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SUMMARY

The Implicit Continuous-fluid Eulerian (ICE) method is a sessful and widely used semi-implicit finite-
volume method that applies to flows that range from supetstnsubsonic regimes. The classical ICE
method has been expanded to problems in multiphase flow wépelm a wide area of science and
engineering. The ICE method is utilized by the C-SAFE codetdhi written at the University of Utah
to simulate explosions, fires and other fluid and fluid-stiteetinteraction phenomena. The ICE method
used in Uintah (referred to here as Production ICE) is dieedrin many papers by Kashiwa at Los Alamos
and Harman at Utah. However, Production ICE does not perfasmwvell as many current methods for
compressible flow problems governed by the Euler equatidashow, via examples, that changing the non-
conservation form of the solver in Production ICE to a covaton form improves the numerical solutions.
In addition, the use of slope limiters makes it possible tppsass the nonphysical oscillations generated
by the ICE method in conservation form. This new form of ICEdgerred to as IMPICE, the IMproved
Production ICE method. The accuracy of IMPICE for one din@mal Euler equations is investigated by
using a number of test cases. Copyrigh0000 John Wiley & Sons, Ltd.
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KEY WORDS: Implicit Continuous-fluid Eulerian (ICE) methpNumerical method for Compressible
Flow Problems; Improved ICE method using limiters; IMPICEtkod for Compressible
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1. INTRODUCTION

The ICE method was developed by Harlow and Amsden in 1968 [11] with thefagalculating the
flows in all velocity ranges. The key idea for the method is to use a semi-implicit fsoeetization,
in which the acoustic waves are treated implicitly while the advection terms arediregtécitly.
As a result, the ICE method is able to remove the Courant stability limitation based apeled
of sound in the fluid. According to Harlow and Amsden [11], this is a numbyicdable and
efficient method for calculating transient, viscous fluid flows in severatsmimensions. Harlow
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2 L.T. TRAN, M. BERZINS

and Amsden in 1971 [12] simplified the method and also greatly extended its stapplicability.
The ICE method by Harlow and Amsden was intended to simulate single-phabefhamics
problems. There are several improved versions of the ICE method usimgsaure-correction
solution procedure as seen in [4, 18, 19, 31, 37], and one typicabyme-correction method
is referred as PISO (Pressure Implicit with Splitting of Operations). ThHe mi&thod was later
extended by Harlow and Amsden in 1975 [13] and Kashetaal. in 1994 [21] to work with
multiphase flow simulations. The ICE method by Harlow and Amsden used a stdgy#d with
normal velocity components at cell faces and all other variables at gektrse As mentioned in
Kashiwa and Lee [20], the main difficulties in the use of the staggered mektiénadding the
artificial terms corresponding to a bulk viscosity to the equations in order t@irobeasonably
smooth variation in density near shock waves and the development of spit@ as a result of
a purely nonphysical circumstance. Kashigteal. [21] devised a new implementation of the ICE
method by using a cell-centered scheme in which velocity is also located atlHoemter in an
ongoing effort to deal with the difficulties in the classical approach. Irct#ecentered approach,
the velocity at cell faces is not computed directly, but is defined using tke fidd or other
dependent variables. Kashiwa and Lee [20] mention that definition oteedentered velocity in
the cell-centered scheme is a crucial matter for the robustness of the nigtleddlly cell-centered
implementation of the ICE method in Kashiwsal.[21] employs a conservative advection operator
and a Lagrangian part which leaves a degree of freedom in the cHfa@oaservation variables. The
conservation laws used include at least those of mass, linear momentumemdlienergy (or
alternatively the total energy). The Lagrangian part in most standddniplementations is fully
conservative and it usually conserves the internal energy rathetttedotal energy.

Due to its general applicability, the ICE method has been used to study nusranmplex flow
problems, for example, fluidized dust beds, the flow of a liquid with entrainbtlles, atmospheric
condensation with the fall of precipitation, the expansion and compress$ianbabble formed
by high-explosive gases under water and dynamics resulting from ensgnsospheric explosions
from the early time highly compressible flow [13, 21]. With its ability to handle comfliew
problems, the ICE method for multiphase flows is also utilized by the C-SAFE ddeh written
at the University of Utah to simulate explosions, fires and other fluid and$hmictture interaction
phenomena [9]. The ICE code in the Uintah Framework will be referree@tediter as Production
ICE. The implementation of Production ICE is based on the cell-centered |@tothby Kashiwa
et al.[21] with a few exceptions that will be discussed in detail in Section 3. Tineenical scheme
used in Production ICE [9, 10, 14, 27, 28] solves the conservation s§niaear momentum and
internal energy. However, the Lagrangian part in Production ICE isimgonservative form which
appears to be an exception to the standard ICE method. While this may not roblenp for
some cases, it appears to be a problem when applying this ProductionolfeEt@ single-fluid
cases that are governed by the Euler equations in which the obtainedicalmetutions exhibit
some discrepancies in the shock speeds and they additionally show isaplogsillations. The
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 3

Production ICE method for single-fluid cases solves the fluid flows thag@rerned by the one-
dimensional, time-dependent Euler equations of gas dynamics given by

p p 0
pu| + | u|pu + | p: | =0, (1)
el , rel) . Pl

wherep(x, t) is the densityu(z, t) is the velocity,p(x, t) is the pressure, andz, t) is the internal
energy per unit mass. The following equation of state is also employed:

p=(y—1pe, )

where~ is the specific heat ratio with the value of 1.4 for ideal gas.

It has been mentioned in [17, 26, 35] that nonconservative schenpesxapating hyperbolic
conservation laws do not converge to the correct solution in generalth&ocexistence of
discrepancies in the numerical solutions for non-linear hyperbolic systsing Production ICE
is quite understandable. Therefore, in order to improve the Producti®mi€hod, we first change
the method to solve the system of one-dimensional Euler equations in catiserform where
the total energy instead of the internal energy is conserved. The leghroduction ICE method,
will be referred to hereafter as IMPICE, is a cell-centered ICE methddhwdolves the system of
one-dimensional Euler equations in conservation form that is given by

p p 0
pul| +lulpuf+|p =0, 3)
pE . pE pul /)

and the equation of state is given by

p=(r- DB - 2p?) @

where E(z,t) is the total energy per unit mass add= e+ Ju?. As a result of changing
the Production ICE method to solve the system of Euler equations in cotisarfarm, the

computational results show the disappearance of the discrepancies irbtdired numerical
solutions (refer to Appendix C). In Appendix C, the original method of Kasa et al [21] is

referred to as Cell-centered ICE. However, Cell-centered ICE rsufifem unphysical oscillations
when there are moving contact discontinuities. Typically, methods in the literage a variety
of techniques such as constrained data reconstruction so as to aveiduspescillations; for
example, [1, 2, 5, 39, 40, 41, 42]. To suppress oscillations, we wilausmilar approach in which
the data at the cell interface is the approximate Riemann solution to the local Rigrariem

that is constructed by using slope-limited interpolation of the left and rightcesitered data.
The approximate Riemann solver which was proposed by Hattexh. [15] and used by Davis
[6] to satisfy consistency with the integral forms of the conservation lawearicbpy condition
will be used to solve the local Riemann problem. The slope limiter used is selegctadtlie

extensive literature on the functions for slope limiters in the last few decades for example,
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4 L.T. TRAN, M. BERZINS

[7, 16, 33, 36, 39, 40, 41, 43]. The IMPICE method is Cell-centerdeiwith the oscillations being
suppressed using the above-mentioned technique. In effect, althaighigmal ICE method is a
von-Neumann type method in which the fluxes are fully dependent on the timesrieat, we have
now introduced a Riemann solver approach in which the fluxes deperutlyliva the approximate
solution to the Riemann problem. The discussion of the methods in this paperedltimedefinition
of the speed of sound. The speed of souitd, t), in an ideal gas is defined by

c=,/ 22 (5)
p

As for many numerical methods for the solution of PDEs, the IMPICE methptbapnates the
Euler equations by a finite volume method using a spatial discretization of theepr@and a time
integration technique. Besides the importance of having a non-oscillatingricaigolution, the
numerical accuracy of the method in time and space is also important. The B/AR&Ehod is first
order in space and time. However, first-order methods are known totkecoorate enough to be
used for large problems on relatively coarse grids. In order to inerd@sorder of accuracy in time
and space, we need to employ a nonlinear spatial discretization combined kiigh arder time
discretization. Our goal is to obtain an IMPICE method with second-ordrrracies in both time
and space. In this paper, we will study numerical accuracy of the IMPh&thod and discuss how
to change the IMPICE method to achieve second-order accuracy infexth and time.

The content of this paper is organized as follows. In Section 2, we rbeapell-centered ICE
method by Kashiwaet al. [21] which includes the spatial discretization and essential steps in the
time integration. In Section 3, we present a detail implementation of the Produ€iiomethod
and describe differences between it and the cell-centered ICE methKddbywaet al. [21]. In
Section 4, we discuss the proposed method by Kwettia. [23] that can be applied to calculate
the time integration step of the semi-implicit ICE method. This method removes thetiestot
sound speed in calculating the time step, but still maintains stability. In Section propese a
modification to the Production ICE method to remove the unphysical oscillationg inumerical
solutions. The numerical solutions of the IMPICE method are presentedc@ngared to the
numerical solutions of the Production ICE method in Section 6. The spatiaéermbral accuracies
of the IMPICE method are shown in Section 7. The issue of how to obtaimdemaler accuracy in
time and space is discussed in Section 8 and Section 9. As it will be discusSection 2, there are
many degrees of freedom in the implementation of the cell-centered ICE megh¢akshiwaet al
[21], so the purpose of this paper is not only to find an improved implementattitre Production
ICE method but also to discuss how various choices in the implementation ofitlvecered ICE
method affect the obtained numerical solutions.

2. THE CELL-CENTERED ICE METHOD BY KASHIWAET AL.[21]

2.1. General description of the cell-centered ICE method

The cell-centered ICE method described in detail in [21] is a finite-volumesaiwvhich space is
discretized into N uniform cells of widthhaz = (b — a)/N where]a, b] is the spatial domain. The
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 5

cells are centered around = a + (j — 1/2) Az wherej = 1..N. The boundaries of these cells are
located atr; 1 =a+ jAx wherej = 0..N and also called face-centers or cell interfaces. With this
discretization, the domain boundaries are aligned with the first and lastigelteA time integration
method is used to estimate the averages of cell variables at some #irfig,, from the averages
of cell variables at = 0. For each time integration step, assuming that the cell averages at,time
are known, the goal is to compute the averages of cell variables at themesstept,, 1.

The ICE method invokes operator splitting in which the solution consists of eabhg@n phase
and an Eulerian phase. The Lagrangian phase advances cell vatbestvadvection and maps
new values to cell variables and the Eulerian phase advects the cellleariibe essential point
that makes the ICE method an all-speed scheme is to use an implicit scheme faigtaadian
phase and an explicit scheme for the Eulerian phase. The cell-cen@eandthod comprises the
following phases:

The Primary Phase

With the spatial discretization as discussed above, the spatial deriviatithes governed equations

are approximated using finite differences of quantities at face-cetieie an implicit scheme is

used for the Lagrangian phase, the variables involved in the Lagraplgése are those evaluated at
face-centers at, + % and are determined in this phase. Itis also necessary in this phase to estimate
the fluxing velocity which is going to be used in the Eulerian phase. The flwetagity, u;‘f+%, is

the flux of volume across the cell interface. In order to make clear whidhhlas are defined at

face center, the superscripis used here for these variables as required.

