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Abstract

This paper investigates the solution of atmospheric reaction/flow problems using
time-dependent adaptive mesh gridding techniques. Preliminary studies of time varying
problems in two space dimensions related to the effects of power station emissions on
regional ozone levels have been carried out. The results show the importance of using
adaptive grids in order to represent the interaction of the plume with background air
over large distances. The adaptive mesh reveals features of cross wind concentration
profiles which would not be shown using the standard mesh sizes adopted in regional
atmospheric calculations. As the level of adaptivity increases, and the mesh becomes
locally refined in regions of large spatial error, the total and peak ozone concentrations
change quite significantly. The results demonstrate that the level of error which can
result from using fixed or telescopic grid approaches for spatially inhomogeneous source
patterns may be significantly reduced by the use of adaptive meshes.

1 Introduction

Computational models describing the chemical transformations and transport of species in
the troposphere have an essential role in understanding the complex processes which lead
to the formation of pollutants such as greenhouse gases, acid rain and photochemical ox-
idants. As such they have an important bearing on predicting future effects of emissions
on for example radiative forcing, and on the health of animal and plant life. An accurate
and detailed description of the distribution of pollutant concentrations is needed over large
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spatial regions in order to compare with field measurement calculations. Such comparisons
are usually made at fixed points and therefore high resolution models will inevitably pro-
mote a better understanding of the processes which lead to high concentrations in certain
areas. One of the key issues which has to be addressed is the long range interaction between
different emission sources. It is necessary to understand the mixing between plumes gener-
ated from concentrated sources and distributed urban and biogenic emissions or background
concentrations in order to formulate abatement strategies.

Achieving high resolution in air pollution models is a difficult challenge because of the large
number of species present in the atmosphere. The number of chemical rate equations which
need to be solved rises with the number of species, and for high resolution 3-dimensional cal-
culations, detailed chemical schemes can become prohibitively large. The range of reaction
time-scales can lead to stiff systems of differential equations which require more expensive
numerical solvers. In order to address the computational problems posed by complex atmo-
spheric problems previous models have adopted two strategies.

The first strategy has been to retain the detailed chemistry necessary for understanding the
many reactions of pollutants such as NOx, SO2 and volatile organic compounds, and to
use 1-D trajectory models or coarse Eulerian grid models to simulate the reaction/transport
problem (Derwent et al,1990). Such models have been essential in developing an understand-
ing of how chemical species interact to form secondary pollutants such as ozone. They have
not, however, provided the spatial resolution which is needed to understand the complex
interaction between multiple sources of both concentrated and distributed types. They also
require an oversimplification of the mixing processes which can occur between plumes from
these sources.

The second approach has been to use a simplified chemical model but with a high resolution
grid. In this case problems arise in assessing the role of individual species on the pollu-
tant distribution. In order to achieve high spatial resolution, and chemical accuracy a new
modelling strategy is required.

It has been recognised that new approaches to achieving accuracy are necessary and some
steps have been taken in regional air quality models to include the use of variable sized
grids, thus achieving better resolution in some regions. A recent review paper by Peters et
al. (1995) highlights the importance of developing more efficient grid systems for the next
generation of air pollution models in order to “capture important smaller scale atmospheric
phenomena”. Grid refinement in these telescopic models has been used in a prescribed way
(Moussiopoulous,1994, Jakobs et al, 1994, Sunderam et al, 1990, Sillman et al, 1990). This
allows for refinement in, for example, high emission areas, but cannot take account of the
spatial gradients resulting from the dispersion of pollutants through the atmosphere. Away
from concentrated sources such models use large grids of up to 50 kilometres. Since dispersion
can carry species distances of hundreds of kilometres from the source, such predescribed
telescopic gridding models could still lead to inaccurate downwind profiles as the plumes
travel into those areas with larger grids. This is a particular problem when modelling species
such as ozone, where the chemical time-scale of pollutant formation is such that the main
pollution episodes occur at very long distances downwind of the sources of photochemical
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precursors. The regions of steep spatial gradients of species such as ozone will move with
time according to the wind-field present and the spatial distribution of emissions. A reliable
solution can only be obtained if the mesh can refine accordingly. The fine scale grids used
in present regional scale models are of the order of 10-20km. For a power plant plume with
a width of approximately 20km, it is impossible to resolve the fine structure within the
plume using grids of this size. Furthermore, to refine the mesh a priori, according to the
path of the plume, would be an impossible task since the plume position is a complicated
function of many factors, including reaction, deposition and transport. There is a need for
the application of methods which can refine the grid according to where the solution requires
it i.e. time-dependent adaptive algorithms.

More recently there have been some applications of adaptive grids for environmental mod-
elling, e.g Skamarock et. al. (1989), although as yet these methods have not been imple-
mented in standard air quality models. The present work describes how adaptive gridding
techniques, which automatically refine the mesh in regions of high spatial error, can improve
on the telescopic approach. The aim of this work is to show that the use of such techniques
will lead to a better understanding of the complex multiscale phenomena that arise from
regional scale models. In this paper we have not attempted to develop a comprehensive re-
gional model, but rather to apply a set of numerical modelling tools to particular test cases
in order to demonstrate their advantages over traditional techniques. The test cases we have
chosen are firstly the standard linear advection problem of Molenkamp (1968), which serves
to demonstrate that the numerical scheme chosen is suitable for atmospheric dispersion, and
secondly the interaction of a power plant plume with background emissions.

