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MRI Tissue Classification with Neighborhood Statistics:
A Nonparametric, Entropy-Minimizing Approach

Tolga Tasdizen, Suyash Awate, Ross Whitaker, and Norman Foster

Abstract. We introduce a novel approach for magnetic resonance image (MRI)
brain tissue classification by learning image neighborhood statistics from noisy
input data using nonparametric density estimation. The method models images
as random fields and relies on minimizing an entropy-based metric defined on
high dimensional probability density functions. Combined with an atlas-based
initialization, it is completely automatic. Experiments on real and simulated data
demonstrate the advantages of the method in comparison to other approaches.

1 Introduction
Segmentation of magnetic resonance images (MRI) of the brain is an important problem
in biomedicine; it has a number of applications including diagnosis, surgical planning
and monitoring therapy. One of the fundamental tasks in brain MRI segmentation is
the classification of volumetric data (3D images) into gray matter, white matter and
cerebral-spinal fluid (CSF) tissue types. This classification is of great interest in the
study of neurodegenerative disorders such as Alzheimer’s Disease. It also has other ap-
plications such as the generation of patient-specific conductivity maps for EEG source
localization. Manual segmentation of high-resolution 3D images is an extremely time
consuming and subjective task; hence, automatic and semi-automatic brain tissue clas-
sification methods have been studied extensively in the field of biomedical image pro-
cessing. Recent developments in automatic brain tissue classification have led to a class
of systems that incorporate the following strategies:

1. Parametric statistical models of single-pixel image intensity for each tissue class,
2. Markov random field (MRF) type models of spatial smoothness,
3. Bias field correction, and
4. Digital brain atlas information.

In this paper, we propose a novel approach that combines the intensity and spatial
smoothness models (items 1-2) using an unsupervised learning approach that incorpo-
rates nonparametric statistics of local neighborhoods. The proposed method is compati-
ble with state-of-the-art segmentation methods that use probabilistic brain atlases [1, 2]
and bias field correction [3], but it uses an information-theoretic, data-driven approach
to incorporate image neighborhood information. Validation studies on simulated data
demonstrate that this approach offers significant advantages over the state-of-the-art.

The rest of this paper is organized as follows. Section 2 gives a partial overview
of related work. Section 3 introduces an entropy minimization framework that enforces
spatial regularity in the segmentation. Section 4 presents experimental results on both
simulated and acquired data. Section 5 summarizes our findings and discuses new re-
search directions that are motivated by this work.
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2 Related Work
This paper introduces a new approach for removing the effects of imaging noise in tis-
sue classification using a statistical framework. Others have used non-linear diffusion
for image denoising as a pre-processing step [4]. However, for probabilistic algorithms,
it is intuitive to incorporate spatial smoothness constraints directly into the segmen-
tation process via Markov random field (MRF) models [5, 6, 3, 7, 8]. These methods
modify single-pixel tissue-probabilities with energies defined on local configurations
of segmentation labels. Spatially smooth segmentations are assigned lower energies
and therefore are more likely. However, such MRF models can over regularize the
fine structured borders, e.g. the interface between gray and white matter; therefore,
it is often necessary to impose additional, heuristic constraints [6, 3]. Active contour
models [9, 10] have also been used to impose smoothness constraints for segmentation.
These methods typically attempt to minimize the area of the segmentation boundary,
an approach that also can over regularize interfaces. The method proposed in this paper
formulates the segmentation problem in information-theoretic terms using probability
density functions (PDFs) defined on the space of image neighborhoods. In contrast to
MRF-type approaches to tissue classification regularization [5, 6, 3, 7, 8], which formu-
late neighborhood probabilities on discrete segmentation labels, the method relies on
the discovery of regular patterns in the input data.

Lee et al.[11] analyze the intensity statistics of 3×3 pixel patches in optical images,
in the corresponding high-dimensional spaces, and find the the data to be concentrated
in clusters and low-dimensional manifolds exhibiting nontrivial topologies. Motivated
by this observation, we use nonparametric density estimation. Consequently, we impose
very few assumptions about the statistical structure of image neighborhoods. Popat et
al.[12] were among the first to use nonparametric Markov sampling in images. They
attempt to capture the higher-order nonlinear image statistics via cluster-based nonpara-
metric density estimation and apply their technique for image restoration, image com-
pression and texture classification. However, their method takes a supervised approach
for learning neighborhood relationships. The proposed method builds on the work in
[13], which lays down the foundations for unsupervised learning of higher-order image
statistics. However, that work proposes reducing the entropy of image-neighborhood
statistics as a method for removing image noise.

