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Abstract. We present a method for two-sample hypothesis testing for
statistical shape analysis using nonlinear shape models. Our approach
uses a true multivariate permutation test that is invariant to the scale
of different model parameters and that explicitly accounts for the de-
pendencies between variables. We apply our method to m-rep models of
the lateral ventricles to examine the amount of shape variability in twins
with different degrees of genetic similarity.

1 Introduction

We have been developing methods for statistical shape analysis utilizing medial
representations. However, these and many other useful shape models contain
a large number of parameters that lie in nonlinear spaces, and so traditional
statistical analysis tools designed for Euclidean spaces have to be reformulated.
In this paper we formalize the notion of hypothesis testing against data that
lies in the direct product of a large number of nonlinear spaces as a tool for
understanding growth and disease.

Recently, Fletcher et al. have developed methods for one-sample statistical
shape analysis based on medial representations, or m-reps [1–3]. We turn to the
problem of two-sample statistics, where we wish to answer the following ques-
tion: given two samples from two different populations, do they have the same
statistical distribution? This is the classic problem of testing the null hypoth-
esis, H0, that the populations are identical, against its complement, H1. The
main difficulty arises from the fact that m-reps lie on high-dimensional non-
linear manifolds where assumptions of Gaussianity are unreasonable, making
traditional parametric or linear methods inapplicable.

We present a true multivariate permutation test approach that is equiva-
lent to traditional nonparametric permutation tests in the univariate case, and
converges to the same result as Hotelling’s well-known T 2 test in the linear,
normally-distributed case. The only tool we require on the underlying space our
data lives in is the existence of a metric.

The mechanics of the method are similar to those used in correction for
multiple tests [4]. Unlike methods of direct combination, which sum up various
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Fig. 1. Left: An example m-rep of a left lateral ventricle. The mesh vertices and off-
shooting spokes make up the medial atoms. The shape the m-rep was fit to is shown as
a point cloud surrounding it. Right: Ventricle pairs from five monozygotic twin pairs
(top) and five dizygotic twin pairs (bottom).

test statistics [5, 6], our method is invariant to the scale of each term. This is
critical when different shape parameters have different physical units and the
choice of weighting between them can be arbitrary. Our test also accounts for
the dependencies between model parameters.

1.1 A Metric Space for M-reps

M-reps are a medial shape model whose parameters provide intuitive descriptions
of local object thickness, bending, narrowing, and widening. They have been
well-described by previous authors [7], but for completeness we provide a brief
summary. An m-rep is a coarse grid of samples that lie on the medial axis of an
object. Each sample, called a medial atom, consists of a 4-tuple m = (x, r,n0,n1)
of parameters. The 3-D position of the atom is x ∈ R3, the distance to the two
closest boundary points is r ∈ R+, and n0,n1 ∈ S2 are unit vectors that point
from the atom position towards the two boundary points. The direct product of
these spaces, R3 × R+ × S2 × S2, is denoted M(1), and an entire m-rep with p
medial atoms lives in the direct product space M(p) = M(1)p. See Fig. 1 for an
example of a complete model and a sample of our shape population.

Fletcher et al. treat medial atoms as elements of a Riemannian symmet-
ric space [2]. Such a space is a differentiable manifold and has a Riemannian
metric that is invariant to certain transformations of the space. R3 uses the nor-
mal Euclidean metric, while the positive reals, R+, use the metric d(r1, r2) =
|log(r1) − log(r2)|, and the unit sphere, S2, uses distance measured along the
surface of the sphere. Every point on the manifold has a tangent plane, which is
a vector space, and exponential and log maps that project from the plane to the
manifold and back while preserving distances from the tangent point in a local
neighborhood. For a more complete treatment, see Fletcher’s Ph.D. thesis [3].



