-003 — 1.50E-002 — 1.25E-002 — 5.72E-003 —
200 4.10E-003 0.79 3.51E-003 0.77 7.37E-003 1.03 6.02E-0031.05 2.81E-003 1.03

P1 400 2.23E-003 0.88 1.92E-003 0.87 3.70E-003 0.99 2.85E-0031.08 1.36E-003 1.05
800 1.21E-003 0.87 1.05E-003 0.87 1.87E-003 0.99 1.31E-0031.12 6.50E-004 1.07

1600 7.21E-004 0.75 6.13E-004 0.78 9.33E-004 1.00 5.83E-004 1.17 3.14E-004 1.05

100 9.92E-003 — 9.39E-003 — 2.07E-002 — 1.50E-002 — 7.39E-003 —
200 5.49E-003 0.85 5.34E-003 0.81 1.14E-002 0.86 7.28E-0031.04 3.72E-003 0.99

P2 400 3.39E-003 0.69 3.48E-003 0.62 6.18E-003 0.88 3.51E-0031.05 1.85E-003 1.00
800 1.94E-003 0.80 2.01E-003 0.79 3.25E-003 0.93 1.63E-0031.11 9.11E-004 1.03

1600 1.15E-003 0.75 1.26E-003 0.68 1.94E-003 0.75 9.91E-004 0.71 5.15E-004 0.82

100 8.56E-002 — 1.71E+000 — 5.34E+001 — 3.38E-001 — 8.03E+000 —
200 6.35E-002 0.43 1.32E+000 0.37 2.70E+001 0.98 2.36E-0010.52 4.47E+000 0.85

P3 400 4.01E-002 0.66 8.39E-001 0.65 1.83E+001 0.56 1.36E-0010.79 2.64E+000 0.76
800 2.57E-002 0.64 5.05E-001 0.73 1.08E+001 0.76 6.97E-0020.97 1.39E+000 0.92

1600 1.76E-002 0.54 3.47E-001 0.54 4.66E+000 1.21 3.50E-002 0.99 7.01E-001 0.99

100 3.57E-001 — 3.61E+000 — 4.97E+001 — 1.17E-001 — 1.33E+001 —
200 2.80E-001 0.35 2.89E+000 0.32 3.62E+001 0.45 7.85E-0020.57 9.76E+000 0.45

P4 400 1.74E-001 0.69 1.83E+000 0.66 2.25E+001 0.69 4.12E-0020.93 5.91E+000 0.72
800 1.11E-001 0.64 1.22E+000 0.58 1.67E+001 0.43 2.87E-0020.52 4.27E+000 0.47

1600 7.12E-002 0.64 7.97E-001 0.61 1.01E+001 0.72 1.81E-002 0.66 2.62E+000 0.70

100 1.63E-002 — 2.78E-002 — 9.54E-002 — 1.90E-002 — 1.99E-002 —
200 1.25E-002 0.38 2.15E-002 0.37 4.14E-002 1.20 1.02E-0020.89 1.08E-002 0.88

P5 400 7.55E-003 0.73 1.23E-002 0.80 2.30E-002 0.85 4.82E-0031.09 5.10E-003 1.09
800 4.63E-003 0.70 7.66E-003 0.69 1.48E-002 0.63 2.55E-0030.92 2.72E-003 0.91

1600 2.86E-003 0.70 4.56E-003 0.75 8.10E-003 0.87 1.20E-003 1.08 1.28E-003 1.08

Table VI. Spatial Error using the 2nd-order-in-space IMPICE:L1-norms and the order of accuracym of the
conserved and primitive variables for Shu and Osher test problem. The exact solutionsUj

[

Tend; t0, U
0
j

]

are
the converged numerical solutions.

esρ(Tend) esρu(Tend) esρE(Tend) esu(Tend) esp(Tend)

N ‖.‖L1 m ‖.‖L1 m ‖.‖L1 m ‖.‖L1 m ‖.‖L1 m

200 9.41E-01 — 1.95E+00 — 4.85E+00 — 2.45E-01 — 1.44E+00 —
400 7.30E-01 0.37 1.65E+00 0.25 3.28E+00 0.57 1.19E-01 1.057.03E-01 1.04
800 4.60E-01 0.67 1.08E+00 0.61 1.99E+00 0.72 6.04E-02 0.983.42E-01 1.04

1600 2.03E-01 1.18 4.79E-01 1.18 8.95E-01 1.15 2.85E-02 1.08 1.58E-01 1.11
3200 8.12E-02 1.32 1.87E-01 1.36 3.50E-01 1.36 1.22E-02 1.23 6.71E-02 1.24

the numerical solutions of the inviscid Burgers’ problem obtained from using the 2nd-order-in-space

IMPICE method in Table VII show that the orders of convergence are not very close to second-order.