A power plant plume is a highly concentrated source of NOx emissions which can be carried
through the atmosphere for hundreds of kilometres, and so provides a stringent test of
whether adaptive gridding methods can lead to more reliable results for complex multi-scale
models. Since power stations provide some of the highest emission sources for NOx it is
important to be able to generate an accurate understanding of their impact not only on the
total NOx budget, but also on the generation of secondary pollutants such as ozone. To
achieve this we must consider the interaction of the plume with its surroundings, and in the
model we look at background scenarios of both clean and polluted air (Tomlin et al, 1994).
The test case model covers a region of 300 x 500 km. To keep the model simple, and therefore
reveal particular issues related to the mesh, we have used a reduced chemical scheme with
idealised dispersion conditions. The domain is approximated by an unstructured triangular
mesh which can then be adapted to higher and higher levels of refinement according to
errors in solution components. The solution technique is based on the spatial discretisation
of a set of advection/diffusion equations on the unstructured mesh using a finite volume,
flux limited scheme. The aim throughout the paper is to demonstrate the potential of a
particular methodology for use in future atmospheric models rather than to use a well tested
model to study a real life situation. The simplified model will be used to illustrate how grid
resolution can affect the solution of nonlinear chemical transport problems and how new
features of the cross plume concentration profile can be revealed by the adaptive solution,
This will be achieved by comparison of results from the adaptive mesh with those from a
base mesh of the order commonly found in regional scale models.
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The paper is structured as follows. In Section 2 we briefly introduce the form of the equations
which describe atmospheric reaction flow problems. In Sections 3 and 4 we describe the
numerical scheme we have used to solve these equations for the two test cases. In Section
3, a description of the use of unstructured triangular meshes and the spatial discretisation
scheme will be given. In section 4 we discuss the method adopted for time integration. In
Section 5 the methods used for the initial mesh generation and the criteria used for mesh
refinement are introduced. In Sections 6 and 7 the two test cases are described. The first is a
simple 2D linear advection problem with no source terms. This case illustrates the accuracy
of low and high order schemes for convection dominated problems. The second problem
relates to the dispersion and reaction of NOx emissions from a power station source. This is
a multiscale problem coupling chemistry and flow of the type found in regional air pollution
models. Finally in Sections 8 and 9 we present a discussion and conclusions about the use
of adaptive methods in air pollution models.

2 Model equations

The atmospheric diffusion equation in two space dimensions is given by:

∂cs

∂t
= −

∂(ucs)

∂x
−

∂(wcs)

∂y
+

∂

∂x

(

Kx
∂cs

∂x

)

+
∂

∂y

(

Ky
∂cs

∂y

)

+Rs(c1, c2, ..., cq) + Es − (κ1s + κ2s)cs, (1)

where cs is the concentration of the s’th compound, u,w, are horizontal wind velocities,
Kx and Ky are turbulent diffusivity coefficients and κ1s and κ2s are dry and wet deposition
velocities respectively. Es describes the distribution of emission sources for the s’th compound
and Rs is the chemical reaction term which may contain nonlinear terms in cs. For n chemical
species an n-dimensional set of partial differential equations (p.d.e.s) is formed describing the
rates of change of species concentration over time and space, where each is coupled through
the nonlinear chemical reaction terms.

The restriction to two space dimensions has the advantage that the present study will be
able to concentrate on showing that standard adaptive numerical methods have the potential
to reveal detail not previously observed in plume models. In this sense the work described
here is a necessary precursor to the development of a full 3D code for such problems.

3 Triangular Finite Volume Method.

The basis of the numerical method is the space discretisation of the p.d.e.s derived from
the atmospheric diffusion equation on unstructured triangular meshes using the software
SPRINT2D (Berzins et al, 1992, 1997). This approach, (known as the ”Method of Lines”),
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reduces the set of p.d.e.s in three independent variables to a system of ordinary differen-
tial equations (o.d.e.s) in one independent variable, time. The system of o.d.e.s can then
be solved as an initial value problem, and a variety of powerful software tools exist for
this purpose (Berzins et al, 1989). For advection dominated problems it is important to
choose a discretisation scheme which preserves the physical range of the solution. A more
in-depth discussion of the methods can be found in references (Berzins et al, 1989, 1992,
1994a,1994b,1995).

Unstructured triangular meshes are popular with finite volume/element practitioners because
of their ability to deal with general two-dimensional geometries. In terms of application to
multi-scale atmospheric problems, we are not dealing with complex physical geometries, but
unstructured meshes provide a good method of resolving the complex structures formed by
the interaction of chemistry and flow in the atmosphere and by the varying types of emission
sources. The term unstructured represents the fact that each node in the mesh may be
surrounded by any number of triangles whereas in a structured mesh this number would be
fixed. The discretisation of advection/diffusion/reaction equations on unstructured meshes
will now be discussed.

For systems of equations such as (1) it is useful to consider the advective and diffusive
fluxes separately in terms of the discretisation. In the present work, a flux limited, cell-
centered, finite volume discretization scheme of Berzins and Ware (1994,1995) was chosen.
This method enables accurate solutions to be determined for both smooth and discontinuous
flows by making use of the local Riemann solver flux techniques (originally developed for
the Euler equations) for the advective parts of the fluxes, and centered schemes for the
diffusive part. The scheme used for the treatment of the advective terms is an extension
to irregular triangular meshes of the nonlinear scheme described by Spekreijse (1987) for
regular Cartesian meshes. The scheme of Berzins and Ware has the desirable properties, see
Chock (1991), of preserving positivity eliminating spurious oscillations and restricting the
amount of diffusion by the use of a nonlinear limiter function. Recent surveys of methods
for the advection equation (VanLoon, 1996, Vreugdenhil and Koren, 1993) have suggested
the use of a very similar scheme to Spekreijse for regular Cartesian meshes, preferring it to
schemes such as Flux Corrected Transport.

