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Abstract

For 3D surface reconstruction problems with noisy and in-
complete range data measured from complex scenes with
arbitrary topologies, a low-level representation, such as
level set surfaces, is used. Such surface reconstruction
is typically accomplished by minimizing a weighted sum
of data-model discrepancy and model smoothness terms.
This paper introduces a new nonlinear model smooth-
ness term for surface reconstruction based on variations
of the surface normals. A direct solution requires solving
a fourth-order partial differential equation (PDE), which
is very difficult with conventional numerical techniques.
Our solution is based on processing the normals separately
from the surface, which allows us to separate the problem
into two second-order PDEs. The proposed method can
smooth complex, noisy surfaces, while preserving sharp,
geometric features, and it is a natural generalization of
edge-preserving methods in image processing, such as
anisotropic diffusion.

1. Introduction

The precision of range measurement systems, such as
time-of-flight laser range finders, has been increasing while
their price drops. If combined with a well-founded method
for surface reconstruction, these improvements could make
capturing 3D shape as ubiquitous as photography. How-
ever, significant challenges to surface reconstruction, such
as measurement noise and variations in measurement den-
sity, remain. This paper addresses the problem of preserv-
ing geometric features, i.e. edges, corners and junctions on
surfaces, in full 3D reconstructions of complex scenes from
multiple, noisy range images. Figure 1(a) illustrates a typ-
ical range image. Measurement noise and occlusions (be-
tween the file cabinet and the chair) can be observed in this
data. Figure 1(b) illustrates the reconstruction with the pro-
posed method from a similar view point. The result is an im-
provement over the state-of-the-art full 3D reconstructions

(a) (b)

Figure 1. (a) A range image surface, and (b) fea-
ture preserving surface reconstruction.

for complex scenes: creases and corners at the intersections
of the various planes in the scene have been preserved while
measurement noise has been effectively eliminated.

Full 3D reconstruction recovers a view-independent sur-
face model from multiple registered range images. This
problem is distinct from depth reconstruction, also known
as
���
� D reconstruction, which recovers structure from only

one point of view or a stereo pair of images [1, 2, 3]. Depth
reconstruction does not produce a model that makes sense
when viewed from different viewpoints or when determin-
ing inherently 3D properties, such as volume. For instance,
occluded portions of the scene in Figure 1(a) are present in
the reconstructed model because multiple range images are
used in full 3D reconstruction. This result would not have
been possible with depth reconstruction methods. The full
3D problem is not a mere extension of depth reconstruc-
tion because it lacks the following properties of the latter:
the depth map has a well-defined topology (a function of
two variables) and there is a one-to-one correspondence be-
tween the measurements and the positions on the model.

Recovering a full 3D model from a set of noisy 2D
range images is an ill-posed inverse problem. Hence, the



estimator can not depend solely on the input data, and re-
quires regularization. Regularization reduces the effects of
measurement noise and fills surfaces in a plausible man-
ner where there is no data from any of the range images
by placing additional constraints on the reconstructed sur-
faces. This problem has been approached in the computer
vision literature mainly as a problem of finding sets of geo-
metric primitives that best represent the objects being mea-
sured [4, 5, 6, 7]. Primitives typically have only a few shape
parameters, i.e., height and radius for a cylinder; therefore,
impose their own structure on to the data. In this case regu-
larization is inherent to the surface model. Such approaches
are suitable for higher-level tasks of object recognition and
decomposition into parts; however, they are limited to mod-
eling relatively simple objects.

An alternative is to use level set surfaces [8], which are a
non-parametric shape representation. Level set surfaces can
be used to recover scenes with arbitrarily complex geom-
etry and topology. The reconstructed level set models are
not limited to prescribed topologies, and can adapt to the
topology of the measured scenes automatically. However,
level set surfaces do not have a rigid shape structure, and
therefore, regularization must be performed explicitly.

We formulate surface estimation (reconstruction) in a
variational energy optimization framework. Variational
methods typically minimize an energy function, which is a
weighted sum of an input data-model discrepancy term and
a model smoothness term, with respect to the model. Then
the surface estimator is defined as��������	��
���������������� � �����	��
! "�$#%����
'& (1)

where
�

determines the relative weights of the terms. The
input data-model discrepancy term, � �����	�(
 , forces the sur-
face estimator to be “close” to the measured data. The
model smoothness term,

#%����

, provides regularization.