However, the orders of convergence for the numerical solutions of theviscous Burgers’ problem

using the 2nd-order-in-space IMPICE method as shown in Table VIII are close to second-order for

the cases ofǫ = 0.05 andǫ = 0.01 as the solutions for these cases are smooth as shown in Figure 9.

But the orders degenerate into first-order for the case ofǫ = 0.0001. This is due to the development

of the smooth steep front that appears close to a discontinuity in the solution ofthe viscous Burgers’

problem when the viscosityǫ becomes small.
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10. CONCLUSIONS

We have presented IMPICE, an improved Production ICE method, that uses a conservative scheme,

slope limiters and a simple approximate Riemann solver for improving the numerical solutions and

eliminating existing oscillations of Production ICE which is an implementation of the ICEmethod in

Uintah Computational Framework to simulate fluid flows. The IMPICE method with a linear spatial

and temporal discretization is expected to be first-order accuracy in time andspace. However, for

the cases with existing discontinuities in their solutions, the order of accuracyin space is less than

1 as shown in Section 7. As it is important to have the method of higher-order of accuracy in both

time and space, we have presented the non-linear spatial and temporal discretization of the IMPICE

method. These are the method of temporal extrapolation, and the higher-order advection. While the

method of temporal extrapolation successfully raises the order of accuracy to 2nd-order-in-time, a

less-than-expected order of accuracy in space is obtained from usingthe higher-order advection for

the problems with discontinuities.

It has shown that the IMPICE method is capable of capturing shocks and contact surfaces, and the

higher-order IMPICE method is even able to capture the detailed features and structures of the flow

with shock-turbulence interaction in Shu-Osher problem. As IMPICE has been successfully applied

to complex 1D problems, we are currently working on the extension of the method to the 3D case.
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A. IMPICE METHOD FOR INVISCID BURGERS’ EQUATION

Consider the one-dimensional Burgers’ equation in the inviscid limit

∂u

∂t
+
∂f(u)

∂x
= 0, (94)

with f(u) = 1
2u

2 and initial datau(x, 0) = u0(x), whereu0(x) is a given function,x ∈ R andt > 0. The

solution,u(x/t;un(L)

j+ 1
2

, u
n(R)

j+ 1
2

), to the Riemann problem of the Burgers’ equation (94) with initial data

u(x, tn) =







u
n(L)

j+ 1
2

if(x < xj+ 1
2
)

u
n(R)

j+ 1
2

if(x > xj+ 1
2
),

(95)
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atx/t = 0 is used in the IMPICE method. The approximate solutionu(0;u
n(L)

j+ 1
2

, u
n(R)

j+ 1
2

) is given by

u(0;u
n(L)

j+ 1
2

, u
n(R)

j+ 1
2

) =











































u
n(L)

j+ 1
2

if (0 < u
n(L)

j+ 1
2

< u
n(R)

j+ 1
2

)

0 if (u
n(L)

j+ 1
2

≤ 0 ≤ u
n(R)

j+ 1
2

)

u
n(R)

j+ 1
2

if (u
n(L)

j+ 1
2

< u
n(R)

j+ 1
2

< 0)

u
n(L)

j+ 1
2

if (u
n(R)

j+ 1
2

< u
n(L)

j+ 1
2

and S > 0)

u
n(R)

j+ 1
2

if (u
n(R)

j+ 1
2

< u
n(L)

j+ 1
2

and S < 0),

(96)

whereS = (u
n(L)

j+ 1
2

+ u
n(R)

j+ 1
2

)/2.

With the same spatial and temporal discretizations as in Section 2 and known cell averages at timetn, the
steps to obtain cell averages at timetn+1 are as follows.

A.1. IMPICE Method Description

The Primary Phase: At face center, a data reconstruction is done as follows

u
n(L)

j+ 1
2

= unj +
∆x

2
∆̄unj , u

n(R)

j+ 1
2

= unj+1 −
∆x

2
∆̄unj+1, (97)

where ∆̄unj is the limited slope ofu. The face-centered velocity,un
j+ 1

2
, at tn is determined using the

approximate solution of Riemann problem whereun
j+ 1

2
= u(0;u

n(L)

j+ 1
2

, u
n(R)

j+ 1
2

). The equation of velocity

evolution,
ut + uux = 0, (98)

is written in Lagrangian form as
Du

Dt
= 0. (99)

The face-centered fluxing velocity,u∗
j+ 1

2
, is then given by

u∗j+ 1
2
= unj+ 1

2
. (100)

In order to apply the Lagrangian and Eulerian phases, we rewrite equation (94) as

(ρu)t +
(

ρu2
)

x
=

1

2

(

u2
)

x
(101)

whereρ is a constant and equal to 1.