To illustrate this method, consider the advection-reaction equation:

∂c

∂t
= −

∂uc

∂x
−

∂wc

∂y
+ R(c) , t ∈ (0, te) , (x, y) ∈ Ω (2)

with appropriate boundary and initial conditions. A finite volume type approach is adopted
in which the solution value at the centroid of triangle i, (xi, yi), is ci and the solutions at the
centroids of the triangles surrounding triangle i are cl, cj and ck . Integration of equation (2)
on the ith triangle, which has area Ai, use of the divergence theorem, and the evaluation of
the line integral along each edge by the midpoint quadrature rule gives an o.d.e. in time:

dci

dt
= −

1

Ai
(ucik∆y0,1−vcik∆x0,1 +ucij∆y1,2−vcij∆x1,2 +ucil∆y2,0−vcil∆x2,0)+R(ci), (3)
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where ∆xij = xj − xi, ∆yij = yj − yi. The fluxes ucij and vcij in the x and y directions
respectively are evaluated at the midpoint of the triangle edge separating the triangles as-
sociated with ci and cj. These fluxes are evaluated by taking account of the flow directions
with respect to the orientation of the triangle. This is achieved by using either the left or
right solution values depending on the direction of advection and how each edge is aligned.
These left and right solution values for each edge in a triangle are defined as the left solution
value being that internal to the ith triangle, and the right solution value being that external
to triangle i. Consider for example the case shown in Figure (1) when u is positive and
xi < xj this means that the x component of the advection is blowing from node i to node j,
and so cij = cl

ij . Similarly when v is positive the y component of the wind is blowing from
node k to node i and so cik = cr

ik. Hence, equation (3) may be written as

dci

dt
= −

1

Ai
(ucl

ik∆y0,1−vcr
ik∆x0,1 +ucl

ij∆y1,2−vcl
ij∆x1,2 +ucr

il∆y2,0−vcl
il∆x2,0)+R(ci), (4)

A simple first-order scheme uses cl
ij = ci, cr

ij = cj on the edge between triangles i and j. This
scheme is very diffusive and so Berzins and Ware (1995) use a complex interpolation scheme
to obtain the left and right values on each edge. The interpolants in this second order scheme,
use a constrained or limited form of the solution obtained from the six triangles surrounding
an edge giving a ten triangle stencil for the discretization of the convective terms on each
triangle.

For example, the value cl
ij is constructed by forming a linear interpolant using the solution

values ci, ck and cl at the three centroids. An alternative interpretation is that linear
extrapolation is being used based on the solution value ci and an intermediate solution value
(itself calculated by linear interpolation) clk which lies on the line joining the centroids at
which cl and ck are defined (see Figure 1) i.e.

cl
ij = ci + Φ(Sij) dij,i

ci − clk

di,lk
, (5)

where the argument S is a ratio of solution gradients, see Berzins and Ware (1995) and the
generic term da,b denotes the positive distance between points a and b. For example dij,i

denotes the positive distance between points ij and i, see Figure 1, as defined by

di,ij =
√

(xi − xij)2 + (yi − yij)2 , (6)

where (xij , yij) are the co-ordinates of cij . In order to preserve positivity in the numerical
solution, the limiter function Φ is used and has to satisfy Φ(S)/S ≤ 1, see Berzins and Ware
(1995). These conditions are satisfied, for example, by a modified van Leer limiter defined
by:

Φ(S) = (S + |S|)/(1 + Max(1, |S|)) . (7)

The value cr
ij is defined in a similar way using the centroid values cj, cs and cr . This

scheme is of second order accuracy, see Berzins and Ware (1995). The diffusion terms are
discretised by using a finite volume approach to reduce the integrals of second derivatives
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Figure 1: Construction of interpolants used in the calculation of fluxes for the irregular mesh.
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to the evaluation of first derivatives at the midpoints of edges. These first derivatives are
then evaluated by differentiating a bilinear interpolant based on four mid-point values, see
Berzins and Ware (1994). The boundary conditions are implemented by including them in
the definitions of the advective and diffusive fluxes at the boundary.

4 Time Integration.

A method of lines approach with the above spatial discretization scheme results in a system
of o.d.e.s in time which are integrated using the code SPRINT (Berzins et al, 1989) with
the Theta option which is specially designed for the solution of stiff systems with moderate
accuracy and automatic control of the local error in time. Once the p.d.e.s have been
discretised in space we are left with a large system of coupled o.d.e.s of dimension m ×
n where m is the number of triangles in the mesh, and n the number of species. These
equations may now be written as

ċ = F N ( t, c(t) ) , c(0) given , (8)

where the vector, c(t), is defined by c(t) = [c(x1, y1, t), ..., c(xN , yN , t) ]T . The point xi, yi

is the centre of the i th cell and Ci(t) is defined as a numerical approximation to the exact
solution to the p.d.e. evaluated at the centroid i.e. c(xi, yi, t) . The method of lines approach
is used to numerically integrate equation (8) thus generating an approximation, C(t), to the
vector of exact p.d.e. solution values at the mesh points, c(t) .