This paper studies the model smoothness term. Surface
area is a simple choice and has been used extensively in
previous work [9, 10]. This is based on the assumption that
among surfaces with similar data-model discrepancy mea-
sures, those that have smaller area are simpler than surfaces
of larger area, and therefore have a higher chance of oc-
currence in reality. Despite its simplicity, surface area as
a measure of smoothness has significant drawbacks, such
as pinching of thin structures. We argue that measuring
the variation of the surface normal vectors offers a bet-
ter and more flexible alternative. Specifically, this family
of smoothness functions offers an elegant and mathemat-
ically correct generalization of Perona & Malik’s (P&M)
anisotropic diffusion [12] to surface reconstruction. This
generalization allows us to preserve important shape fea-
tures such as edges, corners and junctions in reconstructed
scenes while effectively eliminating measurement noise and
other artifacts.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related work in the literature. Section 3
discusses level set surface reconstruction and proposes a
generalization of P&M’s edge detection method as a level
set surface regularization term. Section 4 solves the pro-
posed regularization term as a level set motion. Section 5
demonstrates the quantitative advantages of the proposed
method and provides examples of reconstruction of real,
complex scenes from noisy range data. Section 6 summa-
rizes the contributions of this paper and discusses possibili-
ties for future research directions.

2. Related Work

As mentioned earlier, computer vision researchers ap-
proach surface reconstruction either as a depth reconstruc-
tion problem [1, 2, 3] or a view independent problem. Ear-
lier literature on the view independent problem focuses
mainly on high-level approaches that fit various geometric
primitives to the data [4, 5, 6, 7]. Both problems are dif-
ferent from a view independent reconstruction of complex
scenes with low-level shape representations. In response
to the advances in 3D range sensing device, researchers in
a variety of fields have started to study this problem. In
computer graphics, the accuracy of the data exceeds the re-
quirements of the application, and therefore the problem is
treated as a problem of assembling pieces of noiseless infor-
mation. For instance, Turk and Levoy [13] propose a “zip-
pering” algorithm for combining triangle meshes of range
maps of an object from different points of view. Curless
and Levoy [14] take into account measurement noise by av-
eraging range information in a volumetric representation.
However, their method is not based on statistics of the scan-
ner and model geometry.

Several authors [9, 10] demonstrate the advantages of us-
ing level set methods for reconstructing complex shapes.
They use mean curvature flow, a second-order level set par-
tial differential equation (PDE), to obtain a smooth solu-
tion. This flow is the gradient descent for the first variation
of surface area [15]. Hence, for regularization purposes,
both approaches are formulated with the surface area model
smoothness term in the estimator (1). Mean curvature flow
suffers from several problems including volume shrinkage,
pinching of thin structures, and elimination of sharp fea-
tures [11]. These problems can be observed in the results
presented in Section 5.

To alleviate the problems associated with mean curva-
ture flow, several authors have proposed smoothing level set
surfaces by modified second-order flows that use weighted
combinations of principle curvatures. For instance, Lorigo
et al. [16] propose a smoothing flow that uses the mini-
mum curvature for tubular structures. Clarenz et al. [17]
propose an anisotropic surface mesh diffusion as a modi-



fied second order flow, but this modified PDE lacks a varia-
tional basis, and therefore is not useful for surface recon-
struction. Stevenson and Delp propose minimizing total
curvature, which is the surface integral of the sum of the
squared principal curvatures, for regularizing depth recon-
struction and parametric Monge patches [18]. This method
does not apply to level set surfaces. Furthermore, the gra-
dient descent flow for total curvature is a fourth-order PDE
that is computationally expensive and unstable to compute.
Hence, Stevenson and Delp use a non-geometric thin plate
approximation.

