Parallel Computational Fluid Dynamics

Recent Developments and Advances Using Parallel Computers 81
D.R. Emerson, A. Ecer, J. Periaux, N. Satofuka and P. Fox (editors)

© 1998 Elsevier Science B.V. All rights reserved.

Parallel Dynamic Load-Balancing for the Solution of Transient CFD
Problems Using Adaptive Tetrahedral Meshes

N. Touheed*, P. Selwood', P.K. Jimack!, M. Berzins and P.M. Dew *

2Computational PD‘E Unit,School of Computer Studies,
University of Leeds, Leeds LS2 9JT, UK

This paper considers a new parallel dynamic load-balancing algorithm which has been
developed for use in conjunction with an unstructured tetrahedral parallel adaptive solver
for transient flow problems. A brief description of the 3-d adaptivity algorithm is then
followed by a discussion of the load-balancing problem. The practical load-balancing
algorithm is then explained, followed by a discussion of its parallel implementation and
an assessment of its performance on a transient shock problem.

1. INTRODUCTION

The use of distributed memory parallel computers for the solution of large, complex
CFD problems has great potential for both significant increases in mesh sizes and the
significant reduction of solution times. For transient problems accuracy and efficiency
constraints also require the use of mesh adaptation since flow features on different length
scales are likely to evolve. Significantly, the meshes that are generally used for these prob-
lems on parallel machines are typically too large for serial adaptivity to be viable: since
this would cause a major serial bottleneck and would introduce a large communication
overhead. In addition the size of the final mesh would be artificially constrained by the
amount of memory available to a single processor. There is therefore a clear need for par-
allel adaptivity procedures to be supplied in addition to the parallel CFD solver. In this
paper we focus on the production of such parallel adaptivity procedures, with particular
emphasis on practical algorithms and routines for parallel dynamic load-balancing.

In Section 2 we present a brief overview of a parallel algorithm for the refinement
and de-refinement of tetrahedral meshes which are distributed across the memory of a
parallel architecture. In particular those features of the parallel adaptivity algorithm
and its distributed data structures which are most relevant to the problem of ensuring
load-balance in the parallel solver are described. Based upon this knowledge it is then
possible to identify the desirable features of a mesh partitioning algorithm so as to ensure
maximum efficiency of the parallel solver. This is done in Section 3 and in Section 4
the details of such an algorithm are described. The paper then finishes with a numerical
example which is used to evaluate the algorithms that have been presented.

*Supported by the UK and Pakistan governments in the form of ORS and COTS scholarships respectively.
tSupported by EPSRC through research grant GR/J84915.
1Use of the Cray T3D facility at the Edinburgh Parallel Computing Centre is gratefully acknowledged.

82

2. PARALLEL ADAPTIVITY IN 3-D

In this section we briefly describe a parallel implementation of the 3-d adaptivity code
TETRAD (TETRahedral ADaptivity) described in [9]. This software is intended for use
in the solution of time-dependent problems and is based upon the adaptive hierarchical
refinement of an initial root mesh. A more detailed description of the parallel implemen-
tation using MPI ([7]) may be found in [8].

As a computed solution evolves with time the error on the current mesh, which will be
a particular hierarchical refinement of the root mesh, will evolve too. Based upon some
indication or estimate of this error some edges of the current mesh may be marked for
either refinement or de-refinement (coarsening) at the end of a time-step. Elements with
all edges marked for refinement are refined regularly into eight children (see Figure 1).
Elements with between one and five refined edges are dealt with using so-called “green
refinement”, in which an extra node is created at the centroid of the element and joined
to each of the surrounding nodes (the number of new elements created therefore depends
upon the number of refined edges: see Figure 2 for an example with just one refined edge).
Green elements are only used to create a link between regular elements of differing levels
of refinement and may not themselves be refined (their parent element must be refined
regularly instead). Coarsening of the mesh may only take place locally provided every
edge in an entire family of sibling elements has been marked for de-refinement.

Figure 1. Regular refinement of a tetrahedron into eight children.