1.2 One-sample Statistics in Nonlinear Spaces

In linear spaces, the most important property of a probability distribution is
often its first moment, the mean. Fréchet generalized the notion of an arithmetic
mean of a sample of n points xi drawn from a distribution in a general metric
space M as the point which minimizes the sum-of-squared distances [8]:

µ̂ = argminx∈M

1
2n

n∑
i=1

d(x, xi)2 . (1)

This is sometimes referred to as the Fréchet mean or the intrinsic mean, but
hereafter will just be called the mean.

In general, this mean may not exist, or may not be unique, and without
additional structure on the metric space, the minimization may be difficult to
perform. However, for Riemannian manifolds, it is possible to compute the gra-
dient of this functional [9], making a gradient descent algorithm possible [10].
Kendall showed that existence and uniqueness is guaranteed if the data is well-
localized [11]. Fletcher et al. extend this, using principal component analysis
(PCA) in the tangent plane at the mean to characterize the distribution of one
sample [2].

1.3 Two-sample Statistics

If we assume both of our distributions are identical around the mean, and that
they can be characterized entirely by the distance from the mean, then a single
global distance value is sufficient to construct a univariate permutation test for
equality of the two means. Permutation tests are appealing because they make
no other distributional assumptions, requiring only that the data in each group
be exchangeable under the null hypothesis that they do in fact come from the
same distribution. The interested reader is referred to Bradley [12] or Nichols
and Holmes [13] for details.

However, our geometric models contain parameters in nonlinear spaces, like
the sphere. Some parameters may have a large variance, masking the effects of
other variables with a smaller variance that might provide greater discrimina-
tion. Some may be highly correlated, unduly increasing their contribution to the
distance over that of parameters with less correlation. Some will have completely
different scales, and appropriate scale factors need to be determined to combine
them in a single metric. These factors make the assumption that the distance
from the mean entirely characterizes the distribution hard to justify.

For example, scaling the model will change the distance between medial atom
centers, x, without affecting the distance between radii or spoke directions. To
combat this, Fletcher et al. propose scaling the latter by the average radius
across corresponding medial atoms [2], but this choice is somewhat arbitrary.
It does restore invariance to scale, but does nothing to handle differing degrees
of variability or correlation. Different choices of scale factors will produce tests
with different powers.



In Rn, if we relax our assumption that the distribution is characterized by
the distance from the mean, and instead assume only a common covariance, the
classic Hotelling’s T 2 test provides a test invariant to coordinate transformations.
For normally distributed data, it is uniformly the most powerful (see a standard
text, such as Anderson’s [14], for a derivation). The test is based on the statistic:
T 2 ∝ D2 = (µ̂1 − µ̂2)T Σ̂−1(µ̂1 − µ̂2), where µ̂1 and µ̂2 are the sample means
and Σ̂ the pooled sample covariance. Any linear change of coordinates yields a
corresponding change in metric, but this is absorbed by the Σ̂−1 term.

2 Multivariate Permutation Tests

The hypothesis test we propose is an attempt to generalize the desirable proper-
ties of Hotelling’s T 2 test to a nonparametric, nonlinear setting. We cannot take
advantage of the vector space structure of the tangent plane, as Fletcher et al.
do, to apply Hotelling’s test directly, because there is a different tangent space
around each sample’s mean, and there may be no unique map between them.
For example, on the sphere, such a map has one degree of freedom, allowing an
arbitrary rotation of the coordinate axes in the vector space. Instead, we take a
more general approach, only requiring that our objects lie in a metric space.

Our approach is based upon a general framework for nonparametric combi-
nation introduced by Pesarin [15]. The general idea is to perform a set of partial
tests, each on a different aspect of the data, and then combine them into a
single summary statistic, taking into account the dependence between the vari-
ables and the true multivariate nature of the data. We assume that we have two
distributions with the same structure around the mean, and develop a test to
determine if the means are equal. We now begin describing the details.