3 Method
A random field/process [14] is a family of random variables X(Ω; T ), for an index set
T , where, for each fixed T = t, the random variable X(Ω; t) is defined on the sample
space Ω. If we let T be a set of points defined on a discrete Cartesian grid and fix
Ω = ω, we have a specific realization of the random field as a deterministic function
x(t) – the image. In the case of 3D MRI data, t is a three-vector and T represents the
set of pixels in the 3D image. Let Nt ⊂ T be the set of pixels in the neighborhood of
t. If we associate with T a family of neighborhoods N = {Nt}t∈T such that u ∈ Nt if
and only if t ∈ Nu, then N is called a neighborhood system for the set T . An example
of such a neighborhood is a 3× 3 × 3 cube of pixels centered at t. We define a random
vector Z(t) = {X(t)}t∈Nt

, denoting its realization by z(t), corresponding to the set
of intensities at the neighbors of pixel t. If the image is real-valued, then z(t) ∈ IRm

where m is the number of pixels in the neighborhood.
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3.1 Neighborhood Entropy
Let pk(Z = z) be the probability of observing the image neighborhood z given that the
center pixel of the neighborhood belongs to the tissue class k. This PDF is called the
likelihood function. The total entropy associated with a set of K tissue PDFs is

H = −
K
∑

k=1

∫

IRm

pk(Z = z) log pk(Z = z)dz, (1)

where the integration is performed over IRm, the domain of the random vector Z. Let
the sets {Tk}

K
k=1 denote a mutually exclusive and exhaustive decomposition of T into

K tissue classes. We assume that the random process X , limited to pixels belonging
to a single class Tk, is stationary ergodic. Entropy is the expectation of negative log-
probability, and for such processes it can be approximated with the sample mean [15]

H(T1, . . . , TK) = −
K
∑

k=1

(

1

|Tk|

∑

t∈Tk

log pk(z(t))

)

. (2)

Piecewise stationarity is a better model for MRI, which is not truly stationary. In prac-
tice, the stationary ergodic assumption can be relaxed as shown in Section 3.2.

We consider the optimal decomposition (segmentation) to be the sets {T̂k}
K
k=1 for

which H is minimum. If the PDFs pk(Z) are known, H can be minimized by assigning
any pixel t to the class with the highest likelihood for that particular realization z(t):

T̂k = {t ∈ T | pk(z(t)) ≥ pi(z(t)), ∀i 6= k} . (3)

In practice, the likelihood functions are not known a priori and have to be estimated
as well. We propose to iteratively estimate the likelihood functions and update the seg-
mentation sets {Tk}

K
k=1 until H converges. This approach is similar to the estimation

of means and variances for Gaussian PDFs in the Expectation Maximization algorithm.
However, the neighborhood random vector Z is not well represented by a Gaussian
PDF; hence, we use a nonparametric density estimation approach.

3.2 Nonparametric Multivariate Density Estimation
Entropy optimization on image neighborhoods entails the estimation of PDFs in high
dimensional spaces which is very challenging because these spaces are sparsely popu-
lated (the so-called curse of dimensionality). Despite theoretical arguments suggesting
that density estimation beyond a few dimensions is impractical, empirical evidence is
more optimistic [12, 13], and the results in this paper confirm that observation.

We use the Parzen-window nonparametric density estimation technique [16] with
an m-dimensional isotropic Gaussian interpolation kernel Gm with standard deviation
σ for all dimensions. The density estimate for tissue class k is

pk(Z(t) = z(t)) ≈
1

|Ak(t)|

∑

tj∈Ak(t)

Gm(z(t) − z(tj), σ), (4)

where Ak(t) is a small subset of Tk, chosen randomly. For a truly stationary random
process, it is sufficient to form a global sample Ak(t) and use it to evaluate pk(Z(t) =
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z(t)) for all z(t). For a piecewise stationary model, we estimate the PDF locally by
choosing the locations in Ak(t) from a spatial sampling Gaussian PDF centered at t.