The Lagrangian Phase

Let V" be the volume of celf andU}" be the vector of averaging cell variables atin particular,
V' is equal toAz for the above discretization. Assume that the cell volume is changed during
the Lagrangian phase iqL andeL =V +At(u;, , —u; ,)whereu? , andu?, , are fluxing
i . . ity L Ja )2 Ita
velocities at cell interfaces. There is also a change in the vector ofgingreell variables thjL
after the Lagrangian phase has been completed. A numerical schemedbtaim neglecting the

convective effects is used to evaluate the change in the material state arrdénalmatdff.

The Eulerian Phase

For this phase, we have to evaluate the change in the solution due to ad.\/taetﬁzIﬁJrl be the cell
volume att,,.; and assume that the mesh is stationary, l@’éﬁl = Az. The change in the solution
due to advection is as follows

an+1Uj?‘+1 — VjLUjL — At(u;f+%<U>j+1 —u

*
1 s 1
2 J—3

jfé)v (6)

where (U); 1 = ~ j;f"“ U(z,,1.t)dt is the vector of advected quantities and is numerically
determined. As suggested by [21], this numerical value may be determiiregl Wis or Uk;
however, how to numerically determine this is not explicitly presented.
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6 L.T. TRAN, M. BERZINS

State Variables Update Phase

In this phase we update the primitive cell variables uii@‘d’l and the equation of state as these
will be used for the following time integration step.

2.2. The cell-centered ICE implementation of Kashawal.[21]

Kashiwaet als improvements, [21], to ICE consist of changes to the above primari.agngian
phases. There are two important quantities that will be used in these plteesss are the face-
centered velocity and pressure as denotedj% andp;+%. The face-centered velocity;Jr%, is

also the advected speed for the Eulerian phase, so [21] refers this thexihg velociy. The face-
centered fluxing velocity,o;gr%, is calculated based on the time-advanced equation for velocity. For
the system of the Euler equations, the derived equation for velocity evolistio

Uy + ULy = _Pa @)

Equation (7) is written in Lagrangian form as

Du  p,
D, (8)
The fluxing velocity in the cell-centered ICE method is obtained using the fldd fied semi-
implicit Euler scheme in the Lagrangian frame by

At Pl —plT
e m o j+1 —Pj
uj.:,_% - <<U]+%>> AT <<p;l+1>> ’ (9)
2

n 1 - . .
wherepj+2 is the cell-centered pressuretatt+ £, <<u;% 1)) is the mass-weighted average face-
2
centered velocity and<p;?+l>> is the average face-centered density at timerhe mass-weighted
2

average veIocity((u;? . 1))°, of left and right states at face-center is given by
2

n,n n o ,mn
_ Pl Pt

u L)) ) 10
(1)) o (10)
and the average face-centered den$(wjl+l>>, of left and right cell-centered densities is:
n Py + pj
<<Pj+%>> = %ﬁl (11)

1. . . . .

As the face-centered pressure,at- %, p?JrZ , is not readily available, it needs to be obtained from
1

correcting the face-centered pressurg,ap’. Letép} = p;-H_i — pj be the difference between the

cell-centered pressures at these two time levels and which is referred eshivkaet al. [21] as

“pressure corrector”, equation (9) is then rewritten as

) At 0pjy, — op)

* ;= * 1= ’ N

u]+§ u]+§ 2A$ <<p;l+l>> ( )
2
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 7

where At pj ;
’ Piy1 — Dy
. _ VL | p_iu.
w1 = (Ui 1)) 28z (P}, 1))
2

(13)

In order to determine the face-centered fluxing velomi;t)(,l, the “pressure corrector” values’,
2
anddp’, need to be determined using the equation of pressure evolution,

Dt + upy = 762puma (14)

which is written in Lagrangian form as

D
sz = —Zpu,. (15)
In [21], two different ways to determine the “pressure corrector” @alare discussed. The explicit
“pressure corrector” uses the explicit discrete form and the implicitSguee corrector” uses the
semi-implicit discrete form of (15). The explicit form of “pressure cotog” is given by

e _g 7 p-7;+1 _p-?_l _ At 2 _\n n p_ n p
oy =~ () - L@ e - (. as)

The implicit “pressure corrector” is obtained using

At n (p?‘i‘l B p.?_l) At

o =5 97T ~ 9z €PN Wy — ). (17)
The implicit “pressure corrector” is complicated since equations (12) Andshow that the face-
centered fluxing velocities and the “pressure corrector” values ameétated, so there is a need to
calculate the fluxing velocities using these two equations and this is not explisitiyssed in [21].
After having determined the “pressure corrector” values at cell centiee face-centered fluxing
velocity, u;+%, is determined using equation (12) Whér;g% is defined in (13).

There are several suggested choices for calculating the faceemaptessurq;;gré, in [21] and
[22]. Two of these choices, which are derived from the presswatem in Kashiweet alin 1994
[21], will be discussed in Appendix D. In this paper, we employ the choiagithmentioned in
Kashiwa in 2001 [22]. This choice aims to satisfy continuity of acceleraticagoyting acceleration

increments for the left/right half spaces. The equation as specified ifsf22]

1t 1, nts
A B S 18
ijr%_ L_’_ 1 . ( )
P} Pt

In the above equation, the face-centered pressure is thus calculaiggpecific volumes-weighted
of the left and right time-advanced cell-centered pressures.

The Primary Phase is executed after the face-centered velocity amﬂm&sﬂ‘% andp;+%,
are calculated. The choice of the vector of conserved variableand the numerical procedure
to determine the vector of the face-centered advected quantiti¢s, 1, are neccessary for the

implementation of the Lagrangian phase and the Eulerian phase.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluidé0000)
Prepared usindldauth.cls DOI: 10.1002/fld



8 L.T. TRAN, M. BERZINS
3. PRODUCTION ICE IN UINTAH COMPUTATIONAL FRAMEWORK

The term Production ICE is used to denote the ICE method as implemented in Uortgdu€tional
Framework by [9, 10, 14, 27, 28] to simulate fluid flows that are govehyetthe Euler and Navier
Stokes equations. Production ICE solves the Euler system in non-eatiserform (1) with the
vector of variabled/ = [p, pu,,oe]T. The detail implementation of the phases in Production ICE
follows the description given in Kashiwet al. [21] with some exceptions that will be pointed out
explicitly in the following discussion.

3.1. The Primary Phase

The first exception is that the face-centered quantities in Production t€Bai time-centered.
The face-centered fluxing velocityq;*.+%, and pressurep;%, for the time step[t,,t,.1] are
approximated at the face-center at titne ;. For this reason, we use the notatim’ﬁ% andp;i%
for the face-centered fluxing velocity and pressure in Production W3ihg a different approach

from equation (9), the face-centered fluxing velocity in Production I@Eg is approximated as:

upty = () - DB D

Ll = - om0\
J+3 Jts Ax <<p;’+%>>

(19)

where the mass-weighted average velocity and the average faceecledtersity,«u;‘#))P and
((p;grl)), are defined in (10) and (11). So another exception in calculating thedlwelocity in
Production ICE is that the scheme in (19) is not semi-implicit when the presesesl are defined
att,.

The face-centered Pressupey | o, in Production ICE is calculated using the following equation

1 n+1 1 n+1
* % ﬂ7+1 Jt+l + T?pj
p]Jr% 1 + 1 '
P} Pt

This is similar to equation (18), but with the cell-centered pressures at;;lmep?“, Wherepfj“rl
is evaluated using an explicit scheme applied to the Lagrangian form of traieq of pressure
evolution in (15), which is given by

n n At n n n
pj+1 =p; — E(czp)j (<<uj+§>>p - <<uj—

)7)- (21)

3.2. The Lagrangian Phase

Production ICE chooses the vector of conserved variables to includg timesar momentum and
internal energy. The use of the non-conservative form of the syst&uler equations in (1) means
that the Lagrangian part in Production ICE is given by

0
LyrL nrrn sk *k
VitUy = ViU — At Dit1/2 = Pj_1y2 . (22)
n417, sx *ok
pj+ (uj+1/2 - uj71/2)
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 9

3.3. The Eulerian Phase

The change in solution values due to advection over the[ste, 1] is given by

n+lyrn+1 _ LyrL *k ok
ViU = ViU, —At(uj+%<U>j+1 —uit

2

) 3): (23)

However, the numerical values of face-centered advected quantities fiollbwing definition:

1 [l
<U>j+% = At/t U(xj+%,t)dt (24)
has not been quantified so far in this paper and we will now show how t@xippate it. Normally
U(xj+% ,t) is not constant for the step,, ¢, 1], but a first-order accuracy is obtained by assuming
that this is constant and is an upwinded cell-centered value. Howeves, dhe the cell-centered
values at two different time levels that are available for the Eulerian phiasse are at, and the
value after the Lagrangian step. By chosing the upwinded cell-centatadsvat time,, for the

face-centered advected quantities, we have

n . *
Uy if Wil <0

)4 (25)

UJT‘ otherwise.

Alternatively, if the upwinded cell-centered values at Lagrangian time beetonsidered for face-
centered advected quantities, we have

UL, if v, <0
)y =9 " I (26)
Uk otherwise.

J

The Production ICE code uses (25) to define the face-centeredtadvp@ntities, [14, 27, 28].

3.4. State Variables Update Phase

The averages of cell primitive variablesu,e, andp are then updated using the averages of cell
variablesp,pu,pe and the equation of state (2).

4. CFL CONDITION

The choice of the time stept in time integration affects the stability of the ICE method. As
mentioned in [34], one requirement for the method to be stable is the fastestiva given time is
allowed to travel, at most, one cell lengtfi in the chosen time stepy¢. For the system of Euler
equations, the time stet is chosen to satisfy the condition:

Ccfle

At = ——— 27
Sn ’ ( )

max

whereC.y; is a Courant or CFL coefficient satisfyirig< C.;; < 1 and .S}

" . 1S the largest wave
speed present through the domain at timeA practical choice of”,, as mentioned in Toro [34]
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10 L.T. TRAN, M. BERZINS

n
Smaw

= max(|u?| + c;’) (28)
j

However, Kwatraet al. [23] proposed a novel method for alleviating the stringent CFL condition
imposed by the sound speed in simulating highly nonlinear compressible flowheiths, contacts
and rarefactions. It is mentioned in [23] that the maximum speed in equaBdris(®o restrictive
for flows where the sound speef,may be much larger tham|, so the stringent CFL time step
restriction imposed by the acoustic waves can be avoided and only the matdaaity CFL
restriction is used in calculating the maximum speed. The proposed methd®] of y2ll suited to
the semi-implicit solver like the ICE method where only the advection step is the igxgalit. The
proposed maximum speed calculation in [23] is:

gn

maz — Max ‘U?‘ (29)
J

The time step used in this paper for both Production ICE method and IMPICEthistdetermined
using (27) wheres? . - is calculated using (29).