The Theta method (Berzins and Ware, 1995, Berzins, 1994), which has been used for the
experiments described here, defines the numerical solution at tn+1 = tn + k, where k is the
time step size, as denoted by C(tn+1), by:

C(tn+1) = C(tn) + (1 − θ)k Ċ(tn) + θ k FN(tn+1, C(tn+1)), (9)

in which C(tn) and Ċ(tn) are the numerical solution and its time derivative at the previous
time tn and θ = 0.55 . This system of equations is solved by either using functional iteration
or a Newton Krylov method. If the latter method is used the equations leading to the
correction of the solution ∆C for the p + 1 th iteration of the modified Newton iteration
used with the Theta method are:

[I − kθJ ] ∆C = r (tpn+1) (10)

where

r (tpn+1) = − C(tpn+1) + C(tn) + (1 − θ)kĊ(tn) − θkF N(tn+1, C(tpn+1)),

J =
∂ F N

∂C
, and ∆C =

[

C(tp+1
n+1) − C(tp

n+1)
]

. (11)

The solution of this system of equations constitutes the major computational task of a
method of lines calculation. In cases where large o.d.e. systems result from the discretization
of flow problems with complex chemistry (50,000 equations typically), the c.p.u. times seem
to be excessive.
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4.1 Operator Splitting.

One approach which overcomes the problem of excessive computational time is to use a form
of operator splitting based on a decomposition of the p.d.e.s into a set of flow terms and a
source reactive term. Consider the o.d.e. function F N (t, c(t) ) defined by equation (8) and
decompose it into two parts:

F N (t, c(t) ) = F f
N (t, c(t) ) + F s

N (t, c(t) ) (12)

where F f
N (t, c(t) ) represents the discretization of the convective flux terms f and g in

equation (1) and F s
N (t, c(t) ) represents the discretization of the source term h in the same

equation. The splitting approach used, (Berzins and Ware, 1996), is to employ the following
approximation to the Jacobian matrix used by the Theta method within the Newton iteration
defined by equation (10):

I − kθJ ≈ [I − kθ Jf ] [I − kθ Js ] + O(k2). (13)

where

Jf =
∂ F f

N

∂c
, Js =

∂F s
N

∂c
.

The matrix I − kθJs is thus those parts of the Jacobian matrix in equation (10) which
correspond to the discretization of the time derivatives and the source terms in the vector
h. The disadvantage of this approach is that it introduces a second-order splitting error.
Fortunately this error only alters the rate of convergence of the iteration as the residual
being reduced is still that of the full o.d.e. system.

This matrix is thus block-diagonal with as many block as there are triangles and with each
block having as many rows and columns as there are p.d.e.s. The fact that the blocks relate
only to the chemistry plus source/sink terms within each cell, means that each block may
be inverted (or the equations may be solved) independently using LU decomposition. This
approach may also be interpreted as approximating the flow term [I − kθJf ] by the identity
matrix, as is done when using functional iteration with the Theta method applied to flow
alone (Berzins, 1994). Since the spatial discretization method connects each triangle to as
many as ten others it follows that the matrix [I − kθ Jf ] may have a much more complex
sparsity pattern than that of the matrix [I − kθ Js ]. Approximating the matrix [I − kθ Jf ]
by the identity matrix (Berzins and Ware, 1996) thus eliminates a large number of the full
Jacobian entries.

The new operator-splitting iteration may thus be written as

[I − kθJs] ∆C∗ = r (tpn+1) (14)

where ∆C∗ is the operator splitting approximation to ∆C . The advantage of this is that
a form of functional iteration may be used to solve the nonlinear equations provided that
the residuals on each triangle are multiplied by the inverse of the matrix I − kθJs, (or
the equivalent linear systems solved). This modified form of functional iteration has been
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implemented as a new linear algebra module inside the SPRINT2D software and has been
found to give increases in speed-up by a factor of between five and ten over using a Newton-
Krylov method. Further increases in speed are possible by using iterative methods such as
those suggested by Verwer (1994) to solve the system of equations (14) on a block by block
basis.

The disadvantage of introducing operator splitting is that it is difficult to evaluate the result-
ing error. As the splitting is only used to speed up the solution of the nonlinear equations,
and providing that the iteration is continued until the residual r (tpn+1) is sufficiently small,
this error does not have the same impact as introducing splitting at the p.d.e. level. It
is however possible to obtain a rough idea of the splitting error on each iteration. In or-
der for the operator-splitting iteration defined by equation (13) to converge with a rate of
convergence rc it is necessary, (Berzins and Ware, 1996), that

|| [I − kθJs]
−1 k θJf || < rc

where rc < 1 . In contrast, the convergence condition when functional iteration is used and
no chemistry is present is:

|| k θJf || < rc

Berzins and Ware (1995) show that a CFL-like condition is satisfied if functional iteration
converges quickly. Hence, in the case when the term Js may have large negative eigenvalues
e.g for fast chemistry, the new operator splitting iteration may act to increase the size
of stable timesteps over the case when flow alone is involved. Not every component will
necessarily be affected by such eigenvalues and so it is still necessary to consider the stable
stepsize for the flow alone.

4.2 Stability and Time Error Control.

The topic of choosing a stable stepsize for the finite volume method has been considered in
detail by Berzins and Ware (1995, Ware and Berzins, 1995). In the case of the first order
method with the limiter function defined in equation (7) set to zero they showed that for
the p.d.e. of the form of equation (2) with R(c) = 0, if Li is the length of the longest edge
of the triangle i, a sufficient condition for stability and hence positivity is,

kn
Li

Ai
(u + v) ≤

1

θm
. (15)

where Ai is the area of triangle i, u and v are as defined in equation (1) and m is the number
of functional iterations. This is a CFL type stability condition that depends on the term
Li/Ai which is also used as a measure of the quality of a triangle. Although only one possible
alignment to the characteristic directions has been considered, similar results are produced
by considering the other possibilities.