é - ‘IIA
&

Figure 2. Green refinement by the addition of an interior node.

Full details of the parallel TETRAD algorithm and the parallel data structures that
it uses are given in [8]. When focusing on the particular issue of load-balancing across a
distributed memory parallel computer however only some of these details are important.

83

As indicated in Section 1, it is necessary to partition the hierarchically refined mesh
across the processors. There are two main options for ach1ev1ng this: elther to partition
at the root level and ensure that all non-root elements are in the same partition as their
parent, or to partition the leaf mesh (which is the actual grid used for computation at any
particular time). The advantage of the former is that all hierarchical operations (such
as mesh de-refinement or multigrid V-cycles, for example) may be performed without
communication since the entire mesh hierarchy for a given root element is stored on a
single processor. This is the approach considered here, despite the fact that the partition
quality (see Section 3 below) that one can achieve may be a little lower than that which
is possible if the leaf mesh is partitioned directly.

The other key data concept that is used in the parallel TETRAD code is that of “halo”
data. This is a common device used in parallel solvers (see [1] for example) in which
a processor stores a copy of those elements (and other data) which are neighbours of
one or more of its own elements but belong to another processor: the purpose being to
minimise the amount of inter-processor communication that is required at each time-step.
In the parallel adaptivity itself, the halo data also provides a mechanism for ensuring the
consistency of the mesh across processor boundaries.

3. MESH PARTITIONING

Having briefly described the way in which a typical parallel adaptivity algorithm is
implemented we now consider the details of how the mesh of tetrahedra should be parti-
tioned at any time in the solution process. Note that in Section 2 it was decided that the
mesh should be partitioned in such a way that all of the descendents of a root element
should be located on the same processor as that element. Hence, in order to achieve load-
balance in the parallel solver (assuming that the same number of degrees of freedom are
present on each tetrahedron throughout the domain), the root mesh must be partitioned
so that the sum of the weights of the root elements on each processor is approximately
constant. (Here, the weight of a root element is defined to be the number of leaf elements
contained within it.) In addition, it is highly desirable that the number of halo elements
that each processor has to work with should be as small as possible (so as to minimise
communication and parallel overheads). Thus the mesh partition must be such that the
number of elements on the boundary between processors is minimised.

Partitioning a mesh subject to the above two constraints is a well-known problem;
often referred to as the static load-balancing problem. For our time-dependent solver two
additional constraints should also be respected however. These stem from the fact that
when refinement takes place the mesh is already partitioned and so the load-balancing
problem is in fact dynamic since it is desirable to respect the initial location of each root
element when deciding upon a new partition of the mesh. In particular we would like to
both keep the number of root elements migrated between processors as small as possible
and to implement what migration is required in parallel so as to minimise the overhead
associated with maintaining a good partition.

In summary, an ideal dynamic load-balancing algorithm for updating the partition of
the root mesh after adaptivity has occurred should:

L. Equally distribute the number of leaf elements on each processor.

84

II. Minimise the number of elements on the inter-processor partition boundary.
III. Maintain locality of each of the root elements as much as possible.
IV. Have an efficient parallel implementation.

In the next section these properties are considered in the context of dynamically parti-
tioning the weighted dual graph of the root mesh. In this graph the weight of node &, wn,
say, is equal to the weight of the root element to which it corresponds, and the weight
of edge (k,¢), wg,, say, is equal to the number of leaf element faces which are shared by
root elements k£ and £: the nodes at the end of the edge.

4. PARALLEL DYNAMIC LOAD-BALANCING

It is clear that the four requirements enumerated in the last section are not always
self-consistent. It is perhaps for this reason that quite a large number of dynamic load-
balancing heuristics have been suggested in recent years ([2,5,10,11] for example), each of
which appear to put a slightly different emphasis on the relative importance of the four
properties. The algorithm described in this section explicitly attempts to respect all of
these requirements; however when conflicts do arise it is items III and IV, which relate
more to the parallel overhead than the partition quality, which are the first to be relaxed.
The motivation behind this is our decision that, when one is forced to choose between
the two, robustness is more important than parallel efficiency in a parallel dynamic load-
balancing algorithm.