5. IMPICE METHOD

The IMPICE method improves the numerical solutions to the one-dimensional dépendent
Euler equations of gas dynamics by solving the conservation form in @) eler, as will be
validated by numerical experiments in Appendix C, the numerical solutionsnebdtaising the
cell-centered ICE method in conservation form have unphysical oscilttitat need to be reduced
or eliminated. The oscillations in the numerical solutions of the cell-centeredn€&od cannot be
diminished by decreasing the time step , so in this section, we will describe thélalyosed to
suppress these oscillations numerically by using a simple approximate Rientegm so

5.1. Numerical Discussion

To help explain the IMPICE method, we start with a discussion of schemesfipgoximate
conservation laws as follows and consider a one-dimensional systenoirsargation law form

oU(x,t)  OF(U(x,t))
ot + Ox

=0, z€la,b] and t>0, (30)

whereU (z, t) is the vector of conserved variables afi/(x,t)) is the vector of fluxes. In order to
approximate the solution of (30) with the initital condition

U(z,0) = U%x), (31)

we discretize space into N uniform cells as in Section 2. The cell averape a®ll[z; 1, z;, 1]
at timet,, is denoted b)Uj’, where

xr., 1
o= L [ ) (32)
n— x, xT.
] A"I} . ) n
E)
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 11

A standard approach is used in integrating system (30) in space and time dorttrel volume
[mjfé’ijr%] X [tn, tnt1] tO give:
1

/"’”j+2

,t))} dt.

1

Ulatonn) = Ulatalldo == [ [F0G04.8) — UG

n

This can then be written in the standard conservation form:

n+1 n
AU = AaU7 = At (Fpy = Fy_y) (33)
where
1 [l
iy =5 F(U (x4 1,1))dt. (34)
tn

Equation (33) is used by finite volume methods to solve the system (30) apyaiteky. In order to
use this relation, a spatial integration of the initital condition is required andpjgimations of
the fluxes at the cell interfaces are needed.

The numerical flux derivation follows the cell-centered ICE method of Kesshbt al.[21] will be
derived shortly. The system of Euler equations (3) of gas dynamicstiemwin the form (30) where
U = (p, pu, pE)T and F(U) = (pu, pu® + p, puE + up)T. The face-centered flux (34) in this case
is written as

tn
ﬁ tn o (pu)(x7+%7t)dt
tn41
Fj—i—% = é tt" " (pu2 +p)(‘r_;+%at)dt (35)
Ait j;:ﬂ (puE eru)(:xj_i_%,t)dt
A Taylor series approximation @zf(xj+% ,1) is given by
wjpa,t) = u(@jya,ty 1) + (=t )u(@ya, 1) + O(AL). (36)

n+

. . n+ 1 .
Using the notations | 7 = w(ajy1,tyy1) and(ut)ﬁ%2 = w4 1,t,41), we have:

[N

tn1 1

1 1

trnt1 1
— n+s o n+1 2
At . (PU)(ijr%at)dt = At/t P(%#%ﬂf) [Uj+§ + (t tn+%)(ut)j+%2 + O(At )} dt
tn+t1
n+l ]-

With a similar approach, we also have

tnt1

trng1
1 2 nt+i 1 nti 2
A (pu” +p)(z; 41, t)dt = uid \ Az t (pu)(z; 1, t)dt TPl O(At?)
and
1 tn+1 n-&-% 1 tn41 n-&-% 5
A, (puE + up)(x 1, t)dt = uind A t (PE)(x;p 1, t)dt | + (up)j+% + O(At?).
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12 L.T. TRAN, M. BERZINS

Then face-centered fluk; +1 vector in (35) is rewritten as

1 [tnt+1
1 At Jtn p(l‘j_.,_%,t)dt n(-)',-l
n+s n 2 2
Fj+%:uj+§ A §7L+1(pu)(a:j+%,t)dt + pﬂél + O(At?). (37)
n +,
Ait tn +1(pE)(Ij+%at)dt (Up)j_i_;

The reader should note that equation (33) with the tefins andFjJr% are defined by equation

(37) will be used in Section 7 to assess the numerical accuracy of theCiRlethod.

5.2. IMPICE Implementation

The scheme used for approximating the fluxing velom'gypl, in the IMPICE method is similar to

equation (9), that is:
n+% 71—&-%
At (pj+1 P )

* _.n o
Yi+s T Y4 T AL P ' (38)
2

This equation was obtained by replacin@?%))ﬂ in (9) with u;?%, and<<p?+%>> with p;gr%.
While these quantities denote the velocity and density at face-centgitlaeir numerical values are
determined differently. WhiIQ(u}L+%>>f’ and<<p?+%>> are determined using the weighted averages
in (10) and (11), the values;;r% and p;?+% are determined based on the simple approximate
Riemann solver that will be discussed in Section 5.3 below.

Since the pressures used in the (38) are time-advanced values, wistbrm a “pressure
corrector” to obtain these. The explicit “pressure corrector” in (16}his one used in our
implementation of the IMPICE method. However, it is worth looking at the implicie§sure
corrector” and seeing the difference between the solutions of these tiihmase By substituting

(12) into (17), the equation for cell-centered “pressure correctow’ lbecomes

n At n p?"rl _p?—l At 2 NN ~% ~ %
o ==Y ( 2Az " oag CPI Ty — Ty
39
AT [ - d o 9
A | T T
Pivy Pi-1
Leto = % and rearrange the terms of above equation to get
2 \n 62 n C2 n C2 n
Gl e Gl ] G PR GO P “0)
Pi+i Pi-1 Pi+s Pi-}
_ n p;l+1 pjfl 2 \n[/~* ~ %
0]< 5 >U(cp)j(uj+1—uj_é)
Therefore, the value® are the solutions of the tri-diagonal linear system:
Az =b (41)
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 13

where: _ ) o o
b1 (&1 0 dl (5])1
az by ¢ da op2
A= as b3 . b= d3 Tr = 5p3 (42)
CN—-1
| 0 an by | | dn | 0PN |

anda;, b;, ¢;, d; are defined as follows:

for j=2.(N-1), (43)

2 \n C2 n
bj=1+02( np)] +02( np)j for j=2.(N-1), (44)
Pit1 Pi-1
cp)
o=t jor joa.v-1), (45)
Pty
_ n p?—i'l _p?—l 2 \n (% ok =
dj = —ouj | F=F——) - o(cp)f(uj, L =5 1) for j=2.(N-1), (46)

andby, by, d; anddy are obtained from the boundary condition. So in order to use the implicit
“pressure corrector”, we have to solve the tri-diagonal linear systeflin While this obviously
takes more time to calculate than the explicit “pressure corrector” in (16)ethdts computed
using the two methods show that there is not much different between the inaheslutions
obtained from using the implicit and explicit “pressure corrector” in the I method for the
Euler equations examples used here.

The IMPICE method calculates the face-centered presgmef,, the same way as the cell-
centered ICE method does in Section 2.2. It uses the calculation describgaition (18).

The IMPICE method chooses to conserve the total energy instead ofdhéaergy, so the vector
of conserved variables & = [p, pu, pE]T. The Lagrangian and Eulerian phases of the IMPICE
method are then given by

0
LyrL _ nrrn * *
Viuy =VitUit — At Pjvi/2 = Pj_1)2 ) 47)

* * * *
Piy1s2Wir12 = Pj12%; 12

and

n+lyrn+1 _ LyrL * *
ViU = ViU = At(ug 1 (U)js —ui 1 (U)-1), (48)

_1 and <U>j+% are given by equation (26) aﬁdjL =V'+ At(u;r; —

in which the terms<U>]-

u;_%).

1
2

5.3. Application of Slope Limiters in the IMPICE Method

In common with many methods for conservative laws, slope limiters may be applidieto
calculation of face-centered fluxing velocityj*Jrl/Q. For the face-centered fluxing velocity, slope
limiters are used in the estimation of face-centered quantities; & particular, they are used in

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluidé0000)
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14 L.T. TRAN, M. BERZINS

the calculation ofa;jr% andu;gr%. This approach originates from the idea of approximating the cell-
centered state by the reconstructed states obtained from the left anceliggnieraged states of the
previous time-step. The slope limited, reconstructed states are used agorgp&i€mann solver to
determine the state at the cell interface. This will be discussed in detail below.

While U is often used to denote the vector of conserved variables, the V&ctolr = (p, u, p),
is often used to denote of the vector of primitive variables, see Lanef##Toro [34]. LetV* be
the vector of average cell-centered values of primitive variables ofj altimet,,, then the value
of W on the spatial domain &}, is represented by the piecewise constant eﬂalt/gf}. The simplest
and widely-used way to modify the piecewise constant ({M@'} is to replace the constant state
WT by a piecewise linear function&s' (z). The construction of the piecewise linear functions can
be found in many papers; the construction in Toro [34] will be used azithes below.

As for the first-order Godunov method, one assumesifhatrepresents an integral average in
cellI; = [z x;, 1] as given by

1
J1—37

Wi = ) Wi (z)dx. (49)

A piecewise linear, local reconstructionéf;" is

Wi(z) = Wi+ (x — 2 ) AW}, x € I (50)
where AW is a suitably chosen slope oF () in cell ;. The integral ofW*(z) in cell I; is
identical to that ofi¥’}* and thus the reconstruction process is conservative. The Alipe can be
approximated by a simple finite difference formula given by

awr = W =W

_ 51
; AL (51)
However, to achieve a higher order scheme and to maintain bounded s®lutienslope at the
current node is usually limited based on adjacent slopes. The obtainedislaglimited slope”
AW} which is used as :

Wit(z) = W' 4 (z — ;) AW}, z € I; (52)
to approximatd? on I;. The ratior; represents the ratio of successive gradients on the solution
mesh at:;,

poo W 2 Wi (53)
LW, W
and the limited slop@ W * may be written in the form:
AW} = ¢(r;) AW, (54)

whereg(r;) is some flux limiter function. For the results in this paper, we choose the Mozetbn
Central(MC) limiter function for calculating the limited slope in (54). The MC limiterdtion by

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 15

Van Leer [40] is
o(r) = mazx]0, min(2r,0.5 4+ 0.5r, 2)]. (55)

At each interfac&j%, we now may consider the so called Generalized Riemann Problem(GRP)
as follows

ou N OF (U)
ot or

Wi (z) T < Ty

=0, (56)

1
2

Wz, t,) =
Wii(z) o>,

whereW (z) is the limited local reconstruction in (52). Naturally, for non-linear systemexiaet
solution of the GRP is exceedingly complicated, but for the purpose of awuaduface-centered
states, an approximate solution may be suffice. In this approach, we fatgying to evaluate
the solution of the GRP in (56) analytically but rely on the boundary extréglaalues at the
interfaces. The values Wﬁ% at cell boundaries using local reconstructiois (z) andW?, , (z)

are denoted a8 ™Y andw " where
J+§ J+§

n(L n n(R n
WH(; =W (2,41); WH(%) =W (2j41). (57)
The vaIuestjf? andWﬂf’f) are left and right extrapolated values at the bound:g% attimet,,.
2 2

In this way, one may instead consider the conventional Riemann Problemiegwse constant
data in a new coordinatg, 7) whereé = = — Tjy1 andr =t —t, as

ou  oFr

n(L)
W(€,0) = W”,i et
W].';(%) £€>0.