In the case when a limiter function is used this result has been extended to arrive at the
stability condition

(1 + 2dmax) kn
Li

Ai
(u + v) ≤

1

θm
. (16)
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where dmax is the maximum value of the ratio of distances such as dij,i/di,lk used in equation
(5) and where from equation (7) 0 ≤ Φ(.) ≤ 2 .

Although a CFL condition indicates when the underlying flow without reactions is stable, it is
still necessary to get the required accuracy for the chemistry terms. In most time dependent
p.d.e. codes either a CFL stability control is employed or a standard o.d.e. solver is used
which controls the local error ln+1(tn+1) with respect to a user supplied accuracy tolerance.
Efficient time integration requires that the spatial and temporal errors are roughly the same
order of magnitude. The need for spatial error estimates unpolluted by temporal error,
requires that the spatial error is the larger of the two. Although one way of achieving this
might be to extend the approach of Berzins (1994) which controls the local time error to be
a fraction of the growth in the spatial discretization error over a timestep. We shall adopt a
standard local error approach given by:

|| ln+1(tn+1) || < TOL. (17)

5 Mesh Generation and Adaptivity.

The initial unstructured meshes used in SPRINT2D are created from a geometry description
using the Geompack (Joe and Simpson, 1991) mesh generator. These meshes are then refined
and coarsened by the Triad adaptivity module which uses data structures to enable efficient
mesh adaptation.

Since the initial mesh is unstructured we have to be very careful in choosing the data structure
which provides the necessary information for refining and derefining the mesh. When using
a structured mesh it is possible to number mesh vertices or elements explicitly. This is not
possible for unstructured meshes and therefore the data structure must provide the necessary
connectivity. The important factor is to maintain the quality of the triangle as the mesh is
refined and coarsened. This is achieved using a tree-like data structure with a method of
refinement based on the regular subdivision of triangles. Here an original triangle is split into
four similar triangles by connecting the midpoints of the edges as shown in Figure 2. These
may later be coalesced into the parent triangle when coarsening the mesh. This process is
called local h-refinement, since the nodes of the original mesh do not move and we are simply
subdividing the original elements. Similar procedures are extensively used with a wide range
of both finite element and volume methods for a very broad range of physical problems.

Once a method of refinement and derefinement has been implemented, it remains to decide
on a suitable criterion for the application of the adaptivity. The ideal situation would be
that the decision to refine or derefine would be made on a fully automatic basis with no user
input necessary. In practice a combination of an automatic technique and some knowledge
of the physical properties of the system is used. The technique used in this work is based on
the calculation of spatial error estimates. Low and high order solutions are obtained and the
difference between them gives the spatial error, see Berzins (1995). The algorithm can then
choose to refine in regions of high spatial error by comparison with a user defined tolerance.
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Coarse Refined

Figure 2: Method of local refinement based on the subdivision of triangles

For the ith p.d.e. component on the jth triangle, a local error estimate ei,j(t) is calculated
from the difference between the solution using a first order method and that using a second
order method. For time dependent p.d.e.s this estimate shows how the spatial error grows
locally over a time step. A refinement indicator for the jth triangle is defined by an average
scaled error (serrj) measurement over all npde p.d.e.s using supplied absolute and relative
tolerances:

serrj =
npde
∑

i=1

ei,j(t)

atoli/Aj + rtoli × Ci,j
, (18)

where atol and rtol are the absolute and relative error tolerances. This formulation for the
scaled error provides a flexible way to weight the refinement towards any p.d.e. error. An
integer refinement level indicator is calculated from this scaled error to give the number of
times the triangle should be refined or derefined. Since the error estimate is applied at the
end of a time-step it is too late to make the refinement decision. Methods are therefore used
for the prediction of the growth of the spatial error using linear or quadratic interpolants.
The decision about whether to refine a triangle is based on these predictions, and the estimate
made at the end of the time-step can be used to predict errors at future time-steps.Generally
it is found that large spatial errors coincide with regions of steep spatial gradients. The
spatial error estimate can also be used to indicate when the solution is being solved too
accurately and can indicate which regions can be coarsened. The tree data structure can
then be used to restore a lower level mesh which maintains the triangle quality.

For applications such as atmospheric modelling it is important that a maximum level of
refinement can be set, to prevent the code from adapting to too high a level in regions with
concentrated emissions. This is especially important around point or highly concentrated
area sources. Here, because of the nature of the source, steep spatial gradients are likely to
persist down to very high levels of refinement. This would have the consequence that the
number of elements on which the p.d.e.s had to be discretised would become prohibitively
large. For the following test problems the maximum level of refinment was therefore limited
to level 3. The actual size of the mesh elements used at each computational step will depend
on the size of elements in the initial mesh and on the maximum level of refinement.
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6 Molenkamp Linear Advection Test Problem

The first test case studied was the classical linear advection equation, of Molenkamp (1968).

∂c

∂t
= −π

(

y −
1

2

)

∂c

∂x
− π

(

x −
1

2

)

∂c

∂y
(19)

The solution domain is the circle,

(

x −
1

2

)2

+
(

y −
1

2

)2

< 2.