In previous work [11], we propose a two-step approach
to surface smoothing: (1) operate on the normal map of a
surface, and (2) refit a surface to the processed normals. In
this paper, we show that an quadratic measure on the vari-
ations in surface normals variations is equivalent to total
curvature. Unlike using calculus of variations on the total
curvature of the surface directly, our formulation in terms
of the normals yields a computationally tractable and sta-
ble gradient descent flow. Furthermore, we also propose a
robust measure of surface normal variations that allows a
novel generalization of P&M feature preserving anisotropic
image diffusion [12] to surface reconstruction.

Our energy optimization approach can also be stated in
terms of Bayesian maximum a posteriori (MAP) estima-
tion. According to Bayes rule, MAP estimators maximize
the logarithm of the product of two distinct probabilities:
the likelihood of the measurement data conditioned on the
surface model and the prior probability distribution of the
model. In the estimator given by (1), the input data-model
discrepancy term corresponds to the logarithm of the con-
ditional likelihood and the model smoothness term corre-
sponds to the logarithm of the prior [10]. This brings up a
connection with other approaches that use shape priors for
active contour and level set models [19, 20, 21, 22]. How-
ever, in all of these works, the “prior” is a global descrip-
tion of expected shape(s) learned from a training set. In the
segmentation and/or registration stage, the shape model is
forced to be a rigid transformation of the learned prior shape
with some tolerance for local variations. This approach
is useful for reconstructing/segmenting specific classes of
shapes, such as cortical surfaces from head MRI data; how-
ever, learned priors can not be used for regularization of
reconstructed models in a general setting. The commonal-
ity between general shapes is not on a global level, but on a
lower level, such as probability distributions for surface nor-
mal variations, which we use in this paper. The quadratic
and robust penalty term on surface normal variations yield
generic isotropic and anisotropic low level shape priors, re-
spectively. These priors are not learned from a training set.

3. Variational Implicit Surface Reconstruction

A deformable surface,
� � � 


, can be represented as the
zero level set of a higher dimensional embedding function����� �	��
�� ���� �

,
� � � 
������� � 
�� � �	����� ����� � 
 � � 
�����

,
where

�
is the evolution parameter (time). Surfaces defined

in this way divide a volume into two parts: inside (
��� �

)
and outside (

��� �
). The family of PDEs that describe

motions of
�

via  �"!  � , and the upwind scheme for solving
them on a discrete grid is the methods of level sets [8].

The surface reconstruction energy of (1) can be ex-
pressed as a function of the data

�
, and the level set model�

. Whitaker [10] formulates the input data-model discrep-
ancy part of this energy as a volumetric integral

� � � �	��
 �$#&%('%��� �	��
*)"� � ��� 
 
,+-��� (2)

where . is the volumetric domain swept out by the range
images,

'
is an accurate line-of-sight error function, and)

is the Heaviside function [23]. Minimizing (2) by itself
would correspond to a maximum likelihood estimator, but
a maximum apriori estimator is implemented by using sur-
face area as a model smoothness term:

#%� � 
�/#&% �0� 12� �3� 
 �4� +-�,5
(3)

Then, the gradient descent for
�

is

 �6!  � � �0� 12� � � 
 �4� ��'%��� �	��
$ "�7)"��� 
 
 �
(4)

where
) � 198 � 12�"!	�0� 12�:�;� 


is mean curvature [15].
Using discrete time steps, the model is evolved as

� � �  < � 
 � � � � 
  < �  �6!  � . The steady-state solu-
tion of this evolution is the surface estimator:

�� �� �=� � � � �?> �0@2A�B�C � �D� �*E 
�F� �
.

In this paper, we use the same data-model discrepancy
term and the initialization method for

� � � �G� 

. However,

we propose a better model smoothness term based on mea-
sures on the variation of the surface normal vectors, H ,

#%� � 
� #I%(JGK&�;� 12L H ��� 
 �M� NPOPQR�0� 1R� ��� 
 �4� +-��� (5)

where
1 L H is the matrix whose rows are the gradient vec-

tors of the respective components of H intrinsic to the iso-
surfaces of

�
. The Frobenius matrix norm, i.e. the square

root of the sum of squares of the matrix elements, is de-
noted by

�;�S8M�0� NTO
. Notice that if

J ��U�
��WV
, (5) reduces to sur-

face area (3). On the other hand, if we choose a quadratic
measure,

J �3U�
 �XU �
, we obtain the sum of squared prin-

cipal curvatures (total curvature) [11]. The resulting gradi-
ent descent PDE is analogous to running the heat equation
PDE on the surface normals. Figure 3 (a) illustrates a noisy
field of unit vectors which are the gradient directions for the
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Figure 2. (a) A quadratic penalty term with a
hard cutoff, (b) an exponential penalty term cor-
responding to P&M’s anisotropic diffusion.