Parzen-window density estimation involves the following parameters: the size of
the set Ak(t), the standard deviations of the spatial sampling Gaussian and the interpo-
lation Gaussian kernel. The first two are not critical, and they can easily be fixed for a
wide range of MRI. In all of our experiments, we fix the standard deviation of the spa-
tial sampling Gaussian to 15 pixels. This also automatically determines the minimum
number of required samples in Ak(t) to be 1000 as explained in [13]. On the other
hand, the standard deviation σ of the interpolation kernel in equation (4) is critical for
successful density estimation in high dimensional spaces. The optimal choice for this
parameter depends on the sparsity of the data which varies with various factors includ-
ing the amount of noise present in an image. We choose σ to minimize the entropy of
the associated PDF via a Newton-Raphson optimization scheme [13]. This choice for σ
is consistent with our entropy minimization segmentation formulation.

3.3 MRI brain tissue classification algorithm
The segmentation algorithm iteratively estimates likelihood functions from the current
segmentation sets {Tk}

K
k=1 and updates {Tk}

K
k=1 according to the new likelihoods. The

iterations are carried out until the reduction in entropy H computed from equation (2)
drops below 0.1% of the current value of H . We use four tissue classes: gray matter,
white matter, CSF and non-brain tissue. A single non-parametric PDF is sufficient to
represent the complicated non-brain tissue class.

The algorithm requires an initialization which can be obtained by registering the
MRI with a brain atlas. Digital brain atlases can be used to provide segmentation labels
for a reference dataset [17, 18] or prior tissue probabilities computed from a population
of subjects [1, 2, 19]. In this paper, we use the ICBM probabilistic atlas [19], which
provides probabilities of gray matter, white matter and CSF classes for each pixel. We
register this atlas with the MRI by computing the affine transformation that maximizes
a mutual information metric. The registered probability maps are then used to form an
initial segmentation using equation (3). As in [1, 2], we also treat these atlas probability
maps as prior probabilities. However, we have found that while the priors help in the
discrimination between brain tissues vs. non-brain tissues, they don’t offer significant
benefits for our method when choosing between the brain tissues. Hence, we sum the
CSF, white matter and gray matter priors into a single brain-tissue prior map. The non-
brain-tissue prior map is then obtained by subtracting this map from unity.

The final component in MRI brain tissue classification is the correction of intensity
inhomogeneities. Various solutions to this problem have been proposed. The approaches
in [20, 21, 3] are the most interesting because they propose a combined approach that
iteratively updates the segmentation labels and the bias field correction. The focus of
this paper is not on bias field correction; however, to show that our segmentation method
is compatible with previous techniques, we have implemented a simplified version of
the polynomial least-squares fit correction described in [3].

4 Results and Validation
We validate the proposed approach on simulated images with known ground truth. We
use 1 mm isotropic T1-weighted images from the BrainWeb simulator [22] with varying
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amounts of noise and bias field. The neighborhood system is chosen to include the six
adjacent pixels in the three Cartesian directions in addition to the center pixel. Hence,
the PDFs exist in a seven dimensional space.

Leemput et al. [1] use the Dice metric [23] to evaluate the performance of their
state-of-the-art Expectation Maximization and MRF based approach on images from
the BrainWeb simulator. For comparison purposes, we use the same metric. Let T̃k

denote the ground truth set of pixels in tissue class k, then the Dice metric for class k is
defined as 2|T̂k ∩ T̃k|/(|T̂k| + |T̃k|), where | · | denotes set size.

The first validation experiment is performed on simulated T1-weighted data without
any bias field and with intensity noise levels in the range 0% − 9%. The noise percent-
ages are defined with respect to the mean intensity of each tissue class. Figure 1 plots the
Dice metric for gray and white matter tissue classifications from the proposed algorithm
and the corresponding values given in Leemput et al. [1]. The Dice metric for combined
brain tissues vs. non-brain tissues is consistently above 98% for both algorithms and is
not shown in this paper due the lack of space. The proposed algorithm performs better
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Fig. 1. Dice metric as a function of noise level: (a) gray matter, and (b) white matter. Solid and
dashed lines plot the performance of the proposed algorithm and Leemput et al. [1], respectively.

at all noise levels for gray and white matter tissues. For 3% noise, which can be consid-
ered typical for real MRI, the performance gains are approximately 1.1% and 2.8% for
gray and white matter, respectively. The proposed approach scales better with increas-
ing noise amounts; the performance gain at 9% noise is 3.8% and 6.1% for gray and
white matter, respectively. This property would be useful for segmenting clinical, fast
acquisition MRI that can have high amount of noise. The use of image neighborhood
information is critical to the success of the proposed method. We repeated the segmen-
tation experiments at the 9% noise level using only the center pixel of the neighborhood.
In this case, the method learns single-pixel intensity PDFs in a nonparametric manner.
The Dice metrics for gray and white matter were 82% and 85%, respectively, a drop of
8% from the neihborhood algorithm. Figure 2 visually demonstrates this same drop in
performance using an axial slice from the 3D image with 9% noise.