The initial conditions describe a peak with centre at (0.5,0.75),

c(x, y, 0) = exp

(

−80

[

(

x −
1

2

)2

+
(

y −
3

4

)2
])

. (20)

This peak will rotate around the point (0.5, 0.5) in time. The boundary condition is u = 0.
Although this is inconsistent with initial conditions it does not appear to lead to numerical
difficulties.

The solution after one complete rotation is seen in Figure 3 in which both first and second
order solutions are shown. The horizontal axis shows the variation in y for a fixed value of
x=0.5. The mesh used consisted of 100 × 100 uniform squares each subdivided into triangles.
The peak is advected in a circular fashion without excessive smoothing. The points to note
about the profiles are that there is no sign of undershoot or overshoot, although there is
evidence of numerical diffusion for the low order scheme. The higher order scheme is much
better at capturing the discontinuous profile of the advection front. This simple test case
provides the confidence that the chosen numerical scheme can adequately represent the
advection of steep solution gradients.

7 Plume dispersion including chemical transformations

The second test case describes the dispersion of a plume originating from a concentrated
source of NOx such as a power station chimney (Tomlin et al, 1995). This problem includes
nonlinear source terms generated by the chemical reaction rates and as such is a more difficult
numerical test than the simple linear advection equation. The purpose of choosing such an
application is to look at the multi-scale problem generated by the interaction of the power
station plume with background air, and to compare the fully adaptive scheme described
above with the size of mesh elements generally used in regional scale air pollution models.
We have not used a detailed atmospheric model, but have simply chosen to represent the
main features which would commonly be found in such a model, including slow and fast
nonlinear chemistry, concentrated source terms, advection and diffusion.
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Figure 3: Results after one rotation for the Molenkamp problem for the first and second
order schemes.

7.1 Chemical Mechanism

The simplified chemical mechanism used is shown in Table 1 and contains only 10 species.
It therefore enabled fast turn around times with respect to developing the numerical code.
Despite its simplicity it represents the main features of a tropospheric mechanism, namely
the competition of the fast equilibrating inorganic reactions:

O2

NO2 + hν → O3 + NO

NO + O3 → NO2 + O2,

with the chemistry of volatile organic compounds (voc’s), which occurs on a much slower
time-scale. This separation in time-scales generates stiffness in the resulting equations. The
voc reactions are represented by reactions of a single species, formaldehyde. This is unre-
alistic in terms of the actual emissions generated in the environment, but the investigation
of fully speciated voc’s is not the purpose of the present study. We therefore wished to
include the minimum number of reactions which would lead to the generation of ozone at
large distances from the NOx source. Deposition processes have not been included.

Table 1
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Reaction Rate constant

O2

NO2 + hν → O3 + NO a1 = 1.45 × 10−2, b1 = 0.4

NO + O3 → NO2 + O2 k2 = 6.53× 10−11

O3 + hν → O1D + O2 a3 = 2.0 × 10−4, b3 = 1.4

O1D + H2O → 2OH k4 = 2.2 × 10−10

OH + NO2 → HNO3 k5 = 1.5× 10−11

OH + CO → CO2 + H k6 = 2.2× 10−13

H + O2 + M → HO2 + M k7 = 5.1 × 10−32 (T/300)−0.9

HO2 + NO → NO2 + OH k8 = 8.3× 10−12

O1D + M → O3 k9 = 2.0× 10−11 e(100/T )

HCHO + OH → HO2 + CO + H2O k10 = 1.0× 10−11

HCHO + hν → 2HO2 + CO a11 = 3.32× 10−5, b11 = 0.56

HCHO + hν → H2 + CO a12 = 5.54 × 10−5, b12 = 0.79

The rate constants have been chosen to be in agreement with those used by Derwent et al.
(1990) and are expressed as mth order rate constants with units (molecule cm−3 )1−ms−1.
The photolysis rates were parametrised as a function of the solar zenith angle, giving a first
order rate constant in the form:

Ji = ai exp(-bi secθ).

where i is the reaction number. The solar zenith angle θ is calculated as a function of the time
of day(given by the local hour angle LHA), the time of year (given by the solar declination
angle DEC) and the latitude (LAT):

cos(θ) = cos(LHA) cos(DEC) cos(LAT) + sin(DEC) sin(LAT)
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Temperature dependent rate constants were represented by a standard Arrhenius expres-
sion and the temperature calculated as function of time of day according to the following
parametrisation;

T/K = 289.86 + 8.3sin((7.27e-5t)- 1.96)

where t is the time in seconds. The concentration of H2O was also parametrised as follows:

RH = 66.5+23.0sin((7.27× 10−5t)+1.18);

[H2O] = 6.1078exp(-(597.3-0.57(T-273.16))18.0/1.986T -1.0/273.16)(10.0RH)/(1.38e-16T);

where RH is the relative humidity and T the temperature.

The concentration of CO was taken to be a constant and was based on a background value
of 120ppb. The concentration of oxygen was taken to be 20% of air at atmospheric pressure.