The Lagrangian Phase:

V L
j (ρu)Lj = V n

j (ρu)nj +∆t

(

1

2

(

u∗j+ 1
2

)2
−

1

2

(

u∗j− 1
2

)2
)

, (102)

whereV n
j = ∆x andV L

j = ∆x+∆t(u∗
j+ 1

2
− u∗

j− 1
2
). As ρ is a constant and equal to 1, the above equation

may be rewritten as follows

V L
j u

L
j = V n

j u
n
j +∆t

(

1

2

(

u∗j+ 1
2

)2
−

1

2

(

u∗j− 1
2

)2
)

(103)
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Figure 8. The 2nd-order (2nd-order-in-space and 2nd-order-in-time) IMPICE numerical solutions for the
inviscid Burgers’ problem atTend = 0.5 and on the spatial domain[−1.0, 1.0] with N=200(cells) and

Ccfl = 0.2.

The Eulerian Phase:

V n+1
j (ρu)n+1

j = V L
j (ρu)Lj −∆t

(

u∗j+ 1
2
〈ρu〉j+ 1

2
− u∗j− 1

2
〈ρu〉j− 1

2

)

(104)

whereV n+1
j = ∆x. As ρ is a constant and equal to 1, the above equation may be rewritten as follows

V n+1
j un+1

j = V L
j u

L
j −∆t

(

u∗j+ 1
2
〈u〉j+ 1

2
− u∗j− 1

2
〈u〉j− 1

2

)

. (105)

For first-order advection,〈u〉j+ 1
2

is approximated using (25) and for second-order advection,it is
approximated using (90).

A.2. Numerical Results and Accuracy in Space and Time

The initial condition used is given by:

u0(x) =

{

1.0 if |x| < 1
3

0.0 otherwise.
(106)

The numerical solution of the inviscid Burgers’ problem using the 2nd-order-in-space and 2nd-order-in-
time IMPICE method is shown in Figure 8. The spatial and temporal error norms and the orders of accuracy
for this problem are summarized in Table VII. For temporal errors, the orders of accuracy are as expected
whereas the orders of accuracy are around 1.0 for the 1st-order method and very close to 2.0 for the 2nd-
order method. However, there is a degeneration in the spatial orders of accuracy as happened for the above
test problems.

B. IMPICE METHOD FOR VISCOUS BURGERS’ EQUATION

The viscous form of Burgers’ Equation

∂u

∂t
+
∂f(u)

∂x
= ǫ

∂2u

∂x2
, (107)
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Table VII. Spatial and Temporal Errors:L1-norms and the order of accuracy for the inviscid Burgers’
problem atTend = 0.5 on the spatial domain[−1.0, 1.0]. The temporal errors are calculated for the grid

using N=200(cells) and the time-integrated exact solutions are the converged numerical solutions.

etu(Tend) esu(Tend)

1st-order 2nd-order 1st-order 2nd-order

Ccfl ‖.‖L1 n ‖.‖L1 n N ‖.‖L1 m ‖.‖L1 m

0.2 3.53E-03 — 6.89E-05 — 100 5.14E-02 — 1.86E-02 —
0.1 1.75E-03 1.02 1.67E-05 2.05 200 2.52E-02 1.03 6.08E-03 1.61
0.05 8.67E-04 1.01 4.22E-06 1.98 400 1.62E-02 0.64 3.27E-030.90
0.025 4.31E-04 1.01 1.05E-06 2.01 800 8.48E-03 0.93 1.52E-03 1.11
0.0125 2.15E-04 1.01 2.61E-07 2.01 1600 5.27E-03 0.69 8.16E-04 0.90

with f(u) = 1
2u

2 and initial datau(x, 0) = u0(x), whereu0(x) is a given function andǫ is a constant,x ∈ R

andt > 0.
With the same spatial and temporal discretization as in Section 2 and known cell averages at timetn, the

steps to obtain cell averages at timetn+1 are as follows.