4.1. Processor groups

The first stage of our dynamic load-balancing algorithm is to split the processors into
two groups based upon the initial partition of the latest mesh. This is achieved by parti-
tioning a processor graph, frequently referred to as the weighted partition communication
graph (WPCG) (see [10] for example). This graph has one vertex for each processor,
whose weight is equal to the sum of the weights of all root elements on that processor,
and an edge connecting two nodes if they are face adjacent (i.e. the corresponding pro-
cessors share part of the partition boundary). The weight of the edge connecting nodes i
and j is equal to the total number of leaf element faces shared by these two processors.

When splitting the WCPG into two groups it is desirable to take into account con-
straints 1 and 2 from the previous section. In particular, we should ensure that the two
groups have a similar total weight and that the total weight of edges of the WPCG which
are cut by the division is as low as possible. This is perhaps best achieved through using a
spectral algorithm and is the approach followed here. This is inexpensive because the size
of the WPCG is only equal to the number of processors being used {details of a version of
the algorithm suitable for weighted graphs may be found in [4]). The spectral algorithm
provides an ordering of the nodes of the WPCG (i.e. the processors) and this list is then
split at the point which comes closest to balancing the weight of the two groups.

At this stage there are two processor groups of approximately equal total weight, with
a relatively short boundary between them. If the initial partition of the weighted dual
graph of the root mesh is well load-balanced then the number of processors in each of
the two groups will be equal. If the initial load-balance is poor however then it is likely

85

that there will be a different number of processors in each group and therefore that the
average weight per processor in each group will be different. Hence, the next phase of
the algorithm is to use local migration of root elements in order to balance the average
weight per processor for the two groups.

4.2. Balancing the groups with local migration

We will refer to the group with the larger average weight per processor as the “Sender”
group and the other as the “Receiver” group. If the difference in the average weights is
greater than some tolerance then this stage of the algorithm requires the groups to be
balanced by migrating nodes of the weighted dual graph (i.e. root elements). In order
to decide which nodes to migrate we apply the ideas of Fiduccia and Mattheyses ([3])
whose algorithm is, in turn, developed from the well-known local migration strategy of
Kernighan and Lin ([6]).

We first calculate the total weight, Mg,,, say, of all of the nodes to be migrated from
the Sender to the Receiver. Let Ns and Ng be the number of processors in each of
these groups and let their average weights per processor be denoted by Avs and Avg
respectively. Then Mg,,, = Ns x (Avs — Av) , where Av is the overall average weight per
processor in the WPCG.

Having established the required.load to be transferred, the next issue to address is that
of how many nodes each processor in the Sender group should actually send and which
processors in the receiver group they should be sent to. Here we follow-the approach
taken in [10], by introducing the concept of candidate processors: these are processors in
either group which are face-adjacent to at least one processor in the other. Where poss1ble
we only permit these processors to be involved in the migration of nodes, and if the i* ith
candidate processor in the Sender group is face adjacent to more than one candidate
processor in the Receiver group then we only migrate nodes to that candidate processor
which has the “longest” common boundary (i.e. which shares the most leaf element faces
with the ¢** candidate processor in the Sender group). Let Niot be the total weight on all
candidate processors of the Sender group. Then the target weight to be transferred from
the 7th candidate processor in Sender group, Mg; say, is given by

N;
) X Mgtot ’

tot

Mg; = (

where N; is the total weight on the i** processor.