The face-centered statest 17(0,0), is the value at the origin immediately after the interaction of

the piecewise constant data " andw'{{” where

W(0,0) = lim W(0,7). (59)
T—=0t+
By determiningi’(0,0) in (£, 7) coordinate, we have the values of face-centered states given by
WJ?’J’F% = [p}i%,u?%,p?%]T at t,,. There are several ways to approximate the solution to the
piecewise constant data Riemann problem (58) and therefore to appteXini@ 0). In this paper,
we use the simple approximate Riemann solver which was proposed by Hargn15] and

discussed in Davis [6] to approximal&(0,0). In order to use the approximate Riemann solver

Copyright@© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
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16 L.T. TRAN, M. BERZINS

described in these papers, we rewrite equation (58) as

U  OF
o+t =0 (60)
U <0
veo=4 ¢
UR €>07

whereU;, andUg are obtained fron‘I/Vfﬁ) and W;’ﬁ) respectively. The approximate Riemann
solution of (60) is given by

U, for z/t<ay
U(z/t;Ur,Ur) = { Upr for arp <x/t<ag (61)

Ugr for ar </t

wherear andag are lower and upper bounds, respectively, for the smallest and tesigeEsl

velocity and
arUr —arU F(Ug) - F(U
Upp = RYR LYrL ( R) ( L). (62)
aR —ay, aRr —ar,

The boundsiz anday, for the Euler equations are defined in Davis [6] as:
ar =ur —C¢r, 4R =UR+CR, (63)

wherewuy, c¢; are the velocity and wave speed respectively obtained ftgmand ug, cr are
the velocity and wave speed obtained fréim. The solutioni(0,0) in (59) is derived from the
approximate solutio/ (0; Uy, Ug) in (61) which includes the approximationsmﬂijr% andp;?+%;
these in turn are used in equation (38) instead of using the mass-weiglatetitigqa in equations
(10) and (11).

In summary, the face-centered fluxing velocity%, is estimated via the following steps. First,
using the local recontruction in (52), the left and right extrapolated saduiehis cell-center are
obtained using (57). These extrapolated values then form the piecewisiant data to the Riemann
problem (58). Second, this Riemann problem is solved approximately usraptiroach of Harten
et al.[15] and Davis [6]. The approximate Riemann solution includes the appriif@ee-centered
density,p? L1 and face-centered velociﬁ;@T e Third, the “pressure correctorsfp, are calculated
using equation (17). Finally, equations (12) and (13) are used to cﬁ@g@%

6. NUMERICAL RESULTS AND COMPARISONS

The following well-known test problems are often used to test the accuadyrobustness of
many numerical methods in fluids. These tests for the one-dimensional, tireadisy Euler
equations for ideal gases can be found in Toro [34] where they adktosaccess the performance
of the numerical schemes being presented in the book and also emplogetbhitustrate the
performance of the Production ICE method and the IMPICE method. In tttessen problems,
two constant state$V;, = [pr, ur,pr]’ andWg = [pr,ur, pr]’, are separated by a discontinuity

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluidé0000)
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 17

Table I. Data for one-dimensional test problems with knowace solutions, for the time-dependent, one
dimensional Euler equations

Problem PL ur, pL PR UR PR o Tﬁnd
P1 1.0 0.0 1.0 0.125 0.0 0.1 0.3 0.2
P2 1.0 0.75 1.0 0.125 0.0 0.1 0.3 0.2
P3 1.0 0.0 1000 1.0 0.0 0.1 0.5 0.011
P4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950 0.4 0.034
P5 0.445 0.698 3.528 0.15 0.0 0.571 0.3 0.16

at a positionz = z,. The stated¥V;, and Wy are given in Table | and the problem domain is
(x,t) € [0,1] x (0, Tenal-

P1 is the well known Sod’s problem anB2 is a modified version oP1. These tests are
considered very mild, but as mentioned in Toro [34] they are useful $sessing the entropy
satisfaction property of numerical methodR3 is considered a very hard problem for numerical
methods. As mentioned in Toro [34], the solutio™a represents the collision of two strong shocks
and consists of a left facing shock, a right travelling contact discontianitha right travelling shock
wave. ProblenP5 is Lax’s test problem [25].

Beside the problems with known exact solutions in Table I, we also includethernumerical
solutions to the Shu and Osher [32] test problem. This test problem codtimited features and
structures and is considered by Greenough and Rider [8] to be a geedimensional surrogate for
the interaction of a shock wave with a turbulent field. The initial condition-at) of the problem
is defined as

(3.85714,2.62936,10.33333) if x< —4.0
(p,u,p)(,0) = ‘ , (64)
(1.0 4 0.2sin(5z), 0.0, 1.0) otherwise,

on spatial domaiff—5.0,5.0]. The final time for this problem ig,,; = 1.8. As the analytical
solution of this test problem is not readily available, we use the “exact sofutioMartin et al.
[29] to show how accurate of the numerical methods in this paper. Thet'sghution” of Shu and
Osher test problem in Martiat al. [29] is obtained with the unmodified WENO-JS scheme with
r = 3 andp = 2 on 1600 grid points.

The numerical results for the above test problems of the IMPICE methocbanpared against
those of the Production ICE method and shown in Figures 1-6. A signifioggmovement in
numerical solutions of the IMPICE method is clearly shown through theseegés shown in
these figures, the profiles of the numerical solutions of Production IEmetr close to the exact
solutions. This is due to the use of the non-conservative form in Produ@ie. It can also be seen
that, there are no existing oscillations at shock-front in the numerical sotutid the IMPICE
method. The improvement in the numerical solutions of the IMPICE method cechparthe
Production ICE method comes from the use of a conservation form in thewhgign phase and
the application of slope limiters in the data reconstruction of the Riemann probiesrdér to see
how the contribution of each source into the improvement of the IMPICE methednclude in
Appendix C the comparision between the numerical results of the IMPICE cheihd the cell-
centered ICE method. The cell-centered ICE method denotes the methodithgleimented using
the cell-centered ICE method of Kashiwgal.[21] described in Section 2.2 which conserves mass,
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o IMPICE o IMPICE
A Production ICE A Production ICE
1¥ Exact 15 Exact
0.8 1 0.8 1
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Figure 1. Production ICE and IMPICE numerical solutions Rit test problem with N=200(cells) and
C.p1 = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.
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Figure 2. Production ICE and IMPICE numerical solutions R2 test problem with N=200(cells) and
C.f; = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.
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Figure 3. Production ICE and IMPICE numerical solutions B8 test problem with N=800(cells) and
C.p1 = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.
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Figure 4. Production ICE and IMPICE numerical solutions Bt test problem with N=200(cells) and
C.f; = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.
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Figure 5. Production ICE and IMPICE numerical solutions R test problem with N=200(cells) and
C.p1 = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.
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Figure 6. Production ICE and IMPICE numerical solutions ®hu and Osher test problem with
N=1600(cells) and’..;; = 0.2: (a) density and (b) velocity.
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IMPICE METHOD FOR COMPRESSIBLE FLOW PROBLEMS 21

linear momentum and total energy. From the results in Figures 1-6 and &igiwd5, it may be
seen that the use of conservation form improves the solution profiles amdadbnstruction of the
Riemann problem with the slope limiters helps to eliminate the non-physical oscillations

7. ACCURACY IN SPACE AND TIME

There are two sources of errors in the numerical solutions of the IMRI€Eod: spatial and
temporal errors. The spatial error comes from the spatial discretizdtiba BDEs and the temporal
error comes from the time integration method. h%(tn) be the total error in approximatirigi* of
cell j att,, which is given by
U 1 [s n
e; (tn) = E/ Ul(x,ty)dr — U} (65)

i—

[N

Let U; [tn;to, UY] be the exact solution of discretized system with the initial conditip(t,) =
U?. We then have

e (tn) = es? (tn) + et (tn), (66)
where Lo
it3
eséj(tn) = E/ U(z,t,)dz —U; [fn;to, UJQ] (67)
and
et?(tn) =Uj [ﬁn;to, UJO] — Uj'.” (68)

are the spatial error and the temporal error respectively.

7.1. Temporal Error

Letlegf(tn) be the time local error of the stép,_1, ¢,,] of the IMPICE method which is defined by

1e¥ (tn) = Uj [tn;tn—1, U] = U

e (69)
and where from equation (33), the exact IMPICE local soluﬁgr{tn; tn—1, U;“l} is given by

At
. n—11 _ yn—1
Uj [tni ta-1, U 1] = U7 = Az (Fj+é — £

Nl

). (70)

WhereFH% is defined in (37). On the other hand, the IMPICE solutiot),d@s

At ,
n_ rm—-1__ 2t IMPICE _ 1pnIMPICE

vy =t - o (FY FIMPICE), (71)

where
0
IMPICE __ *
* *
Yi+1Pj44
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Therefore

At
U _ IMPICE IMPICE
1 (0n) = 3y |(FIAPIOF = By ) = (FAPO7 - Fiy )] (73)

From equations (37) and (72), we have:

tn
IMPICE nts [ 1 n+3 *
L o i ( LT <U>H1> () W
0
I o +O(AR) (74)
j+1% it+3 :

n+z * *

2
(up); (= U5 aPjs

n+i n+3 *
As (u %2 fu;f_i_%) = O(At?) and<pj+f —Pj

2 2

) = O(At?), we then have

Fiy

[N
N

t
”+% 1 n
— PIMPICE (At /t B Uy, t)dt — <U>j+;> +O(AR). (75)

By considering the expansion 0f(z; 1, 1) about<U>j+%:

1
2

t—t,)?
Ulrygot) = U)oy + (- 1) (001) + 2 (000y) 40 (79)
equation (75) now becomes
At 1
IMPICE __ nty 2
Fjpy = FIMPIOP = T8 ((0),44), +0(A8). (77)
Therefore
At 1 1
IMPICE IMPICE _ n+3 n+3
(Fj+% _Fj+%) - (ijé _ijé) -9 [ujJr% (<U>j+%)t_“j,% <<U>j7%)t}
+O(At?).