B.1. IMPICE Method Description

The Primary Phase: The equation of velocity evolution,

ut + uux = ǫuxx, (108)

is written in Lagrangian form as
Du

Dt
= ǫuxx. (109)

The face-centered fluxing velocity,u∗
j+ 1

2
, is approximated using an explicit scheme in the Lagrangianframe

as:

u∗j+ 1
2
= unj+ 1

2
+

∆t

2

[

ǫ
un
j+ 3

2
− 2un

j+ 1
2
+ un

j− 1
2

∆x2

]

, (110)

where the calculation ofun
j+ 1

2
has already been discussed in Appendix A. In order to apply the Lagrangian

and Eulerian phases, we rewrite equation (107) as

(ρu)t +
(

ρu2
)

x
=
[

1

2
u2 + ǫux

]

x
(111)

whereρ is a constant and equal to 1.

The Lagrangian Phase: The discrete form of the Lagrangian part of equation (111) isas follows

V L
j (ρu)Lj = V n

j (ρu)Lj +∆t

[(

1

2

(

u∗j+ 1
2

)2
+ ǫ

u∗
j+ 3

2
− u∗

j− 1
2

2∆x

)

−

(

1

2

(

u∗j− 1
2

)2
+ ǫ

u∗
j+ 1

2
− u∗

j− 3
2

2∆x

)]

(112)
whereV n

j = ∆x andV n
j = ∆x+∆t(u∗

j+ 1
2
− u∗

j− 1
2
) andρ is a constant and equal to 1.

The Eulerian Phase: The Eulerian Phase for the viscous Burgers’ Equation is the same as the Eulerian
Phase for the inviscid Burgers’ problem in Appendix A.1.
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Figure 9. The 2nd-order (2nd-order-in-space and 2nd-order-in-time) IMPICE numerical solutions for the
viscous Burgers’ problem atTend = 0.5 from the initial cell averages with N=200(cells) andCcfl = 0.2:

(a)ǫ = 0.05 and (b)ǫ = 0.01

B.2. Numerical Results and Accuracy in Space and Time

The initial condition for the viscous Burgers’ problem satisfies the below analytical solution

u(x, t) =















(0.5 + 0.1e
c
ǫ + e

−a
ǫ )/(1 + e

c
ǫ + e

−a
ǫ ) if (a > 0) and (a > b)

(0.1 + 0.5e
−c
ǫ + e

−b
ǫ )/(1 + e

−c
ǫ + e

−b
ǫ ) if (b > 0) and (b > a)

(1 + 0.5e
a
ǫ + 0.1e

b
ǫ )/(1 + e

a
ǫ + e

b
ǫ ) otherwise

(113)

where

a =
x− 0.25− 0.75t

4
, b =

0.9x− 0.325− 0.495t

2
, and c =

0.8x− 0.4− 0.24t

4
. (114)

The numerical solutions of the viscous Burgers’ problem on the spatial domain[−2.0, 4.0] using the 2nd-
order-in-space and 2nd-order-in-time IMPICE method for various values ofǫ are shown in Figures 9 and 10.
The spatial and temporal error norms and orders of accuracy for the viscous Burgers’ problem with these
values ofǫ are summarized in Table VIII. The orders of accuracy for temporal errors are consistently around
1.0 for 1st-order method and around 2.0 for 2nd-order method. The convergence rates of spatial errors for
the viscous Burgers’ problem improve for larger values ofǫ, and get close to 1 for the 1st-order method and
2 for the 2nd-order method. However, there is a degenerationin accuracies for smallǫ. Whenǫ = 0.0001,
the order is below 1 for the 1st-order method and approaching1 for the 2nd-order method. This is due to the
development of the steep front that appears close to a discontinuity in the numerical solution of the viscous
Burgers’ problem whenǫ approaches0.

C. IMPICE METHOD VERSUS CELL-CENTERED ICE METHOD

The results in Figures 11–15 show the improvement obtained from the application of slope limiters in the
data resconstruction of the Riemann problem. In Figures 11–15, the numerical results of the IMPICE method
are compared against the numerical results of the cell-centered ICE method, which is implemented using
Kashiwaet al [21] and chooses to conserve mass, linear momentum and totalenergy. We use first-order
advection for both of these methods. As seen in 11–15, the IMPICE method helps to eliminate the non-
physical oscillations in the implementation of the cell-centered ICE method.
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Figure 10. The 2nd-order (2nd-order-in-space and 2nd-order-in-time) IMPICE numerical solutions for the
viscous Burgers’ problem atTend = 0.5 from the initial cell averages with N=200(cells) andCcfl = 0.2 and