We are now able to determine what weight, if any, should be transferred between
each pair of processors. The final step in this phase of the algorithm therefore is to decide
precisely which root elements should be migrated; our aim being to transfer those elements
which lead to the smallest possible number of faces on the final partition boundary. In
order to achieve this we define the concept of the “gain” associated with transferring a
particular node in the weighted dual graph of the root mesh, node k say, from its current
subgraph to another (from node i of the WPCG to node j say). This is given by

wg,, if £ € j™ processor,
0 otherwise,

gain(k) = Y

—wg,, if £ € i** processor,
(k0)

86

where the summation is over all edges, (k,£), of the weighted dual graph which radiate
from node k. A slight extension of this definition is the “gain density” of a node which
is defined to be equal to gain(k)/wy,. In order to keep the number of leaf elements on
the final inter-partition boundary as small as possible we always select the nodes with the
highest gain density as the ones to migrate. (After each root element is migrated the gain
of each of its neighbours may easily be updated so this selection should be sequential.)

4.3. Recursion and parallel implementation

The previous two subsections describe how two groups of processors may be created and
then balanced in such a way as to keep the boundary between them as short as possible.
The final stage of the algorithm is to apply the same steps again, recursively, on each of
these two processor groups. The termination criterion for the recursion is when a group
consists of a single processor. At this point the algorithm will have ensured that the total
weight.on each processor is approximately equal.

Clearly, as the depth of recursion increases the level of parallelism in the algorithm
increases too. In order to further increase the parallel efficiency however, we do not
transfer the complete mesh data at each level of the algorithm, but transfer only enough
information about the weighted graph to allow the new weights and gains to be calculated
so that the algorithm may proceed. The full transfer of mesh data may then be carried
out concurrently at the end, once the final destination of each root element is known.
This has the additional advantage of reducing the overall amount of communication that
is required since elements do not need to be sent to intermediate processors as they might
otherwise be if the partition were to be fully updated after each level of the recursion.

Before finishing this section on the dynamic load-balancing algorithm it is worth con-
sidering how it is likely to behave in one or two particular cases. If the mesh is already
well load-balanced then it will not be altered at all because the value of Mg,,, will always
be less than the tolerance that has been set. If the load-imbalance is small and uni-
formly distributed then only a small amount of migration will take place at each level -
improving the load-balance whilst maintaining most of the data locality (moreover those
elements which are transferred will always be the ones which keep the partition boundary
as short as possible). In the case where we start with a very heavy imbalance however,
it is impossible to maintain so much data locality. Hence the above algorithm will re-
quire a significantly greater number of elements to be transferred at each level. Moreover,
the recursion tree will become quite highly imbalanced due to the groups at each level
having large differences in the number of processors that they contain. Hence the par-
allel efficiency within the load-balancing is likely to decrease for such an extreme case.
Nevertheless, it is to be expected that the quality of the new partition will be a great
improvement over that of the original, thus making this extra overhead very worthwhile.

5. COMPUTATIONAL RESULTS

This section illustrates the performance of this dynamic load-balancing algorithm when
used in conjunction with the parallel adaptive refinement algorithm described in Section
2. The implementation has been completed using MPI [7]: with significant use of the
group operations that it supports. At each level, the spectral ordering of the processors
in each group is found sequentially using just one of the processors within the group.

87

The test problem used is the time-dependent gas dynamics problem studied in [9]. This
is an inviscid Euler flow calculation with ideal gas equations of state modelling a shock
wave diffraction around the 3D right-angled corner formed between two cuboid mesh
regions. The initial condition is of Rankine-Hugoniot shock data at the interface of the
two cuboid regions with and a shock speed of Mach 1.7.

The solution is computed with a cell-centred, Riemann problem based, finite volume
scheme of the MUSCL type, employing an HLLC style approximate Riemann solver. For
full details of the scheme, see [9]. The parallel version of the solver uses the standard
‘owner computes’ rule (e.g. see Caballo [1]) and halo data updates occur after both the

Hancock and full time-steps are completed.

VA

L\
v

v
v,

v
v

VA
vinh

A

PAVA!

o

/

Figure 4. Adapted mesh after 240 time-

Figure 3. Coarse mesh of 5,184 elements
steps

adapted to initial shock condition.

Figures 3 and 4 illustrate how the mesh adapts to the solution as the shock progresses
through the domain. It is clear that although a partition of the mesh for the initial
condition may be good, it is unlikely to remain so as the solution develops and thus
dynamic load-balancing of the distributed data will be required.