7.2 Background concentrations, source terms and transport pa-

rameters

The model was used to represent three separate scenarios of a plume of concentrated NOx
emissions being dispersed through a background of clean and polluted air. The background
concentrations listed in Table 2 formed the initial conditions for the model. Concentrations
in the background change diurnally as the chemical transformations take place according to
photolysis rates and temperature and concentration changes. Case A describes a situation
where background voc’s are high but the main source of NOx is the point source. This
could represent for example a plume dispersing through a region of high biogenic emissions.
Case B represents background air which is high in both voc and NOx concentrations. Case
C represents a clean air situation where the background levels for NOx and voc’s are low.
The initial concentration of O3 was the same for all scenarios. Background source terms
were included for NOx, i.e. NO and NO2 and formaldehyde. For the sake of simplicity the
source term for formaldehyde is the same over all spatial points although it is possible to
include unstructured emissions data by interpolation onto the triangular grid. We have not
included such results here since we wish to highlight the effects of the mesh on the solution
and therefore need to keep the physical problem fairly simple. The background source terms
for formaldehyde and NOx were chosen so that the background concentration remained at
the same order of magnitude.

Table 2 - Initial conditions for background concentrations
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A B C

NO2 (molecule cm−3) 4.56 ×1010 8.00 ×1010 1.00 ×108

NO (molecule cm−3) 7.50 ×1010 1.00 ×1011 1.00 ×108

O3 (molecule cm−3) 5.00 ×1011 5.00 ×1011 5.00 ×1011

HCHO (molecule cm−3) 1.00 ×1011 1.00 ×1011 1.00 ×1010

The power station was taken to be a separate source of NOx and this source was represented
in a slightly different way. In this case the chimney region is treated as a subdomain and
the concentration in the chimney set as an internal boundary condition. In terms of the
mesh generation this ensures that the initial grid will contain more elements close to the
concentrated emission source. This is similar in methodology to the telescopic approach.
The concentration in the chimney corresponds to an emission rate of NOx of 400kghr−1. We
have considered only 10% of the NOx to be emitted as NO2.

We have assumed a constant wind speed of 5ms−1 in the x-direction. The eddy diffusion
parameter was set at 300 m2s−1 for all species.

7.3 Mesh generation and boundary conditions

The initial mesh was generated with only 100 elements. It is difficult to relate the size of
unstructured meshes directly to regular rectangular ones, but our original mesh was com-
parable to the size of mesh generally used in regional scale atmospheric models, the largest
grid cell being approximately 60km along its longest edge. Close to the chimney the mesh
was refined to elements of length 5km ensuring that it would be refined to a reasonable
resolution in this region of steep gradients. If we allow the mesh to refine two levels then the
smallest possible mesh size close to the chimney will be 1.25km in length. Spatial errors in
the concentration of NO were chosen as the criterion from which to further refine the mesh.
Test runs showed that regions of high spatial error coincided with steep spatial gradients.
The mesh can therefore be considered to adapt around steep NO concentration gradients.

8 Results

Each run was carried out over a period of 48 hours starting from midnight on day 1, so that
the diurnal variations could be observed. We present here only a selection of the results
which illustrate the main features relating to the adaptivity.

Figure 4 compares the structure of the base mesh with a mesh which has been adapted
up to level 2 at 14.00 on day 2. In this figure the sides of the polygons represent the
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Figure 4: The structure of the level 0 and level 2 adaptive mesh. The length of the domain
is 300km and the width 200km. The smallest and largest mesh lengths are approximately 5
and 60km respectively for the level zero domain.

distance between cell centres on the triangular mesh. We can see that the main area of mesh
refinement is along the plume edges close to the chimney, indicating that there is a high level
of structure in these regions. Figure 5 shows the O3 concentrations in ppb for the level 0
and level 2 meshes for case A at 14.00 on day 2. On the coarse mesh the plume is dispersed
over a much larger area than on the fine mesh and most of the plume structure is lost. Close
to the stack the concentration of O3 is much lower than that in the background because of
high NOx concentrations. The inorganic chemistry is dominant in this region and the ozone
is consumed by the reaction:

NO + O3 → NO2 + O2

As the plume travels downwind and the NOx levels decrease, the plume gradually mixes
with background voc’s leading to the production of NO2 which reverses the above reaction.
The concentrations of ozone can therefore rise above the background levels at quite large
distances downwind from the source of NOx. The peak ozone concentrations which occur at
the plume edges in the level 2 calculation are not captured by the level 0 solution.
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Figure 5: Ozone contours for case A, voc polluted air, level 0 and level 2 calculations.
Concentrations are in ppb.
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In figure 6 we present a cross plume profile of the NO2 concentrations at a distance of 10km
downwind of the chimney stack for case A at the same time as the previous figure. The
figure clearly shows the features at the edge of the plume which are revealed by the adaptive
solution. From the base mesh, where the distance between elements along the y-axis close
to the stack is 20km, it appears that the concentration of NO2 rises to a peak in the centre
of the plume. If the mesh is refined to higher levels then we start to see the true structure
of the plume emerging. With a level 3 solution we can see that the peak concentrations are
actually found along the edges of the plume and that the concentration of NO2 drops to very
low levels at the plume centre. From the area under these curves it is found that there is a
30% difference between the overall level 0 and the level 3 concentrations. This shows that not
only the peak concentrations, but the total integrated concentrations are very different for
the different levels of adaptivity. It is clear therefore that using a very coarse grid in regions
of steep spatial gradients can lead to an over estimate of total pollutant concentrations.
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Figure 6: Cross plume NO2 profiles 10km from stack in molecules cm−3, showing how the
level 3 solution captures the structure of the plume.