(78)

From equations (73) and (78)5§/(tn) is second-order in\t for a fixed Az. Therefore,et?(tn)
is first-order inAt. As U is a vector of conserved variables (t,) is also a vector of temporal

T
errors of these conserved variables whetg(t,,) = {etf(tn),et?“(tn),eth(tn)] . Define the
approximatelL1-error norm of the vector of temporal errors for variablevhereq = p, pu, pE, u,
or p, as follows

N
let?(ta) 2, = Az Y [et](t)], (79)
j=1

whereet?(t,,) = [et](tn), etd(tn), etd(ty), ..., eth )"

In order to calculate the temporal error in equation (68), we need to deteth@iMPICE time-
integrated exact solutioty; [Tend;to, UJQ] in this equation. As we do not have the exact solution
U; [Tend; to, Uj(.’] , we assume that the calculated squtl[(gh converges to the time-integrated exact
solution U; [Tend;to,U]‘?] when reducingC. ;. Therefore, we use a highly resolved solution as
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Table Il. Temporal Errori.;-norms and the order of accuragyf the conserved and primitive variables for
the test cases in Table | using N=200(cells). The time-iatiegl exact solution®/; [de;to, UJQ] for the
discretized problems of these test cases are obtained by dsj; = 0.0001. The notation aE-b used here

stands folu x 107°.

etp(Tend) etpu(Tend) etpE(Tend) etu(Tend) etp(Tend)
Cept Iz, n -1l n -1y n -1y n -1y n
0.4 6.92E-04 — 5.71E-04 — 1.16E-03 — 1.05E-03 — 4.42E-04 —
P1 0.2 3.37E-04 104 274E-04 106 554E-04 1.07 5.14E-04 1.231E-04 1.07
0.1 167E-04 101 1.36E-04 1.01 2.76E-04 1.00 2.55E-04 1.QM5E-04 1.00
0.05 8.36E-05 1.00 6.82E-05 1.00 1.39E-04 1.00 1.27E-040 1.6.29E-05 1.00
04 153E-03 — 14203 — 3.15e-03 — 198E-03 — 1.11E-03 —
P2 0.2 755E-04 102 6.96E-04 1.03 156E-03 1.01 9.90E-04 1.6B5E-04 1.00
0.1 3.74E-04 1.01 3.45E-04 101 7.78E-04 1.01 4.93E-04 1.Q0/6E-04 1.00
0.05 1.86E-04 1.01 1.71E-04 1.01 3.88E-04 1.00 2.46E-040 1.0.38E-04 1.00
04 108E-02 — 218E-01 — 3.44E-00 — 312E-02 — 6.61E-01 —
P3 0.2 5.20E-03 1.06 1.04E-01 106 1.63E-00 1.08 1.53E-02 1.B31E-01 1.09
0.1 257E-03 1.02 5.16E-02 1.02 8.06E-01 1.02 7.64E-03 1.Q3E-01 1.02
0.05 1.27E-03 1.02 255E-02 1.01 4.00E-01 1.01 3.81E-031 1.0.59E-02 1.01
04 394E-02 — 3.24E-01 — 526E-00 — 185E-02 — 2.05E-00 —
P4 0.2 194E-02 1.02 159E-01 1.03 259E-00 1.02 8.87E-03 1.06/6E-00 1.07
0.1 9.45E-03 1.04 7.90E-02 1.01 1.26E-00 1.04 4.41E-03 1.@185E-01 1.01
0.05 5.01E-03 0.91 3.94E-02 1.00 6.10E-01 1.05 2.23E-038 0.2.47E-01 0.98
04 211E-03 — 353E03 — 6.32E-03 — 1.39E-03 — 1.64E-03 —
P5 0.2 1.04E-03 1.02 1.75E-03 1.02 3.21E-03 0.98 7.25E-04 0.8465E-03 0.94
0.1 5.18E-04 101 8.67E-04 1.01 1.61E-03 1.00 3.66E-04 0.g¢80OE-04 0.99
0.05 2.58€E-04 1.01 4.32E-04 101 8.03E-04 1.00 1.83E-040 1.2.15E-04 1.00

the time-integrated exact solutidi; [de;to, UJQ] with C.5; = 0.0001. This solution meets the
criterion mentioned in Greenough and Rider [8] that the grid converdeti@ts should be at least
8 times finer than the finest grid examined for error. The temporal ermonsiand their orders of
accuracy of the conserved and primitive variables for the above &=t edl .., are shown in Table
II. The results in Table Il show that the orders of accuracy of theewesl variables for these test
cases are very close to 1, this is consistent with the above analysis. dérs of accuracy of the
primitive variables are also very close to 1.

7.2. Spatial Error

With the linear spatial discretization as discussed above, the spatial &thherector of conserved
variablesU is first-order inAz. In order to access the spatial errors of a test case, we need the
exact solutiorU; [Tend; to, Uﬂ , See equation (67). The result in Section 7.1 gives the rate at which
the computed solution approaches the true solution, so a more accuraigiaggpion to the exact
solutionUj; [Tend; to, UJO] might be obtained by comparing the numerical solution to a finer-mesh
numerical solution. Therefore, we estimate the exact sollm‘pl[ﬂ"end;to, UJO] in Table Il using
the computed solutions of the IMPICE method withy; = 0.025 and one withC'.;; = 0.0125.

Define theL1-error norm of the vector of spatial errors for variablevhereq = p, pu, pE, u, or

p, as follows
N

les?(ta)llz, = Az les](t)] (80)

j=1
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Table IIl. Spatial Error:L1-norms and the order of accuragy of the conserved and primitive variables
for the test cases in Table I. The exact solutiﬁfp[Tend;to, UJQ] are the converged numerical solutions
discussed in Section 7.2.

es”(Tena) es” (Tena) es?P (Tona) es"(Tena) es? (Tena)
N [0z, m ll-llzy m [Nz m ll-llzy m Il m
100 1.38E-02 — 1.15E-02

— 2.68E-02 — 215E-02 — 1.06E-02 —
200 9.16E-03 0.59 7.44E-03 0.63 1.56E-02 0.79 1.20E-02 O0.$410E-03 0.79

P1 400 5.83E-03 0.65 4.65E-03 0.68 9.10E-03 0.77 6.67E-03 0.848E-03 0.81

800 3.68E-03 0.66 2.92E-03 0.67 5.29E-03 0.78 3.63E-03 0.8%5E-03 0.84
0.62 0.79

1600 2.40E-03 1.89E-03 0.62 3.06E-03 1.95E-03 0 0.9.09E-03 0.84

100 2.17e-02 —  1.89E-02 — 447E-02 — 283E-02 — 166E-02 —

200 1.45E-02 8 1.26E-02 059 2.87E-02 64 1.63E-02 0.8002E-02 0.71
P2 400 9.87E-03 5 8.93E-03 050 1.80E-02 67 9.25E-03 0.8211E-03 0.74
1 71
0 64

800 6.45E-03 5.98E-03 0.58 1.10E-02 5.15E-03 0.8558E-03 0.77
1600 4.24E-03 4.13E-03 0.53 7.04E-03 3.13E-03 2 0.2.17E-03 0.72

100 1.80E-01 —  3.49E+00 — 8.06E+01 — 556E-01 — 1.16E+01 —
200 1.47E-01 0.29 2.96E+00 0.24 4.84E+01 0.73 3.38E-01 0.8B3E+00 0.74
P3 400 1.09E-01 043 2.20E+00 043 348E+01 0.48 1.95E-01 O0.490E+00 0.76
800 7.60E-02 052 1.50E+00 0.55 2.26E+01 0.62 1.06E-01 0.8B3E+00 0.81
1600 5.44E-02 0.48 1.07E+00 0.49 1.29E+01 0.81 5.63E-022 0.9.25E+00 0.90

100 7.70e-01 — 6.80E+00 — 6.93E+01 — 211E-01 — 1.73E+01 —
200 5.76E-01 0.42 ©5.21E+00 0.39 4.23E+01 0.71 9.28E-02 1.88B3E+00 0.97
P4 400 3.93E-01 0.55 3.46E+00 0.59 247E+01 0.77 5.32E-02 O0.812E+00 1.00
800 2.69E-01 055 2.39E+00 0.53 1.58E+01 0.65 2.47E-02 1.209E+00 1.01
1600 1.91E-01 0.50 1.67E+00 0.52 9.99E+00 0.66 1.41E-021 0.8.29E+00 0.76

100 3.90E-02 —  6.47E-02 — 153E-01 — 3.04E-02 —  3.35E-02 —

200 3.00E-02 0.38 4.93E-02 0.39 8.37E-02 0.87 1.82E-02 0.2410E-02 0.68
P5 400 2.03E-02 0.56 3.26E-02 0.60 5.19E-02 0.69 1.00E-02 0.8616E-02 0.86
800 141E-02 053 2.26E-02 0.53 3.52E-02 0.56 5.90E-03 O0.BMP5E-03 0.73
1600 9.80E-03 0.53 1.54E-02 055 217E-02 0.70 3.25E-036 0.8.82E-03 0.86

wherees?(t,,) = [es](tn), esd(t,), esd(tn), ..., es‘}v(tn)]T. The spatial error norms and their orders
of accuracy for the above test casedaf; are shown in Table IIl.

Theoretically the spatial error order of accuracy is first-order. Hewé is shown in Table Il
that the order of accuracy is mostly below 1 due to the discontinuities in the s@uifdhese test
cases. Greenough and Rider [8] mention earlier work showing less tetoriiler accuracy for the
first-order version of Godunov’s method and suggest that this is due tovhresolution computed
solutions being very different from the highly resolved solution. Fagnexice purposes, we include
in Appendices A and B of this paper the spatial errors and the orderscafacy for the inviscid
and viscous Burgers’ problems. For the inviscid Burgers’ problem, tleraf accuracy is below
1. For the viscous Burgers’ problem, the order is around 1.

As numerical solutions obtained with first-order methods are diffusivenan@ccurate enough
to be used for some large problems on relatively coarse grids; for exathelaumerical solution
to Shu and Osher test problem shown in Figure 6, we improve the ordecafey of the IMPICE
method to 2nd-order in both space and time in the following sections.
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Table V. Temporal Error using the 2nd-order-in-time IMBCL;-norms and the order of accuragyof
the conserved and primitive variables for the test casesliteTl using N=200(cells). The exact solutions
U; [Tend; to, Uﬂ for the discretized problems of these test cases are olithinasingC.; = 0.0001.

E;(Tend) E;H(Tend) E';E(Tend) E%(Tend) E?(Tend)
Cert Iz, n -z n [-llzs n [[-1lz4 n -z n
04 6.64E-005 — 5.20E-005 — 1.63E-004 — 1.19E-004 —  6.755-00—
P1 0.2 1.47E-005 217 1.16E-005 2.16 3.65E-005 2.15 2.71E-0@514 1.50E-005 2.17
0.1 2.90E-006 2.35 2.39E-006 2.29 7.44E-006 2.30 5.71E-0Q&5 3.03E-006 2.31
0.05 7.11E-007 2.03 5.98E-007 2.00 1.84E-006 2.01 1.46E-00.97 7.58E-007 2.00
04 156E-005 — 233E-006 — 4.99E-005 — 4.10E-005 —  1.45%-00—
P2 0.2 489E-006 1.67 6.24E-006 190 1.50E-005 1.74 1.20E-00%7 4.72E-006 1.62
0.1 1.06E-006 2.21 1.49E-006 2.07 3.38E-006 2.15 2.90E-0Q®5 1.02E-006 2.21
0.05 2.92E-007 1.86 3.84E-007 1.96 9.04E-007 190 7.3IE-00.99 2.88E-007 1.83
04 2.26E-004 — 491E-0038 —  3.11E-001 —  496E-003 — 1.27E-00—
P3 0.2 6.05E-005 190 1.27E-003 1.95 7.49E-002 2.05 1.18E-0@38 3.01E-002 2.07
0.1 2.07E-005 1.55 3.82E-004 1.74 2.10E-002 1.84 3.39E-0049 8.30E-003 1.86
0.05 7.32E-006 150 1.19E-004 1.68 6.80E-003 1.63 1.1CE-00.62 2.88E-003 1.53
04 599E-003 — 3.38E-002 — 9.27E-001 — 1.88E-003 —  3.93E-00—
P4 0.2 1.65E-003 1.86 1.08E-002 1.65 2.35E-001 198 6.42E-0065 1.07E-001 1.88
0.1 6.23E-004 141 4.25E-003 135 O0.67E-001 1.81 2.56E-00432 4.06E-002 1.40
0.05 2.37E-004 1.40 1.55E-003 1.46 2.10E-002 1.67 O0.93E-00.46 1.40E-002 1.54
0.4 3.11E-005 — 599E-005 — 2.94E-004 —  8.45E-005 —  1.14&-00—
P5 0.2 7.00E-006 2.15 1.44E-005 2.06 6.69E-005 2.13 2.02E-0@D6 2.62E-005 2.13
0.1 191E-006 1.87 3.72E-006 1.95 1.84E-005 1.86 5.44E-00B9 7.19E-006 1.87
0.05 4.54E-007 2.08 8.77E-007 2.08 3.96E-006 2.22 1.1¥=-00.29 1.52E-006 2.25

8. HIGHER-ORDER ACCURACY IN TIME

In order to raise the order of accuracy globally in time, we use the methodtiapelation to
raise the order of accuracy locally. By raising the local order of aayuof the temporal error to
3rd-order, we raise the order of accuracy of the temporal errordeo2der globally. The 2nd-order-
in-time IMPICE method is achieved using Richardson extrapolation. The istéjgd?|ICE method
with 2nd-order temporal error to obtain the solution for next time Stﬁbl from current time step
solutionU}" are:

e Perform one step of the 1st-order IMPICE method with stepdizéo obtain the solution
U1 att, .

e Perform two consecutive steps of the 1st-order IMPICE method Withiz&eé’s to obtain the
solutionU/27 " att,, 1.

e Set the solution at, ;, of 2nd-order-in-time IMPICE method tRU2) "' — U17").