2.1 The Univariate Case

We begin by introducing notation and describing the procedure for a single,
univariate permutation test. Suppose we have two data sets of size n1 and
n2, x1 = {x1,i, i ∈ 1 . . . n1} and x2 = {x2,i, i ∈ 1 . . . n2}, and a test statistic,
T (x1, x2). To test for a difference in the means, a natural test statistic is

T (x1, x2) = d(µ̂1, µ̂2) , (2)

where µ̂1 and µ̂2 are the sample means of the two data sets computed via the
optimization in (1). For other tests, other statistics are possible.

Under the null hypothesis, both samples are drawn from the same distribu-
tion, and so we may randomly permute the data between the two groups without
affecting the distribution of T (x1, x2). We pool the data together, and then gen-
erate N =

(
n1+n2

n1

)
random partitions into two new groups, still of size n1 and n2.

We label these xk
1,i and xk

2,i, with k ∈ 1 . . . N , and compute the value of the test
statistic, T k, for all of them. We always include the actual observed groupings



among this list, and denote its test statistic T o. This forms an empirical distri-
bution of the statistic, from which we can calculate the probability of observing
T o under the null hypothesis:

p(T o) =
1
N

N∑
k=1

H(T k, T o) , H(T k, T o) =

{
1, T k ≥ T o

0, T k < T o
. (3)

2.2 Partial Tests

If our data can be adequately summarized by a single test statistic, then this is
the end of the story. We now turn to the case where we have M test statistics:
one for each of the parameters in our shape model. Let µ1,j and µ2,j be the means
of the jth model parameter for each population. Then we wish to test whether
any hypothesis H1,j : {µ1,j 6= µ2,j} is true against the alternative, that each null
hypothesis H0,j : {µ1,j = µ2,j} is true. The partial test statistics Tj(x1, x2), j ∈
1 . . .M are defined analogously to (2), and the values for permutations of this
data are denoted T k

j , , with j ∈ 1 . . .M , k ∈ 1 . . . N .
Given that each Tj(x1, x2) is significant for large values, consistent, and

marginally unbiased, Pesarin shows that a suitable combining function (de-
scribed in the next section) will produce an unbiased test for the global hy-
pothesis H0 against H1 [15]. The meaning of each of these criteria is as follows:

1. Significant for large values: Given a significance level α and the critical
value of Tj(x1, x2) at α—Tα

j —the probability that T o
j ≥ Tα

j is at least α.
For a two-sided test Tj(x1, x2) must be significant for both large and small
values.

2. Consistent: As the sample size n = n1 +n2 goes to infinity, the probability
that T o

j ≥ Tα
j must converge to 1.

3. Marginally unbiased: For any threshold z, the probability that T o
j ≤ z

given H0,j must be greater than the probability that T o
j ≤ z given H1,j ,

irrespective of the results of any other partial test. This implies that T o
j is

positively dependent in H1,j regardless of any dependencies between vari-
ables.

Since each of our tests are restricted to the data from a single component of
the direct product and we have assumed that the distributions around the means
are identical, they are marginally unbiased. We cannot add a test for equality of
the distributions about the mean, as then the test for equality of means would
be biased on its outcome.

To illustrate these ideas, we present a simple example, which we will follow
through the next few sections. We take two samples of n1 = n2 = 10 data
points from the two-dimensional space R×R+, corresponding to a position and
a scale parameter. The samples are taken from a multivariate normal distribution
by exponentiating the second coordinate, and then scaling both coordinates by
a factor of ten. They are plotted together in Fig. 2a. They have the common
covariance (before the exponentiation) of 1

2 ( 3 1
1 3 ), and the two means are slightly

offset in the second coordinate. That is, µ1,1 = µ2,1, but µ1,2 < µ2,2.
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Fig. 2. The observed data and test statistics for our simple example. (a) shows the
distribution of our two samples, with ×’s for the first and ◦’s for the second. (b) shows
the distribution of the partial test statistics under permutation. The large dot indicates
the location of the observed data point.