Figure 7 shows the O3 concentration for case B again at 14.00 on day 2, and Figure 8
for case C. In both cases the plume is over-dispersed in the level 0 case and the spatial
distribution of ozone is therefore inaccurately represented. In case B, polluted air, the ozone
concentrations in the level 2 solution drop quite significantly at the plume centre. For the
level 0 solution there is a large degree of smearing out of the concentrations and the plume
centre concentrations do not drop too far below the background levels. Again for case C, the
clean air case, the levels of ozone drop considerably in the plume compared to the background
since the levels of NO are much higher there. For the level 0 case these lowered concentrations
spread over very large distances owing to the over-dispersion of the plume. The location of
reduced/raised concentrations will therefore be incorrect for the level 0 results in all three
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cases. For each scenario the level 0 solution leads to a smoothing out of the ozone profiles so
that the true structure caused by the interaction of the plume with background air is missed.
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Figure 7: Ozone contours for case B, polluted air, level 0 and level 2 calculations.

0.0×100 1.0×107 2.0×107 3.0×107 4.0×107 5.0×107
0.0×100

1.0×107

2.0×107

3.0×107

Level 0

 

 

Clean air

7.
3

9.
4

11.5 13.6

15.7

15.7
17.8

17.8

17.8

17.8 17.8 17.8

19.9

19.9

19.9

19.9
19.9

0.0×100 1.0×107 2.0×107 3.0×107 4.0×107 5.0×107
0.0×100

1.0×107

2.0×107

3.0×107

Level 2

 

 

Clean air

1 3.1
5.2

5.2

7.3

7.37.3

9.4

9.49.4

11.5 11.5

11.5

13.6

13.6

13.6

15.7
15.7

15.7

15.715.7

17.8
17.8

17.8

17.8

17.8

19.9

19.9

19.9

19.9

19.9

19.9

Figure 8: Ozone contours for case C, clean air, level 0 and level 2 calculations.

9 Discussion

We have shown above that there are key features of plume characteristics which cannot be
represented by the coarse meshes generally used in regional scale models. Steep concentration
gradients close to the stack, such as the the variations in NO2 concentrations, might be
captured by telescopic models which provide a higher resolution in concentrated emission
areas. However, features such as the peak ozone concentrations which occur at the edges
of the plume for a long distance downwind of the source, may not be captured by such
techniques. For example, there is a strong possibility that peak ozone levels will occur in low
emission regions such as rural areas. Telescopic models would not refine in such low emission
regions and a fully adaptive algorithm might be the best way to resolve such features at large
distances downwind from the source. Since the adaptive method changes according to only
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the current solution rather than in a predescribed way, the grid should be able to cope with
changing wind conditions as well as refining according to source patterns. This application
needs to be tested in future work.

We have also indicated that as well as inaccurately describing peak concentrations and
concentration profiles, coarse meshes can also lead to inaccurate estimates of average or
integrated concentration levels. This is important if we are to use models to predict total
budgets for individual species. One of the key reasons why such errors might appear is the
nonlinearity in the chemical reaction rates. The nonlinear dependency of ozone concentra-
tions on NOx has been discussed many times in the literature and is well understood (Liu
et al, 1987). Sillman et al (1990) have also discussed the interaction between the compu-
tational mesh and nonlinear ozone chemistry, and have demonstrated the errors which can
occur due to using a coarse mesh in regions where plumes exist. Unless we are refining to
very high levels the nonlinear chemistry will be mesh dependent. Since it is impossible in
atmospheric models to reach a level of refinement where full convergence can be achieved,
then this will almost certainly be true in some regions of the model, particularly regions
where steep gradients occur.

For example, consider the simple nonlinear reaction

A + B → C.

If we compare the value of the rate of this reaction k[A][B] for a single element and an
element which has been adapted into four subelements, we can see that the total rates for
the two cases will not be equal. The concentrations of A and B in the large element are
assumed to be the average of that in the four smaller elements:

Aavg = 1
4

∑

Ai i = 1,2,3,4

Bavg = 1
4

∑

Bi i = 1,2,3,4

The source terms for the large element can now be evaluated as:

rate = k AavgBavg = k1
4

∑

Ai
1
4

∑

Bi

For the four smaller elements we take the source terms to be the average of the rates in each
element:

rate = k/4
∑

(AiBi)

The above two expressions will only be close in value if the concentrations in each of the
four cells are almost equal, so that for regions of steep spatial gradient there are likely to be
large errors induced by the nonlinear terms.
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10 Conclusions

We have presented in this work a simple example in order to illustrate the potential impor-
tance of adaptive methods for the solution of atmospheric models. Using a case study of
a power station plume we have illustrated the need for adaptive methods in order to accu-
rately represent the interaction of a concentration pollution source with background levels.
The adaptive solution reveals features such as peak levels of NO2 and O3 which could not
be detected using a coarse mesh. The change in mesh refinement also resulted in a change
in overall or integrated concentration levels. This indicates that due to strongly nonlinear
terms in the chemical reaction rates, the source terms in the p.d.e. will be mesh dependent.
Without using a fine mesh over the whole domain so that the concentrations in neighbour-
ing cells differ only very little, the effects of this nonlinearity could be quite significant. To
reduce the effects it is important to refine the mesh at least in regions of steep spatial gra-
dients. This has been partially addressed by the telescopic methods presently used in air
quality models. However, the present test case has shown that steep gradients can occur at
long distances downwind from the source, for example the change in ozone concentrations
along the edges of the plume. Adaptive algorithms seem to present a successful method of
achieving accuracy in such regions and can do so in an automatic way.

The work here is fairly preliminary in terms of using adaptive methods in a full air pollution
model. Questions of whether adaptivity is necessary in the vertical direction and whether
to use structured or unstructured meshes have still to be answered and the authors intend
to address these questions in their future work.
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