For low noise levels, the performance of the parametric Expectation Maximization
algorithm drops dramatically [1] because pixels close to the interface between gray
and white matter are systematically assigned to the class which happens to have the
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larger amount of natural variability, i.e. gray matter. In contrast, nonparametric density
estimation does not suffer from this drawback as can be observed in Figure 1.

(a) (b) (c)
Fig. 2. (a) Simulated, noisy image. Tissue classification (b) without, and (c) with neighborhood
information. Classification legend: CSF(black), gray matter(dark gray), white matter(light gray).
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Fig. 3. Results on simulated data with 40% bias field. Dice metric as a function of noise level
with and without bias field correction: (a) gray matter, and (b) white matter.

The second validation experiment is performed on simulated T1-weighted data with
40% bias field, i.e. the multiplicative factor is in the range 0.8-1.2 over the brain area.
Figure 3 plots the Dice metric with and without bias field correction for the proposed
algorithm and the corresponding values given in Leemput et al. [1]. These results point
out the importance of performing bias field correction. Also, as in the previous exper-
iment, the proposed method performs better at all noise levels for both tissue types.
We use a 2nd degree polynomial least squares fit to the observed multiplicative factors
between white matter pixel intensities and the white matter mean intensity. The Dice
metric values obtained with this correction method are approximately 0.5% worse than
the values shown in Figure 1 for data with no bias field. Leemput et al.use a 4th degree
polynomial fit using all tissue types and obtain results that are effectively the same as
their results for unbiased data. We expect that with better bias correction methods, such
as the one used in [1], this difference can be made very small for our algorithm as well.

Figure 2 also illustrates that our approach can remove the effects of noise from the
classification results without over regularizing the interfaces between different tissue
types. We have also tested the algorithm on a 1 mm isotropic real T1-weighted image.
Figure 4 shows coronal and axial slices from this data with corresponding tissue classi-
fications. In both of these cases, the fine structure of the interface between gray and and
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white matter is preserved without the need of placing any additional constraints on the
neighborhood PDFs learned by the algorithm.

Currently, the disadvantage of the proposed algorithm is the computational speed.
For volumetric data with dimensions 181 × 217 × 181, one iteration of the algorithm,
including bias field correction, density estimation and tissue label assignments takes
approximately 90 minutes to compute on an Intel 2.7Ghz processor. The algorithm re-
quires 4-7 iterations to converge depending on the noise level in the data. We plan to
address computational issues by using fast density evaluation algorithms [24].

(a) (b) (c) (d)
Fig. 4. Real data: (a) coronal slice, (b) classification, (c) close-up view of an axial slice, and (d)
classification. Classification legend as in Figure 2.

5 Conclusion
In this paper, we introduced a segmentation method that uses entropy minimization to
learn nonparametric statistics of local neighborhoods from noisy data in an unsuper-
vised manner . This segmentation framework is used in conjunction with the ICBM
brain atlas and bias field correction methods from the literature in an automatic MRI
brain tissue classification application. Validation studies on simulated 3D images com-
pare favorably to a state-of-the-art parametric algorithm based on MRFs. Validation
studies on real data is also necessary, and will be performed as a continuation of this
work. Experiments on real and artificial data also demonstrate that noise is effectively
removed without over regularizing interfaces between different tissue types.

The algorithm easily extends to larger neighborhood systems and multi-modal data.
Preliminary experiments with 2D images demonstrate that the classification perfor-
mance can be slightly improved in these cases. Also, we have not considered the partial
voluming effect, which has been studied in several papers in the literature. In future
work, we plan to generalize the entropy defined in equation (1) from tissue labels to
mixture percentages; hence, treating the partial voluming effect in an explicit manner.
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