We construct M = 2 partial test statistics using (2) for each coordinate, and
evaluate them using Monte Carlo simulation. To avoid an exponential complex-
ity, we use a fixed N = 10, 000 permutations, which still provides an unbiased
test. The results are shown in Fig. 2b. The first partial test value lies in the mid-
dle of the distribution, while the second lies near the edge. However, the scale
of the first test is much larger, because no logarithm is involved in its metric.

2.3 Multivariate Combination

Given the partial tests from the previous section, we wish to combine them into
a single test, while preserving the underlying dependence relations between the
tests. This is done in the following manner. We apply the same N permutations
to the data when computing each of partial tests, and then compute a p-value
using the empirical distribution for that test over all of the other permutations:

p(T k
j ) =

1
N

N∑
l=1

H(T l
j , T

k
j ) . (4)

Thus, for every permutation k we have a column vector of p-values, p(T k) =
(p(T k

1 , . . . , p(T k
j ), . . . , p(T k

M ))T . It is critical to use the same permutations for
each partial test, as this is what captures the nature of the joint distribution.

We now wish to design a combining function to produce a single summary
statistic, T ′(p(T k)), from each p-value vector. For one-sided tests, this statistic
must be monotonically non-increasing in each argument, must obtain its (pos-
sibly infinite) supremum when any p-value is zero, and the critical value T ′α

must be finite and strictly smaller than the supremum. If these conditions are
satisfied, along with those on the partial tests from the previous section, then
T ′(p(T k)) will be an unbiased test for the global hypothesis H0 against H1 [15].

Our combining function is motivated by the two-sided case, where we can use
the Mahalanobis distance. First, we compute a Uk vector for each permutation,



where Uk
j = Φ−1(p(T k

j )− 1
2N ) and j ∈ 1 . . .M . Here Φ is the cumulative distri-

bution function for the standard normal distribution. The extra 1
2N term keeps

the values finite when the p-value is 1, and is negligible as N goes to infinity.
Because the distribution of p-values for each partial test is uniform by con-

struction, the marginal distribution of the Uk
j values over k for a single j is

standard normal. Arranging these vectors into a single N ×M matrix U , we can
estimate the covariance matrix Σ̂U = 1

N UT U , and use the Mahalanobis statis-
tic: T ′k = (Uk)T Σ̂−1

U Uk. In the event that the data really is linear and normally
distributed, Σ̂U matrix converges to the true covariance as the sample size goes
to infinity [16], making it asymptotically equivalent to Hotelling’s T 2 test. Even
if the sample size is small, the matrix ΣU is well-conditioned regardless of the
number of variables, since it is the covariance over the N permutations.

Typically, our distances are not signed, and so we are interested in a one-
sided test. In this case, we use the positive half of the standard normal c.d.f.,
Uk

j = Φ−1(1 − 1
2 (p(T k

j ) − 1
2N )), and assume the Uk distribution is symmetric

about the origin. This assumption, however, implies that the covariance between
Uk

j1
and Uk

j2
when j1 6= j2 is exactly zero. The diagonal entries of Σ̂U are 1 by

construction, and so Σ̂U = I, the identity matrix. The fact that the p-values
of the partial tests are invariant to scale obviates the need for arbitrary scaling
factors. Thus, our one-sided combining function is:

T ′k = (Uk)T · Uk . (5)

Note that normality of the partial test statistics is not required, and that the
even though the marginal distributions of the Uk vectors are normal, the joint
distribution may not be. Therefore, we must use a nonparametric approach to
estimating the distribution of the T ′o statistic under the null hypothesis. Just
as in the univariate case, this produces a single p-value:

p(T ′o) =
1
N

N∑
k=1

H(T ′k, T ′o) . (6)

It is this nonparametric approach that corrects for correlation among the tests,
even without explicit diagonal entries in the covariance matrix.