noisy distance transform of the polygon shown. Figure 3 (b)
demonstrates the result of smoothing with the PDE derived
above. Similar to the heat equation, this flow eliminates
both noise and sharp discontinuities in the data. Our goal
is to preserve these discontinuities while penalizing noisy
variations of the normals elsewhere. This is similar to seg-
menting the normal map.

Mumford and Shah formulate the problem of image seg-
mentation in a variational framework [24]. The Mumford-
Shah energy is the sum of three terms: (i) the data-model
discrepancy, (ii) quadratic penalty on model image smooth-
ness over the image domain except on a set of discontinu-
ities modeled by a binary image, and (iii) the length of the
discontinuities in that binary image. The sum of the latter
two terms correspond to using the penalty function,

J �3U�

,

shown in Figure 2(a). The existence of a binary model poses
serious difficulties in the estimation process. Nordstrom
[25] and Black et al. [26] show that P&M anisotropic dif-
fusion approach to edge detection [12] is equivalent to using
a corresponding robust penalty term in the Mumford-Shah
segmentation framework. This penalty term,

J ��U 
 � V � ��� ���� � � (6)

shown in Figure 2(b), avoids using a binary discontinuity
model. The parameter 	 controls the degree of edge preser-
vation. The above result can readily be generalized to nor-
mal vectors by substituting

U � �;� 1 L H �3� 
 �0� NTO . Figure 3(c)
illustrates the result of smoothing the noisy image of nor-
mals with this penalty term. The discontinuities in the nor-
mal directions between the quadrants are preserved while
the noise is smoothed. Minimization of energies of the form
(5) require solving fourth-order level set PDEs, a computa-
tionally unstable and expensive task. The next section intro-
duces a method for breaking the solution into two second-
order PDEs that can be efficiently solved.

4. Level set motion via normal map diffusion

In equation (5),
1 L H is the matrix whose rows are the

gradient vectors of the respective components of H intrin-
sic to the isosurfaces of

�
. By intrinsic, we mean that when

using implicit representations one must account for the fact
that derivatives of functions defined on the surface are com-
puted by projecting their 3D derivatives onto the surface
tangent plane. The 
 
 
 projection matrix for the implicit
surface normal is � � 12�� 1R�6! �0� 1R�:�M� �

, where
�

is the
tensor product. The projection matrix onto the surface tan-
gent plane is � � � , where � is the identity matrix. Then
the intrinsic gradient of the normals can be defined using
this projection operator and the regular Euclidean gradient12L H � 1 H � � � � 
 .

Given an initialization for
�

with the methods described
in [10], we compute the surface normals H � 12�6! �0� 12�:�M�

.
Then, to avoid solving fourth-order level set PDEs directly,
we decouple H from

�
. In other words, we fix

�
(the sur-

face shape) as we process the normals to minimize the en-
ergy given by (5). Solutions to constrained minimization
for unit vectors on an implicit surface are discussed in [27];
however, the goal in that work is to not to smooth surfaces,
but to diffuse general vector functions on surfaces. We im-
plement the constrained minimization with the following
second-order PDE: "H � � � � � � H � H 
 1 8��MJ���K&�0� 1RL H �0� NTOPQ 12L H�� (7)

where
J � ��U 


is the derivative of
J �3U�


. For the penalty term

given in (6), � � ��� ���� � up to a constant multiplicative fac-
tor. Figure 3 (a) illustrates a noisy field of unit vectors. Fig-
ure 3 (b) and (c) demonstrate results of smoothing with the
choices of

J ��U 

discussed in Section 3.