The temporal error norms and the orders of accuracy of the comsamggprimitive variables for the
above test cases using the 2nd-order-in-time IMPICE method are shdahblalV. We use a highly
resolved solution as the exact solutiop [Tend; to, UJO] by settingC.;; = 0.0001 when calculating
temporal errors. It is shown in Table IV that the time integration accuracpdth conserved and
primitive variables is very close to second-order.

In doing so we note that this extrapolated method corresponds to the Ruitigemethod whose
positivity properties are described by Mehdizadeh Khalsaraei [30].
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9. HIGHER-ORDER ADVECTION

The solutions with first-order accuracy of advection where advectedtiies obtained from (26)
are highly smeared at contact discontinuities. We have improved the spatialaccuracy of the
IMPICE method by using a higher-order advection method. A higherrovee Leer advection
method is discussed in VanderHeyden and Kashiwa [38], in which the dioiepfiuxes are also
derived for this type of advection method. In this paper, the higher@mection scheme is based
on a higher-order approximation of the advected quantities in (24). Thisnis by assuming that
U(xj+% ,t) in equation (24) is not a constant for the time dtgpt,+1]. The advection equations of
conserved variables in the Eulerian phase in Section 5.2 are given by

U + (ul), = 0. (81)

In order to determiné/(z;, 1,t), we will use equation (81) and the constructed valW€s |z, t),
of primitive variables in the control volumie;; 1,2, 1] x [ty tn41]. Within this control volume,
the constructed valued/ " (z, ), are obtained by using Taylor series:

W (2, t) = W + (& — 25) (%‘f)n +(t—tn) (%;VY +O(A, AL?). (82)

J J

The extrapolated values at cell boundaries obtained by using the aciestraluesiV; (z,t), are:

N Com Az fOW\" oW

Wi,y t) = W) = == (ax)j +(t—t,) (m>] + O(Az?, At?), (83)
. Con Az fOWN" B oWw\" 0 Ao

Wi jpp.t) = W+ =~ ((%)j +(t—t,) (&)j + O(Az?, At?). (84)

Therefore, there are two existing extrapolated values at the cell bguada; +1 for the time
interval [t t,41]. These values are denoted1&§'(x; 1,t) andW}', (z;,1,1), and one may be
chosen for the face-centered value based on the face-centeried fhelocity at this cell boundary.
The value of the vector of primitive variables at face-center is determisieg u

Who(z,1,t) if u,, <0
W(;py,t) = Pty ) 4 (85)
’ Wiz 1,t)  otherwise.

Now, as the extrapolated primitive variables at the cell boundazg%t are readily available, we
will show how to obtain the vector of advected quantities in (24). We deriwadvected quantities
for the caseu; 41> 0. The advected quantities for the casg < 0 are derived similarly. The
vector of advected quantitie®/) ;1 includes(p);, 1, (pu); 1 “and (pE);, 1. Equation (81) is
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rewritten as follows

dp 6p ou

i ETx - 87:10’ (86)
ou ou

OF OF

Equations (84) and (86) are used to derive the mass advected quantjtyaitiom (24); for the case
of u;fJrl > 0, we have

1 tnt1
(Phjry = At , plajy 1, t)di
1 [ Az [(0p\" op\" 9 L2
- noy T2 (22 t—t,) | — dt Az, At
At <"’J+ > (ax>]_+( )<8t>j> +O(Aa”, AT
Az (9p\" op\" 9 A2
- el R I Az?, A
T+ 5 <3m>] at)j + O(Az=, At?)

Az [(9p\" At op\" ou\"
= Nt <ax) ) (” (ai)ﬂ’? <ax>> 08, AL,
Therefore

— T Ax_ 711& @ n_i T @
W =+ (5 - 2)<ax)j S (8) L0 AR, (89)

Equation (84) with = p andW = « gives us

dp
pu(z;1,t) = < +2<8x>j+(t_

t
X +7 Ou" + (t—
uj 2 \ Oz i

(%Y
(%))

J
t) >+O(Am2,At2)
_ 9p "\ .
= (P +2<ax>.+(”n> (’%) u
J J
n Az (Ou n—i—(t £ Ju "
’j 2 \oz ). "\ ot ).
J J
op\" Az [(ou\" ou\"
( (t_t")(ét>> (2(83;).+(t_t")(azt>.>
J J J
+0(A At2
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The fluxed momentum at the face-center is then given by

1 tni1
(pu)jrs = A, pu(w; 1, t)dt

() nyon (B WA (Qu\T A (0p\T (Ax ALY (0"
Plits™s TPi\ 79" %My o), " 2 \ox ) 2 Uiy or )
Az At [Ou\" /ou\" At3 /ou\" [Ou\" 9 9
5o <ax> <6t> e <8t> (é%) FORL A

This gives us the approximation

n . n Az o At ou\"
(pu}H_% = <p>j+%uj + pj_i_% <2 - Uj 2) <8QII> . + O(AIAt) + O(AIZ, AtQ) (90)
J

With a similar derivation, we also have

oo (Az AL\ (OE\"
(PE)jry = (P21 BF + 07 4 (2 uj2> <8x> +O(AzAl) + O(Aa®, AP). (91)
J

We thus obtain second-order accuracy in space. ji remains contant. Equations (89), (90), and
(91) are used to calculate the face-centered fluxed quantities for the timg,ste, 1] when the
face-centered fluxing velocit)u; L1 is greater than 0. A set of similar equations can be easily
derived for the case when the fluxing velocity is less than 0. Howevernwiking these equations

to estimate the face-centered advected quantities, we need to have nupsincations for(%);,
(g—g): and (%—f)? These spatial numerical derivatives are limited to eliminate artificial extrema
and preserve monotonicity [38]. In this paper, we choose one limiter freerparameter family of

minmod limiters [16, 41],

oW\ wn oW, WhL WP, Wi W
<8x> = minmod(¢ Ax ’ 2Azx 0 Az ),

J

(92)

to estimate the spatial derivatives of primitive variables by settiagl. The multivariable minmod
limiter in (92) is defined as

min(z1, 22, 23,...) if z; >0 Vj
minmod(21, 22, 23, ...) = { max(z1, 22, 23,...) if 2, <0 Vj (93)

0 otherwise.

The numerical solution of Shu and Osher test problem in Figure 7 is obtasiad the 2nd-
order-in-space IMPICE method. Comparing to the numerical solution of thislgm in Figure 6,
the solution using the 2nd-order-in-space IMPICE method is less diffasid more accurate.

The spatial error norms and the orders of accuracy for the test ta3eble | using the 2nd-
order-in-space IMPICE method are shown in Table V. When calculatingghgal errors, we use
the converged numerical solutions of these test problems as describedtionS7.2 for the exact
solutions. The result in Table V shows that the 2nd-order-in-spacéCEhethod does reduce the
spatial errors, increase the orders of accuracy in both consengepramitive variables. However,
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o  2nd-order-in-space IMPICE
"Exact Solution"

o 2nd-order-in-space IMPICE

3 q Exact Solution”
2.5
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Figure 7. The 2nd-order-in-space IMPICE numerical sotutior Shu and Osher test problem with
N=1600(cells) and’..y; = 0.2: (a) density and (b) velocity.

the orders of spatial accuracy are not close to second-order astegpbut degenerate into first-
order and below. The observation concurs with those of GreenougiReter [8] in that when
discontinuities are present high-order methods may not always delevextiected advantages and
may reduce their order of accuracy to first order. In addition, Belfdhshows how unless there
is sufficient resolution in terms of meshpoints in a front then the positivityireouent will tend to
favor the use of lower order methods.

We also would like to estimate the spatial error in the numerical solutions of thar@h®@sher
test problem. Since the analytic solution to the Shu and Osher test probletrréadily available,
a highly resolved numerical solution is used to estimate the integral term in egy&#pwhen
calculating spatial errors. The highly resolved numerical solution is g&sbfrom running the 2nd-
order-in-space IMPICE method witN = 25, 600(cells) andC.;; = 0.2. The exact cell average in
equation (67) - f;ﬁl% U(x,t,)dz, is the numerical integration obtained from the highly resolved

Eh-)

solution while the exact solution of time integratidi, [tn;to, UJO] is the converged numerical
solutions as discussed earlier in Section 7.2. The spatial error norms eunddirs of accuracy
of the Shu and Osher test problem are shown in Table VI. As shown ile Tdbthere is also a

degeneration in the orders of accuracy for the result of the Shu aher @sst problem when the
mesh sizeV is below 1600 and an improvement in its orders when the mesh\siseabove 1600.

This result is consistent with that of Greenough and Rider [8].