ǫ = 0.0001

Table VIII. Spatial and Temporal Errors:L1-norms and the order of accuracy for the viscous Burgers’
problem atTend = 0.5 on the spatial domain[−2.0, 4.0]. The temporal errors are calculated for the grid

using N=200(cells) and the time-integrated exact solutions are the converged numerical solutions.

etu(Tend) esu(Tend)

1st-order 2nd-order 1st-order 2nd-order

ǫ Ccfl ‖.‖L1 n ‖.‖L1 n N ‖.‖L1 m ‖.‖L1 m

0.2 1.04E-03 — 5.13E-06 — 100 1.73E-02 — 5.01E-04 —
0.1 5.17E-04 1.00 1.28E-06 2.00 200 9.00E-03 0.94 1.43E-04 1.81

0.05 0.05 2.58E-04 1.00 3.21E-07 2.00 400 4.60E-03 0.97 4.11E-05 1.80
0.025 1.29E-04 1.00 8.01E-08 2.00 800 2.32E-03 0.98 1.24E-05 1.73
0.0125 6.41E-05 1.01 2.00E-08 2.00 1600 1.17E-03 0.99 3.53E-06 1.80

0.2 2.18E-03 — 2.48E-05 — 100 3.54E-02 — 4.43E-03 —
0.1 1.08E-03 1.01 6.17E-06 2.01 200 2.04E-02 0.80 1.08E-03 2.04

0.01 0.05 5.38E-04 1.01 1.54E-06 2.00 400 1.10E-02 0.89 3.15E-04 1.77
0.025 2.68E-04 1.01 3.84E-07 2.00 800 5.78E-03 0.93 8.50E-05 1.89
0.0125 1.33E-04 1.01 9.61E-08 2.00 1600 2.97E-03 0.96 2.23E-05 1.93

0.2 2.91E-03 — 5.17E-05 — 100 5.78E-02 — 2.38E-02 —
0.1 1.43E-03 1.02 1.27E-05 2.03 200 2.36E-02 1.29 1.20E-02 0.99

0.0001 0.05 7.11E-04 1.01 3.16E-06 2.00 400 1.46E-02 0.69 6.52E-03 0.88
0.025 3.54E-04 1.01 7.84E-07 2.01 800 8.28E-03 0.82 3.26E-03 1.00
0.0125 1.76E-04 1.01 1.96E-07 2.00 1600 4.94E-03 0.75 1.46E-03 1.16

D. DIFFERENT CALCULATIONS OF THE FACE-CENTERED PRESSURE,p∗
j+ 1

2

When discussing how to calculate the face-centered pressure, p∗
j+ 1

2
, in the implementation of the IMPICE

method in Section 5, we mentioned that there were two other ways to calculate this quantity in Kashiwaet al
[21]. We will present in this section the proposed methods of[21] and see how these methods will change
the results if implemented in the IMPICE method.

The following derivation is extracted from Kashiwaet al [21]. The first step in calculating the face-
centered pressurep∗

j+ 1
2

is to differentiate the momentum equation. Taking the partial derivative of (7) in
space, the obtained equation is:

(ut + uux)x = −

(

px
ρ

)

x

. (115)
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Figure 11. Cell-centered ICE and IMPICE numerical solutions forP1 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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Figure 12. Cell-centered ICE and IMPICE numerical solutions forP2 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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Figure 13. Cell-centered ICE and IMPICE numerical solutions forP3 test problem with N=800(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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Figure 14. Cell-centered ICE and IMPICE numerical solutions forP4 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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Figure 15. Cell-centered ICE and IMPICE numerical solutions forP5 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

The time dependent quantityutx is eliminated using the partial time derivative of the pressure equation (14)
which is given by

(pt + upx)t = −
(

c2ρux

)

t
. (116)

From these equations Kashiwaet al [21] state without derivation that linearization produces

uxt = −
u

c2ρ

(

Dp

Dt

)

x

, (117)

and so derive the potential equation for face-centered pressure:

(

px
ρ

)

x

=
u

c2ρ

(

Dp

Dt

)

x

− (uux)x . (118)

One discrete form of this is

1

∆x2





p
n+ 1

2
j+1 − p∗

j+ 1
2

ρnj+1

−
p∗
j+ 1

2
− p

n+ 1
2

j

ρnj



 =

(

u

c2ρ

)n

j+ 1
2

1

∆t∆x

(

δpnj+1 − δpnj
)

−
1

∆x2

[

unj+1(u
n
j+1 − u∗j+ 1

2
)− unj (u

∗

j+ 1
2
− unj )