The next step is to relate the deformation of the level sets
of
�

to the evolution of H . Once more, using a variational
approach, we can manipulate

�
so that it fits the new normal

field by minimizing a penalty function,� � � 
 � # % ��� 12� 8T12� � 12� 8P1 H�� +�� � (8)

that quantifies the discrepancy between the gradient vectors
of
�

and the target normal map Ballester et al. [28] use the
same function for filling in missing regions in images by
joint interpolation of the image intensity and its gradient.
The first variation of this function with respect to

�
is+ �+ � � � 1W8�� 12��;� 12�7�M� � H�� � ��� ) L � )! #" (9)

where $ L is the mean curvature of the level set surface and$&% is half the divergence of the normal map. Figure 3(b)
and (c) illustrate the curves refitted to the smoothed normal
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Figure 3. (a)Normals computed from a noisy distance transform of a polygon, normals smoothed with (b) the
quadratic penalty term, and (c) the robust penalty term.
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Figure 4. Surface reconstruction flow chart.

fields with this approach. Finally, the gradient descent for
the surface reconstruction with the model smoothness en-
ergy (5) is

 �6!  � � �;� 12� � � 
 �M��� '%��� �	��
$ "� � ) L ��� 
 � )  ��� 
���� �
(10)

which is similar to (4), but has a different smoothing term.
The flow chart for the algorithm is shown in Figure 4.

We have derived a gradient descent for the normal map that
minimize the energy functions of the form (5). The normals
processing stage of the algorithm computes the gradient de-
scent for the normals defined in (7) for a fixed number of
iterations (25 for the experiments in this paper). Hence, we
avoid evolving evolving the normals too far away from their
initialization from

�
. The surface fitting to the the combined

normal map and data terms is given as a gradient descent in
(10). This stage of the algorithm is run until the discrep-
ancy measure (8) between the new normals and

�
ceases to

decrease, which signals the need for another round of pro-
cessing the normal vectors. The overall algorithm repeats
these two steps to minimize the surface reconstruction en-
ergy in terms of

�
until the RMS value for  �6!  � becomes

small (less than
VT� ��� ), which signals convergence. This

algorithm consists of solving two second-order PDEs in se-
ries instead of a direct fourth-order PDE, which makes it
computationally tractable. We show the relationship of this
algorithm to solving the direct fourth-order PDE in [11].

5. Experiments
In this section, we compare reconstructions with pro-

posed the model smoothness energies against reconstruc-
tions with the standard surface area energy. For the pro-
posed family of energies (5), we will call the choice ofJ �3U�
�� U �

and
J ��U 
 � V � � � � �� � , the isotropic and

anisotropic reconstructions, respectively. Note that 	 is
fixed at

� 5 �
for all the experiments. Unlike, in P&M im-

age diffusion, this parameter does not need to be changed
for different surface reconstructions. In the context of P&M
image diffusion, the units of 	 are in gray levels; conse-
quently, the optimal choice of 	 is image dependent. In sur-
face reconstruction, the units are in curvature which is data
independent. This makes it possible to choose a 	 value that
gives consistent results over a broad range of surfaces.

We first experiment with geometric shapes for which we
can construct analytical distance transforms. We use the
following experiment setup:

1. Build range images by simulating the laser range finder
located at several positions,

2. Add independent Gaussian noise to the range images,

3. Reconstruct a model, and

4. Compute the root mean square geometric distance, be-
tween the resulting model and the analytical shape.

The first shape we examine is a sphere with radius
V

unit.
All other distances are relative to this measurement unit.
For this experiment we simulate six range finders located at
a distance of 
 5 � units from the center of the sphere along
the six cardinal directions. Independent Gaussian noise
with a standard deviation of

� 5;V
units, is added to each range

image. Figure 5(a) plots the RMS error, � , against the log-
arithm of the regularization weight,

>
	 ��
, for the different



reconstructions. The units on the y-axis are the same as the
units used to described the size of the shape. It can be ob-
served from Figure 5 that the limiting value for � as

�  �
is approximately

� 5 � V � �
. This limit is the error obtained

if surface reconstruction is performed without regulariza-
tion. This error level is smaller than the noise added to the
range images because of the averaging effect of using mul-
tiple range images. The anisotropic and the isotropic cur-
vature priors at their optimal weight provide a �

���
reduc-

tion on this error. On the other hand, surface area provides
slightly better than a

� ���
reduction at its optimal weight.