The numerical results of the 2nd-order-in-space IMPICE for inviseid siscous Burgers’
problem are included in Appendices A and B. The spatial error normtheratders of accuracy for
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Table V. Spatial Error using the 2nd-order-in-space IMPICEnorms and the order of accuragyof the
conserved and primitive variables for the test cases inelafilhe exact solution&; [Tend; to, UJQ] are the
converged numerical solutions as described in Section 7.2

es” (Tend) es” (Tend) 5" (Tena) es" (Tena) es? (Tend)

N [l m [l m Il m Il m Il m

100 7.10E-003 — 5.97E-003 — 1.50E-002 — 1.25E-002 — 5.72E-00—
200 4.10E-003 0.79 3.51E-003 0.77 7.37E-003 1.03 6.02E-00D5 2.81E-003 1.03
P1 400 2.23E-003 0.88 1.92E-003 0.87 3.70E-003 0.99 2.85E-0038 1.36E-003 1.05
800 1.21E-003 0.87 1.05E-003 0.87 1.87E-003 0.99 1.31E-0032 6.50E-004 1.07
1600 7.21E-004 0.75 6.13E-004 0.78 9.33E-004 1.00 5.83E-00.17 3.14E-004 1.05

100 9.92E-003 — 9.39E-003 — 2.07E-002 — 150E-002 — 7.39E-00—
200 5.49E-003 0.85 5.34E-003 0.81 1.14E-002 0.86 7.28E-0034 3.72E-003 0.99
P2 400 3.39E-003 0.69 3.48E-003 0.62 6.18E-003 0.88 3.51E-0035 1.85E-003 1.00
800 1.94E-003 0.80 2.01E-003 0.79 3.25E-003 0.93 1.63E-0031 9.11E-004 1.03
1600 1.15E-003 0.75 1.26E-003 0.68 1.94E-003 0.75 9.9¥-00.71 5.15E-004 0.82

100 8.56E-002 — 1.71E+000 —  5.34E+001 —  3.38E-001 —  8.03B+00—
200 6.35E-002 0.43 1.32E+000 0.37 2.70E+001 0.98 2.36E-00B2 4.47E+000 0.85
P3 400 4.01E-002 0.66 8.39E-001 0.65 1.83E+001 0.56 1.36E-00/9 2.64E+000 0.76
800 2.57E-002 0.64 5.05E-001 0.73 1.08E+001 0.76 6.97E-00D7 1.39E+000 0.92
1600 1.76E-002 0.54 3.47E-001 0.54 4.66E+000 1.21 3.5@E-00.99 7.01E-001 0.99

100 3.57E-001 —  3.61E+000 —  4.97E+001 — 1.17E-001 — 1.33E+00—
200 2.80E-001 0.35 2.89E+000 0.32 3.62E+001 0.45 7.85E-0057 9.76E+000 0.45
P4 400 1.74E-001 0.69 1.83E+000 0.66 2.25E+001 0.69 4.12E-00®3 5.91E+000 0.72
800 1.11E-001 0.64 1.22E+000 0.58 1.67E+001 0.43 2.87E-0052 4.27E+000 0.47
1600 7.12E-002 0.64 7.97E-001 0.61 1.01E+001 0.72 1.82E-00.66 2.62E+000 0.70

100 1.63E-002 — 2.78E-002 — 9.54E-002 — 1.90E-002 — 1.99E-00—
200 1.25E-002 0.38 2.15E-002 0.37 4.14E-002 1.20 1.02E-00B9 1.08E-002 0.88
P5 400 7.55E-003 0.73 1.23E-002 0.80 2.30E-002 0.85 4.82E-0039 5.10E-003 1.09
800 4.63E-003 0.70 7.66E-003 0.69 1.48E-002 0.63 2.55E-00®2 2.72E-003 0.91
1600 2.86E-003 0.70 4.56E-003 0.75 8.10E-003 0.87 1.2(&-00.08 1.28E-003 1.08

Table VI. Spatial Error using the 2nd-order-in-space IMPIC,-norms and the order of accuraeyof the
conserved and primitive variables for Shu and Osher tesli@no. The exact solutiorly; [Tend; to, UJQ] are
the converged numerical solutions.

esp(Tcnd) espu(Tcnd) espE(Tend) esu(Tend) esp(Tend)
N e m [RIE2 m l[-llzs m [RIE2 m -l m
200 9.41E-01 — 195E+00 —  4.85E+00 — 2.45E-01 — 1.44E+00 —
400 7.30E-01 0.37 1.65E+00 0.25 3.28E+00 0.57 1.19E-01 1.0%03E-01 1.04
800 4.60E-01 0.67 1.08E+00 0.61 1.99E+00 0.72 6.04E-02 0.8342E-01 1.04
1600 2.03E-01 1.18 4.79E-01 1.18 895E-01 1.15 2.85E-028 1.0.58E-01 1.11
3200 8.12E-02 1.32 1.87E-01 1.36 3.50E-01 136 1.22E-023 1.B.71E-02 1.24

the numerical solutions of the inviscid Burgers’ problem obtained frongutsia 2nd-order-in-space
IMPICE method in Table VIl show that the orders of convergence areery close to second-order.
However, the orders of convergence for the numerical solutions ofifeeus Burgers’ problem
using the 2nd-order-in-space IMPICE method as shown in Table \&ltkxse to second-order for

the cases of = 0.05 ande = 0.01 as the solutions for these cases are smooth as shown in Figure 9.
But the orders degenerate into first-order for the case-01).0001. This is due to the development

of the smooth steep front that appears close to a discontinuity in the solutio& wtcous Burgers’
problem when the viscositybecomes small.
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10. CONCLUSIONS

We have presented IMPICE, an improved Production ICE method, thebusanservative scheme,
slope limiters and a simple approximate Riemann solver for improving the numesiatbss and
eliminating existing oscillations of Production ICE which is an implementation of thehw€thod in
Uintah Computational Framework to simulate fluid flows. The IMPICE method witreatinpatial
and temporal discretization is expected to be first-order accuracy in timepaog. However, for
the cases with existing discontinuities in their solutions, the order of accimapace is less than
1 as shown in Section 7. As it is important to have the method of higher-ofd&caracy in both
time and space, we have presented the non-linear spatial and tempaetizhson of the IMPICE
method. These are the method of temporal extrapolation, and the higleeradrgction. While the
method of temporal extrapolation successfully raises the order of aycir&nd-order-in-time, a
less-than-expected order of accuracy in space is obtained fromthsimigher-order advection for
the problems with discontinuities.

It has shown that the IMPICE method is capable of capturing shocksoemaat surfaces, and the
higher-order IMPICE method is even able to capture the detailed featuleractures of the flow
with shock-turbulence interaction in Shu-Osher problem. As IMPICE kas kuccessfully applied
to complex 1D problems, we are currently working on the extension of the ch&titbe 3D case.
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A. IMPICE METHOD FOR INVISCID BURGERS’ EQUATION

Consider the one-dimensional Burgers’ equation in thesuidilimit

du | 0f(w)
ot T ox

=0, (94)

with f(u) = %uQ and initial datau(z, 0) = ug(z), whereug(z) is a given functiong € R andt > 0. The

solution,u(x /t; u?i@,u?i@), to the Riemann problem of the Burgers’ equation (94) wittidhdata
2 2
n(L) .
u, if(x <z;,1)
(e tn) =4 Iz itz (95)
Uil zf(x>xj+%),
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atz/t = 0 is used in the IMPICE method. The approximate soluti¢n u"(L) u?iR)) is given by

n(L) . n(L) n(R)

Uil if (O(j)uﬂ_% <u(].1_%"_)%)

0 if (u Y gogu;;%)

n n n(R . n(L n(R
u(O,ujiL%), ujf?) = ujj_%) if (ujj_%) < ujj_%) < 0) (96)

u;,LJ(rL%) if (u?f? < ;LJ(FL%) and S >0)
n(R) . n(R) n(L)

Uiyl if (uﬂ_% < 4l and S < 0),

whereS = (u;L_E_L) ;‘ff )/2.

With the same spatlal and temporal discretizations as itide2 and known cell averages at timg the
steps to obtain cell averages at timg ; are as follows.

A.1l. IMPICE Method Description

The Primary Phase At face center, a data reconstruction is done as follows

n(L) _ n Az £ n(R)

Az £
uj+% =uj + 7Au}l, u, 41 —uj+1 3 Au?+17 (97)

where Au” is the limited slope ofu. The face-centered velocity,” L at t,, is determined using the
2
(L) n(R)

approximate solution of Riemann problem Whet’é 1= u(O;uj+1 YU ). The equation of velocity
+3 2 2
evolution,
ug + uug = 0, (98)
is written in Lagrangian form as
Du

The face-centered fluxing velocity;#, is then given by
2

Uiyl = Ui (100)
In order to apply the Lagrangian and Eulerian phases, weteeguation (94) as
2\ _ 179
(o), + (o) =3 (%), (102)
wherep is a constant and equal to 1.
The Lagrangian Phase
L L n 1 * 2 1 * 2
VEewf =views +ae (5 (wh) =5 (1)) (102)

whereV;" = Az andV}" = Az + At(u’
may be rewritten as follows

Uip1 T u;‘ ). As p is a constant and equal to 1, the above equation

M\»—l

Wﬁz#ﬁ+m(

N | =

@%f‘(%ﬁv (103)
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124 — © — 2nd-order IMPICE
Exact

Figure 8. The 2nd-order (2nd-order-in-space and 2nd-ardéme) IMPICE numerical solutions for the
inviscid Burgers’ problem af,,,; = 0.5 and on the spatial domaif-1.0,1.0] with N=200(cells) and
Cep1 =0.2.

The Eulerian Phase

VI (ou)t 1 = VE(pu)t — At (u;+%<pu>j+% —ui s <pu>j,%) (104)

Wherevj’“rl = Az. Aspis a constant and equal to 1, the above equation may be r=waitt follows

1 1 L L *
V]T”r u;?+ =V uy — At (Uj+%<u>j+1 —u;_%<u>j_%>. (105)

2

For first-order advection<u>j+% is approximated using (25) and for second-order advectipris
approximated using (90).

A.2. Numerical Results and Accuracy in Space and Time

The initial condition used is given by:

. 1
uo(ﬂc):{l'o iflz| < g (106)
0.0  otherwise.

The numerical solution of the inviscid Burgers’ problemngsihe 2nd-order-in-space and 2nd-order-in-

time IMPICE method is shown in Figure 8. The spatial and teralperror norms and the orders of accuracy

for this problem are summarized in Table VII. For temporabes, the orders of accuracy are as expected
whereas the orders of accuracy are around 1.0 for the 1et-ardthod and very close to 2.0 for the 2nd-

order method. However, there is a degeneration in the $patiars of accuracy as happened for the above
test problems.

B. IMPICE METHOD FOR VISCOUS BURGERS’ EQUATION

The viscous form of Burgers’ Equation

du  9f(w) _ 0%
ot Tor T Sox2

(107)
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Table VII. Spatial and Temporal Errorg:;-norms and the order of accuracy for the inviscid Burgers’
problem atT,,,;, = 0.5 on the spatial domaif-1.0,1.0]. The temporal errors are calculated for the grid

using N=200(cells) and the time-integrated exact solstene the converged numerical solutions.

et" (Tﬁnd) esu(Tend)

1st-order 2nd-order 1st-order 2nd-order
Ceri Iz n Iz n Nz, m |12 m
0.2 353E-03 — 6.89E-05 — 100 5.14E-02 — 1.86E-02 —
0.1 1.75E-03 1.02 1.67E-05 2.05 200 2.52E-02 1.03 6.08E-03%1 1
0.05 8.67E-04 1.01 4.22E-06 1.98 400 1.62E-02 0.64 3.27E-020
0.025 4.31E-04 1.01 1.05e-06 2.01 800 8.48E-03 0.93 1.2E-0.11
0.0125 2.15E-04 1.01 2.61E-07 2.01 1600 5.27E-03 0.69 8UU6E 0.90

with f(u) = %uQ and initial datau(z, 0) = ug(z), whereug(z) is a given function andis a constanty € R
andt > 0.

With the same spatial and temporal discretization as ini@e2tand known cell averages at timg the
steps to obtain cell averages at time ; are as follows.

B.1. IMPICE Method Description

The Primary Phase The equation of velocity evolution,

ut + Uy = €Ugg, (108)
is written in Lagrangian form as
D
ﬁ = Clgs. (109)

The face-centered fluxing velocmf* 1, Is approximated using an explicit scheme in the Lagranfyeame
as: " o N "
L3 2uj+% + uj_

At [ %es
Azx?

1
* 2
uj+% ]+1+ 5

: (110)

where the calculation Qt" 1 has already been discussed in Appendix A. In order to apgly-#yrangian
and Eulerian phases, We rewrlte equation (107) as

(pu); + (qu) = [%uz + eux} (111)

€T x

wherep is a constant and equal to 1.