For this example, we consider a finer initial mesh than the illustrative examples shown
in Figures 3 and 4. Our coarse mesh has 34, 560 elements which results in a mesh of 87,970
elements after adapting to the initial condition. Two levels of adaptation are used. As the
shock progresses into the domain, the mesh adapts accordingly so that after 60 time-steps
there are 106, 772 elements. Note that throughout this calculation, the adaptive mesh has
resolution equivalent to a mesh of 2.2 million uniform, regular elements.

An experiment using 8 processors of the Cray T3D has been conducted. The initial
partitioning of the mesh uses approximate weights obtained from knowledge of the initial
condition and is performed using Jostle V1.0 [11]. As the weights are only approximate,
there is a 31% imbalance after the first adaptation stage. As the solution progresses

88

however, this improves to 17% before degrading again. After 60 time-steps, the imbalance
has reached 37% and it is clear that repartitioning would be advantageous.

Repartitioning the mesh restores the balance to 9% although this comes at a slight
cost to the cut weight which increases from 4303 to 5246 edges cut. The benefit however
is quite clear. The 30 time-steps following the repartitioning take only 429.1 wall-clock
seconds as opposed to the 501.5 seconds taken if repartitioning is not employed. This is
a significant saving, and demonstrates the effectiveness of our repartitioning approach.

6. CONCLUSIONS

A new parallel load-balancing algorithm has been presented for use with unstructured
adaptive mesh calculations of transient flows on distributed memory computers. An Euler
flow example has been given which illustrates that the algorithm produces new partitions
that significantly improve the efficiency of the solver.

REFERENCES

1. J. Cabello. Parallel Explicit Unstructured Grid Solvers on Distributed Memory Com-
puters. Advances in Eng. Software, 23, 189 (1996).

2. G. Cybenko. Dynamic Load Balancing for Distributed Memory Multiprocessors., J. of
Parallel and Distributed Computing, 7, 279 (1989).

3. C.M. Fiduccia and R.M. Mattheyses. A Linear Time Heuristic for Improving Network
Partitions. Proc. of the 19th IEEE Design Automation Conference, IEEE, p175 (1982).

4. D.C. Hodgson and P.K. Jimack. Efficient Parallel Generation of Partitioned, Unstruc-
tured Meshes. Advances in Eng. Software, 27, 59 (1996).

5. Y.F. Hu and R.J. Blake. An Optimal Dynamic Load Balancing Algorithm. Preprint
DL-P-95-011 of The Central Laboratory for the Research Councils, Daresbury Labo-
ratory, Daresbury, Warrington, Cheshire WA4 4AD, UK (1995).

6. B. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs.
Bell System Technical Journal, 29, 209 (1970).

7. Message passing Interface Forum. MPI: A Message Passing Interface Standard. Int.
J. of Supercomputer Applications, 8, no. 3/4 (1994).

8. P.M. Selwood, M. Berzins and P.M. Dew. 3D Parallel Mesh Adaptivity: Data-
Structures and Algorithms. In proc. of Eighth SIAM Conf. on Parallel Proc. for Sci-
entific Computing (1997), SIAM Philadelphia.

9. W. Speares and M. Berzins. A 3-D Unstructured Mesh Adaptation Algorithm for
Time-Dependent Shock Dominated Problems. Int. J. Num. Meth. in Fluids, 25, 81
(1997).

10. A. Vidwans, Y. Kallinderis and V. Venkatakrishnan. Parallel Dynamic Load-Balancing
Algorithm for Three-Dimensional Adaptive Unstructured Grids. AIAA Journal, 32,
497 (1994).

11. C. Walshaw, M. Cross and M.G. Everett. Dynamic Load-Balancing for Parallel Adap-
tive Unstructured Meshes. In proc. of Eighth SIAM Conf. on Parallel Proc. for Scien-
tific Computing (1997), SIAM Philadelphia.