We return to our example from the previous section. The Uk vectors are
plotted in Fig. 3a, along with the α = 0.95 decision boundary, and our sample is
shown to lie outside of it. As can be seen, equal power is assigned to alternatives
lying at the same distance from the origin in this space. Figure 3b shows this
boundary mapped back into the space of the original p-values. The p-values of
the individual partial tests are 0.36 and 0.022, and the combined result is 0.049.

2.4 Relation to Other Testing Procedures

The entire procedure is very similar to procedures used in correction for multiple
tests, such as that proposed by Pantazis et al. [4]. In fact, another alternative
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Fig. 3. The empirical distribution of our example plotted against the decision boundary
at α = 0.95. (a) The distribution of the Uk vectors, where the cutoff is a circle cen-
tered around the origin. (b) The distribution of the original p-values with the decision
boundary pulled back into this space.

for a combining function is Tippet’s T ′k = maxM
j=1(1−p(T k

j )), which results in a
Bonferroni-style correction [15]. Some authors have suggested methods of direct
combination applied to the T k

j statistics themselves [5, 6]. They are more appeal-
ing computationally, being O(nMN) instead of our method’s O(nMN log(N)),
but they do not avoid problems of differing scale or strong correlation.

Consider what happens when T ′k =
√

(T k
1 )2 + (T k

2 )2. Now, the first test
dominates the results, and the overall p-value becomes 0.34. With n1 = n2 = 100
samples, our test becomes much more significant (p = 0.0008), while the direct
combination test becomes even worse (p = 0.44).

3 Experimental Data and Results

The data for our experiments comes from a twin pair schizophrenia study con-
ducted by Weinberger et al. [17]. High resolution (0.9375 × 0.9375 × 1.5 mm3)
Magnetic Resonance Imaging (MRI) scans were acquired from three different
subject groups: 9 healthy monozygotic twin pairs (MZ), 10 healthy dizygotic
twin pairs (DZ), and 9 monozygotic twin pairs with one twin discordant for
schizophrenia and one twin unaffected. See Fig. 1 for some examples. A fourth
group of 10 healthy non-related subject pairs (NR) was constructed by match-
ing unrelated members of the two healthy groups. All four groups were matched
for age, gender, and handedness. A tenth healthy, monozygotic twin pair was
discarded due to segmentation problems attributed to head trauma suffered by
one of the twins in a car accident at age seven. A tenth twin pair discordant for
schizophrenia was discarded due to hydrocephaly in the unaffected twin.



The left and right lateral ventricles were segmented using supervised classifi-
cation and 3-D connectivity [18]. An automatic morphological closing operation
was applied to ensure a spherical topology. An area-preserving map was used to
map them to a sphere, after which they were converted to a spherical harmonics
representation (SPHARM) [19]. Correspondence on the boundary was estab-
lished using the first order harmonics [20]. Point Distribution Models (PDMs)
were constructed by uniformly sampling the boundary at corresponding points.
The m-rep models were constructed using a robust method that ensures a com-
mon medial topology [21]. For our data, this consists of a single medial sheet
with a 3×13 grid of medial atoms, which provides 98% volume overlap with the
original segmentations.

From this data set, we wish to determine if the twin pairs that were more
closely related had smaller variations in shape. We also wish to see if the shape
variations between the discordant and the unaffected twins in the schizophrenic
pairs is similar to the normal variation between healthy monozygotic twins. For
this purpose, we use the partial test statistics:

Tj(x1, y1, x2, y2) =
1
n2

n2∑
i=1

d(x2,i,j , y2,i,j)−
1
n1

n1∑
i=1

d(x1,i,j , y1,i,j) . (7)

Here (x1, y1) form the twin pairs for one group, while (x2, y2) form the twin pairs
for the other. The partial tests are applied separately to all three components
of the medial atom location, x, as well as the radius and two spoke directions.
This gives six partial tests per medial atom, for a total of M = 3×13×6 = 234,
much larger than the sample size. Each is a one-sided test that the variability in
group 2 is larger than that in group 1.