The Lagrangian PhaseThe discrete form of the Lagrangian part of equation (11&sifollows

* *
L N2, Y%+d Y4 L/ )2 '%
(3 () =) - (S ()

whereV" = Az andV}" = Az + At(u;+l — u;il) andp is a constant and equal to 1.
2 2

Vi (pu)j = Vi (pu)§ + At

The Eulerian PhaseThe Eulerian Phase for the viscous Burgers’ Equation is #ineesas the Eulerian
Phase for the inviscid Burgers’ problem in Appendix A.1.
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o Initial Cell Averages o Initial Cell Averages
1-¢ 2nd-order IMPICE ; 2nd-order IMPICE
Exact
0.8 1
0.6 1
=
0.4 1
0.2 1
0 T T | 0 T T |
-2 0 2 4 -2 0 2 4

@

Figure 9. The 2nd-order (2nd-order-in-space and 2nd-ardéme) IMPICE numerical solutions for the
viscous Burgers’ problem &f.,,; = 0.5 from the initial cell averages with N=200(cells) antly; = 0.2:
(&) = 0.05 and (b} = 0.01

B.2. Numerical Results and Accuracy in Space and Time

The initial condition for the viscous Burgers’ problem séiis the below analytical solution

—a —a

JA+es+e=) if (a>0) and (a>b)

(0.5+0.1e< +e

w(, ) = (0.1 +05e = +ec)/(l+es +ee) if (b>0) and (b> a) (113)
(14 0.5e¢ + 0.168)/(1 +e + eg) otherwise
where
—0.25-0. 9xr —0.325—-0.4 8r—0.4—0.24
a:x 054 075157 b:OQx 0325 0 952?7 and c:08x 04 0 t- (114)

The numerical solutions of the viscous Burgers’ problemrengpatial domaift-2.0, 4.0] using the 2nd-
order-in-space and 2nd-order-in-time IMPICE method forouss values ot are shown in Figures 9 and 10.
The spatial and temporal error norms and orders of accuadhé viscous Burgers’ problem with these
values ofc are summarized in Table VIII. The orders of accuracy for teraperrors are consistently around
1.0 for 1st-order method and around 2.0 for 2nd-order methbd convergence rates of spatial errors for
the viscous Burgers’ problem improve for larger values,@nd get close to 1 for the 1st-order method and
2 for the 2nd-order method. However, there is a degeneréatiascuracies for smad. Whene = 0.0001,
the order is below 1 for the 1st-order method and approachiogthe 2nd-order method. This is due to the
development of the steep front that appears close to a disady in the numerical solution of the viscous
Burgers’ problem whea approaches.

C. IMPICE METHOD VERSUS CELL-CENTERED ICE METHOD

The results in Figures 11-15 show the improvement obtaired the application of slope limiters in the

data resconstruction of the Riemann problem. In Figure431the numerical results of the IMPICE method
are compared against the numerical results of the celkcethtt CE method, which is implemented using
Kashiwaet al [21] and chooses to conserve mass, linear momentum andeto¢adly. We use first-order

advection for both of these methods. As seen in 11-15, thd@®ERnethod helps to eliminate the non-
physical oscillations in the implementation of the celhtsged ICE method.
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1 — & — Initial Cell Averages
] : o 2nd-order IMPICE
] | Exact
0.8 b, |
] I
0.6 ‘l
= ] mEp
0.4 !
1 I
1 I
0.2 ‘
] I
0 T T T T T ]
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Figure 10. The 2nd-order (2nd-order-in-space and 2ndrendéme) IMPICE numerical solutions for the
viscous Burgers’ problem dt.,,; = 0.5 from the initial cell averages with N=200(cells) adgd;; = 0.2 and
e = 0.0001

Table VIII. Spatial and Temporal Errord:;-norms and the order of accuracy for the viscous Burgers’
problem atT,, 4 = 0.5 on the spatial domaifi-2.0, 4.0]. The temporal errors are calculated for the grid
using N=200(cells) and the time-integrated exact solgtane the converged numerical solutions.

€tu(Tend) esu(Tend)
1st-order 2nd-order 1st-order 2nd-order
€ Ceyi [BIPA n |12, n N oz, m Iz m
0.2 1.04E-03 — 5.13E-06 — 100 1.73E-02 — 5.01E-04 —
0.1 5.17E-04 1.00 1.28E-06 2.00 200 9.00E-03 0.94 1.43E-0811
0.05 0.05 2.58E-04 1.00 3.21E-07 2.00 400 4.60E-03 0.97 HOBL 1.80
0.025 1.29E-04 1.00 8.01E-08 2.00 800 2.32E-03 0.98 1.BE-0.73
0.0125 6.41E-05 1.01 2.00E-08 2.00 1600 1.17E-03 0.99 3M®3E 1.80
0.2 2.18E-03 —  248E-05 — 100 3.54E-02 —  4.43E-03 —
0.1 1.086-03 1.01 6.17E-06 2.01 200 2.04E-02 0.80 1.08E-034 2
0.01 0.05 5.38E-04 1.01 1.54E-06 2.00 400 1.10E-02 0.89 B 1.77
0.025 2.68E-04 1.01 3.84E-07 2.00 800 5.78E-03 0.93 8.5DE-0.89
0.0125 1.33E-04 1.01 9.61E-08 2.00 1600 2.97E-03 0.96 20B3E 1.93
0.2 291E-03 — 517E-05 — 100 5.78E-02 —  2.38E-02 —
0.1 1.43E-03 1.02 1.27E-05 2.03 200 2.36E-02 1.29 1.20E-029 0
0.0001 0.05 7.11E-04 1.01 3.16E-06 2.00 400 1.46E-02 0.6%2E603 0.88
0.025 3.54E-04 1.01 7.84e-07 2.01 800 8.28E-03 0.82 3.ZBE-0.00

00125 1.76E-04 1.01 1.96E-07 2.00 1600 4.94E-03 0.75 10®E 1.16

D. DIFFERENT CALCULATIONS OF THE FACE-CENTERED PRESSUR}E;BF%
When discussing how to calculate the face-centered pl@,@%ﬁiu’%, in the implementation of the IMPICE
method in Section 5, we mentioned that there were two othgs veacalculate this quantity in Kashiveaal
[21]. We will present in this section the proposed methodRdf and see how these methods will change
the results if implemented in the IMPICE method.

The following derivation is extracted from Kashived al [21]. The first step in calculating the face-
centered pressur]e;. +1 is to differentiate the momentum equation. Taking the phderivative of (7) in
space, the obtained equation is:

(ug + vug)e = — (p;)z . (115)
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Figure 11. Cell-centered ICE and IMPICE numerical solwifor P1 test problem with N=200(cells) and
C.p1 = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.
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Figure 12. Cell-centered ICE and IMPICE numerical solwifor P2 test problem with N=200(cells) and
C.p1 = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.
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Figure 13. Cell-centered ICE and IMPICE numerical solwifor P3 test problem with N=800(cells) and
C.p1 = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.
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Figure 14. Cell-centered ICE and IMPICE numerical solwifor P4 test problem with N=200(cells) and
C.p1 = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.
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Figure 15. Cell-centered ICE and IMPICE numerical solwifor P5 test problem with N=200(cells) and
C.p1 = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.

The time dependent quantity,; is eliminated using the partial time derivative of the preesquation (14)
which is given by
(b + upe), = — (Fou) - (116)

From these equations Kashiwaal [21] state without derivation that linearization produces

u [ Dp
- ([ =£ 117
Uzt 02p (Dt ) . 5 ( )
and so derive the potential equation for face-centeredspres
Pz u (Dp
pr - ([ =Z£) = . 118
(p)w 62ﬂ<Dt>m (uuz) (118)
One discrete form of this is
n+3 % * _ n+3
1 | Pj+r TPt Pyt 7D _ < u )” 1 (607 557)
_ _(® L= "
Ax? P?_H ,0? CQP J+3 AtAx s 7
1

———5 (w1 —ui ) —uf (u o — )]
Ag2 | IH1IVEI+ j+3 VRASER J

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid§0000)
Prepared usindldauth.cls DOI: 10.1002/fld



40 L.T. TRAN, M. BERZINS

The face-centered pressure is then defined by

n+ n+
oL = PP+ Pjap;
e Pt py
Az ( )n p?—&-lp? n n 119
4 Az ST PR (119)
2 Jj+1 J
ALANEP) jis \ P T e)
i 7
Pj+1P;j [n n * n, x n}
— | ) | (uiy — u; —wi(us, 1 —ui)| .
<p";l+1+p;7/ J+1( J+1 j—&-%) J( ]-0-% j)

The above equation is used to estimate the face- centerwlpeep 1 that will be used in the Lagrangian
phase. It is recognized in [21] that the second term in equa(tllg) is important in high-speed problems
and the third term looks somewhat like a bulk viscosity. Ehessms help to remove numerical noise, but
introduces a diffusive effect in the method. A limited versbf (119) is given by

1 1
P+ papy 2
Piv1t Py}

Az [u\" Py 41P] n n
+ a7 (5 T ) (39 — ov)
At (CZP)H_é <p;_z+1 +p;-l ( J+ J)

T n
g | Ll {u" (ufiyr —uiy 1) —uj(u; 1—un)}
P by ) LTG0 750 75y =)

Piy1 (120)

wherey is a “limiter” that is designed such that< ¢ < 1, with values tending towards zero if the velocity
field is smooth to remove numerical noise in the velocity. DU limiter is introduced by Kashiwa and

Lee in [20] is used for the purpose of limiting the velocityldién calculating limited face-centered pressure
p;+ 1. The limiter is required at the cell interface and is a functof the face-centered velocity divergence

D”+1 and the face-centered velocity divergences on either ditleedface, D"(+) and D"i ). We define
2

these face-centered velocity divergences as

n(+ n(—
D;I+% =ujy1 —uj; D .f.l) =ujio —Uujyq; Djj_%) =uj —uj_q. (121)

Then the limiter is given by

b, pr, D" DY
- . ity itz it3 its . n
1 — max |0, min DI pr DT D if Dj+% <0.

i+ i+d +32 itd

b = (122)

0 otherwise.

In order to make sure the calculated face-centered presysUr@, is bounded by the surrounding cell-

centered pressures @, 1.5 "t andp +1 , its calculated value is clamped with respec{i@,ir, pmaz]
where
n+ 3 "+%)

. n+ti nti
Pmin = mm(pj 1Pjt1 Pmaz = max(p; *,p; ;). (123)

J o P+l
This means the face-centered pressn@@b is set topyin if 5,1 < pmin and is set topmas if
J 2 J+2
p;_,_; > Pmaz-
e compare the numerical results obtained from the IMPICEhottand the pressure-limited IMPICE
method (PL-IMPICE) for the test cases in Table | in Figures11% The PL-IMPICE method uses the

implementation of the IMPICE method in Section 5 except tthet face-centered pressurﬁurl, is
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Figure 16. PL-IMPICE and IMPICE numerical solutions fBrl test problem with N=200(cells) and
C.p1 = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.

calculated using the limited version in (120). As shown igufes 16-19, there is a slight difference in
the numerical solutions of these methods at the discontimuegions. However, there are no non-physical
oscillations presented in the numerical solutions of thesemethods.
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C.p1 = 0.2: (a) density; (b) velocity; (d) internal-energy; and (cggsure.
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