]

.
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The face-centered pressure is then defined by

p∗j+ 1
2
=





ρnj p
n+ 1

2
j+1 + ρnj+1p

n+ 1
2

j

ρnj+1 + ρnj





+
∆x

∆t

(

u

c2ρ

)n

j+ 1
2

(

ρnj+1ρ
n
j

ρnj+1 + ρnj

)

(

δpnj+1 − δpnj
)

−

(

ρnj+1ρ
n
j

ρnj+1 + ρnj

)

[

unj+1(u
n
j+1 − u∗j+ 1

2
)− unj (u

∗

j+ 1
2
− unj )

]

.

(119)

The above equation is used to estimate the face-centered pressure ,p∗
j+ 1

2
, that will be used in the Lagrangian

phase. It is recognized in [21] that the second term in equation (119) is important in high-speed problems
and the third term looks somewhat like a bulk viscosity. These terms help to remove numerical noise, but
introduces a diffusive effect in the method. A limited version of (119) is given by

p∗j+ 1
2

=





ρnj p
n+ 1

2
j+1 + ρnj+1p

n+ 1
2

j

ρnj+1 + ρnj



 (120)

+ψ
∆x

∆t

(

u

c2ρ

)n

j+ 1
2

(

ρnj+1ρ
n
j

ρnj+1 + ρnj

)

(

δpnj+1 − δpnj
)

−ψ

(

ρnj+1ρ
n
j

ρnj+1 + ρnj

)

[

unj+1(u
n
j+1 − u∗j+ 1

2
)− unj (u

∗

j+ 1
2
− unj )

]

,

whereψ is a “limiter” that is designed such that0 ≤ ψ ≤ 1, with values tending towards zero if the velocity
field is smooth to remove numerical noise in the velocity. TheDIVU limiter is introduced by Kashiwa and
Lee in [20] is used for the purpose of limiting the velocity field in calculating limited face-centered pressure
p∗
j+ 1

2
. The limiter is required at the cell interface and is a function of the face-centered velocity divergence

Dn
j+ 1

2
and the face-centered velocity divergences on either side of the face,Dn(+)

j+ 1
2

andDn(−)

j+ 1
2

. We define

these face-centered velocity divergences as

Dn
j+ 1

2
= unj+1 − unj ; D

n(+)

j+ 1
2

= unj+2 − unj+1; D
n(−)

j+ 1
2

= unj − unj−1. (121)

Then the limiter is given by

ψ =















1−max

[

0,min

(

Dn

j+1
2

D
n(−)

j+1
2

,
Dn

j+1
2

D
n(+)

j+1
2

,
D

n(−)

j+1
2

Dn

j+1
2

,
D

n(+)

j+1
2

Dn

j+1
2

)]

if Dn
j+ 1

2
≤ 0.

0 otherwise.

(122)

In order to make sure the calculated face-centered pressure, p∗
j+ 1

2
, is bounded by the surrounding cell-

centered pressures attn+ 1
2
, p

n+ 1
2

j andp
n+ 1

2
j+1 , its calculated value is clamped with respect to[pmin, pmax]

where
pmin = min(p

n+ 1
2

j , p
n+ 1

2
j+1 ); pmax = max(p

n+ 1
2

j , p
n+ 1

2
j+1 ). (123)

This means the face-centered pressure,p∗
j+ 1

2
, is set topmin if p∗

j+ 1
2
< pmin and is set topmax if

p∗
j+ 1

2
> pmax.

We compare the numerical results obtained from the IMPICE method and the pressure-limited IMPICE
method (PL-IMPICE) for the test cases in Table I in Figures 16–19. The PL-IMPICE method uses the
implementation of the IMPICE method in Section 5 except thatthe face-centered pressure,p∗

j+ 1
2
, is
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Figure 16. PL-IMPICE and IMPICE numerical solutions forP1 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.

calculated using the limited version in (120). As shown in Figures 16–19, there is a slight difference in
the numerical solutions of these methods at the discontinuous regions. However, there are no non-physical
oscillations presented in the numerical solutions of thesetwo methods.
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Figure 17. PL-IMPICE and IMPICE numerical solutions forP2 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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Figure 18. PL-IMPICE and IMPICE numerical solutions forP4 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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Figure 19. PL-IMPICE and IMPICE numerical solutions forP5 test problem with N=200(cells) and
Ccfl = 0.2: (a) density; (b) velocity; (d) internal-energy; and (c) pressure.
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