For consistency with previous studies [22], all shapes were volume normalized.
After normalization, we also applied m-rep alignment, as described by Fletcher
et al. [2], to minimize the sum of squared geodesic distances between models
in a medial analog of Procrustes alignment. First, the members of each twin
pair were aligned with each other, and then the pairs were aligned together as a
group, applying the same transformation to each member of a single pair.

In order to ensure invariance to rotations, we had to choose data-dependent
coordinate axes for the x component of each medial atom. Our choice was the
axes which diagonalized the sample covariance of the displacement vectors from
one twin’s atom position to the other at each site. While this had some influence
on the results, the general trend was the same irrespective of the axes used.

For each pair of twin groups, we generated N = 50, 000 permutations, and
computed their p-value vectors using (4). Following Sect. 2.3, these were mapped
into Uk vectors, from which the empirical distribution of the combined test
statistic T ′k from (5) was estimated, producing a single global p-value via (6).

The results are summarized in Table 1. For comparison, we list the results of
a previous study which used a univariate test on the average distance between
corresponding points on the PDMs [22]. While we note that the significance
of a p-value on an experimental data set is not a useful metric for comparing
different methods, it is interesting to see the differences between the two. Our



tests give a consistent ranking: MZ ≈ DS < DZ ≈ NR, which is fully transitive.
The boundary study, however, finds a significant difference between DZ and NR,
but fails to identify the difference between DS and DZ.

Our Study Boundary Study [22]
Left Right Left Right

MZ vs. DS 0.12 0.38 0.28 0.68
MZ vs. DZ 0.00006 0.0033 0.0082 0.0399
MZ vs. NR 0.00002 0.00020 0.0018 0.0006
DS vs. DZ 0.020 0.0076 0.25 0.24
DS vs. NR 0.0031 0.00026 0.018 0.0026
DZ vs. NR 0.16 0.055 0.05 0.016

Table 1. p-values for paired tests for the difference in the amount of shape variability
in groups with different degrees of genetic similarity. Results from our method are in
the first two columns, while results from a previous study [22] are in the last two for
comparison. Groups are: monozygotic (MZ), monozygotic twins with one twin discor-
dant for schizophrenia (DS), dizygotic (DZ), and non-related (NR). Results significant
at the α = 0.95 level are shown in bold.

We also performed local tests, to identify specific medial atoms with with
strong differences. A multivariate test was conducted using our procedure on the
6 components of M(1) for each atom, and the results were corrected for multiple
tests using the minimum p-value distribution across the shape, as described by
Pantazis et al. [4]. The results are shown in Fig 4.

4 Conclusion

We have presented a true multivariate permutation test approach for hypothesis
testing in direct products of metric spaces. The resulting test does not require a
priori scaling factors to be chosen, and captures the true multivariate nature of
the data. It is well-defined even in the high-dimensional, low-sample size case.
The method has been applied to shape discrimination using m-reps, though it
is suitable for any type of metric data, including potentially categorical data.

An important area for future research is the design of suitable partial tests
to use in each space. Because they cannot be broken into smaller pieces than
a single component of the direct product, the distance to the mean and similar
tests are limited in the types of distributions they can describe. For example,
the distance from the mean can only characterize an isotropic distribution on
the sphere. An interesting candidate is the test designed by Hall and Tajvidi,
which can test for equality of entire distributions in a single metric space [23].
This would allow us to relax our assumption of identical distribution about the
mean. For manifolds, another possibility is the use of tests based on Distance
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Fig. 4. Results for local tests for the difference in shape variability in groups with
different degrees of genetic similarity. Atoms with differences significant at the α = 0.95
level are shown in a larger size. Tests not shown had no significant local differences.

Weighted Discrimination [24]. It is also possible to extend this to different shape
models, such as PDMs with surface normals or deformable templates [25].
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