The shapes of the error plots is more important than the re-
sults at optimal choices of weight. The surface area prior
performs poorly as

�
is increased beyond

V
; this is due to

the fact that the surface area prior causes shrinkage in the
surface models. In practice, this will mean difficulties for
the user in choosing a weight for surface area regularization
that works different reconstruction scenarios. In contrast,
the proposed reconstructions have relatively flat error plots.
Isotropic reconstruction is as good as the anisotropic recon-
struction because the sphere does not contain creases.

To examine the differences between isotropic and
anisotropic reconstruction further, we experiment with a
cube shape. In this experiment, we use � range finder lo-
cations (one in each octant). Figure 6 (a) and (b) show the
original cube with sides

V
unit long, and the surface ini-

tialization from the noisy range images, respectively. In-
dependent Gaussian noise with standard deviation

� 50V
was

added to the simulated data to create the noisy range im-
ages. The results (see Figure 6) with isotropic reconstruc-
tion have rounded corners compared to the successfully
denoised, approximately piecewise planar results obtained
with the anisotropic reconstruction.

The next example involves 12 real range scans of a room
which were registered using the methods described in [10].
A close-up view of a portion of one of the range images and
the result of anisotropic reconstruction are shown in Fig-
ure 1. The anisotropic reconstruction of the entire scene is
shown in Figure 7. We now examine reconstructions of one
of the chairs in this scene. Figure 8 (a), (c) and (e) illustrate
the results obtained by qualitatively choosing good values
for

�
. Figure 8(b), (d) and (f) illustrate the results if

�
is

chosen to be
VT�

times this value. These results show that
the anisotropic reconstruction produces the best results and
is least sensitive to the choice of

�
. Another well known

problem with surface area reconstruction can easily be ob-
served in Figure 8(b); the beam connecting the base to the
seat is being pinched-off. This experiment illustrates the
importance of the anisotropic reconstruction for scenes with
high curvature features and sharp creases.

Figure 9 illustrates anisotropic reconstructions of a ve-
hicle. This example further illustrates the success of the
anisotropic reconstruction in denoising data with sharp fea-
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Figure 5. Rms distance between the recon-
structed and the analytical surface for (a) the
sphere, and (b) the cube.

tures. The current shortcoming of this method is the com-
putational speed which was approximately one hour on a
Intel Xeon 1.7Ghz Proc. for the examples presented.

6. Conclusion
We derive a variational generalization of P&M

anisotropic diffusion for feature preserving surface recon-
struction. This generalization is based on a robust penalty
on surface normal vector variations, which is shown to
have important advantages over using surface area and the
quadratic penalty on surface normal vector variations for
regularization. The data term is independent of the prior,
the ideas introduced in this paper can be applied to other
forms of surface reconstruction such as applications in to-
mography [29]. We use implicit surfaces, representing the
implicit function on a discrete grid, modeling the deforma-
tion with the method of level sets. Therefore, the method
applies equally well to surfaces that can be represented in
a volume. The results shown in this paper are not possible
with previous methods in the literature.

Measures on surface normal variations require solving
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Figure 8. Results for the surface area reconstruction with weights (a) � , and (b) ��� , isotropic reconstruction
with weights (c) � , and (d) ��� , anisotropic reconstruction with weights (e) � , and (f) ��� .

(a) (b) (c)

Figure 6. (a) Initialization from noisy data. Result-
ing model for (b) isotropic reconstruction, and (c)
anisotropic reconstruction with ������� .

fourth-order PDEs on level sets. However, by processing
the normals separately from the surface, we can solve a pair
of second-order equations instead of a fourth-order equa-
tion. This method is numerically more stable and compu-
tationally less expensive than solving the fourth-order PDE
directly. The shortcoming of this method is the computa-
tion time; however, the process lends itself to parallelism,
and therefore, the use of multi-threading.
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Figure 9. (a) One of 12 range images used in ex-
periment, (b) result of feature preserving recon-
struction from a similar view point, and (c) a dif-
ferent view point.


