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We describe a computationally efficient and robust, fully-automatic method for large-scale electron
microscopy image registration. The proposed method is able to construct large image mosaics from
ccepted 3 August 2010
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lectron microscopy

thousands of smaller, overlapping tiles with unknown or uncertain positions, and to align sections from
a serial section capture into a common coordinate system. The method also accounts for nonlinear defor-
mations both in constructing sections and in aligning sections to each other. The underlying algorithms
are based on the Fourier shift property which allows for a computationally efficient and robust method.
We demonstrate results on two electron microscopy datasets. We also quantify the accuracy of the algo-
rithm through a simulated image capture experiment. The publicly available software tools include the

al Us

erial section
onnectome algorithms and a Graphic

. Introduction

Transmission electron microscopy (TEM) has been an important
maging modality for studying three-dimensional ultrastructure
n biology in general, and neuroscience in particular. Electron
omography based on computational assembly of tilt-series images
Hoppe, 1981; Sun et al., 2007) can provide high-resolution three-
imensional imagery but is restricted to very small volumes.
imilarly, manual tracing of serial section TEM (ssTEM) imagery
f synaptic relationships through small volumes has been a main-
tay in network reconstruction. In such work, it is critical to acquire
magery at a resolution sufficient to unambiguously detect critical
iological features, such as synapses and gap junctions. This sets
he resolution at approximately 2 nanometers (nm) or better. This
onstraint has previously limited reconstruction volumes to sizes
ar smaller than the scale of canonical repeat units in the nervous
ystem (Anderson et al., 2009).
Neural network reconstruction or connectomics (Sporns et al.,
005; Briggman and Denk, 2006; Mishchenko, 2008; Anderson et
l., 2009), is the complete mapping of all individual neurons in a
egion, including their synaptic contacts, to create its canonical net-
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E-mail address: tolga@sci.utah.edu (T. Tasdizen).
URL: http://www.sci.utah.edu/tolga (T. Tasdizen).
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er Interface for easy access to the algorithms.
© 2010 Elsevier B.V. All rights reserved.

work map, also known as a connectome. Such complete mappings
are long-standing problems in neuroscience. Progress has been hin-
dered by impracticalities in acquisition, assembly and analysis of
large scale TEM imagery. Complete connectome datasets have pre-
viously been attempted in very small invertebrate models, such as
the roundworm C. elegans, which has just over 300 neurons and
6000 synapses (White et al., 1986; Hall and Russell, 1991; Chen
et al., 2006). On the other hand, studying canonical samples of
vertebrate neural systems (samples large enough to contain a sta-
tistically robust instances of the rarest elements in the network)
require a new scale of imaging (Anderson et al., 2009).

Currently, there are several approaches to connectomics. Serial
block-face scanning electron microscopy (SBFSEM) (Denk and
Horstmann, 2004) uses electron backscattering from successively
exposed block surfaces to capture a volume as a series of two-
dimensional images. SBFSEM can provide sections as thin as 20 nm,
but is currently limited by electron optics to 5–10 nm per pixel
resolution in-section. An advantage of SBFSEM is the implicitly
aligned nature of the images produced, nominally negating the
need for elaborate registration schemes in software. Its disadvan-
tages include sample destruction, limited in-section resolution,

slow acquisition speed, incompatibility with molecular tagging
methods, non-standard contrast generation, and the limited avail-
ability of SBFSEM platforms. While SBFSEM images often provide
good contrast for cell membranes, much intracellular information is
lost, rendering the efficient detection and classification of synapses

dx.doi.org/10.1016/j.jneumeth.2010.08.001
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:tolga@sci.utah.edu
dx.doi.org/10.1016/j.jneumeth.2010.08.001
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image stitching (Preibisch et al., 2009). In (Anderson et al., 2009)
we described a workflow for automatic, fast and robust solution
to the mosaicking and section-to-section registration problems in
ssTEM. That paper focussed on the acquisition technology, includ-
ing methods for embedding molecular tags in the volume. In this
T. Tasdizen et al. / Journal of Neur

rom these images difficult. A very similar method is ion beam
illing (Knott et al., 2008), which has the advantage of using a supe-

ior imaging platform (scanning TEM), though many of the deficits
f destructive sampling remain, slow speed and limited platform
ccess remain. A new, very exciting alternative is the Automatic
ape-collecting Lathe UltraMicrotome (ATLUM) (Hayworth et al.,
006) which sections a block and automatically collects the sections
n a long Kapton tape for imaging by scanning TEM.

We recently proposed ssTEM as a platform that provides the
ight combination of resolution, spatial coverage and speed for
onnectomics (Anderson et al., 2009). TEM microscopes and ultra-
icrotomes for serial sectioning are widely available. In TEM,

ections are cut from a specimen and suspended in the electron
eam, creating a projection image which may be captured on
lectron-sensitive film (and digitized later) or captured directly
n electron-sensitive digital cameras. Slice thicknesses for ssTEM
re typically in the 40–100 nm range, while in-section resolution is
imited only by the resolution of TEM imaging (100–200 picome-
ers). In practice, connectomics requires 2 nm resolution per pixel
o resolve gap junctions. As noted above, acquisition and analysis of
sTEM data has been extremely time consuming, limiting neuronal
apping to projects involving small numbers of neurons (Cohen

nd Sterling, 1992; Harris et al., 2003; Dacheux et al., 2003). The
omplete C. elegans reconstruction (White et al., 1986; Hall and
ussell, 1991; Chen et al., 2006) is reported to have taken more
han a decade (Briggman and Denk, 2006). A major barrier in image
cquisition has recently been overcome by implementing SerialEM
utomated ssTEM acquisition software (Mastronarde, 2005). But
arge volumes can also be acquired manually on film. Another major
arrier has always been assembly of image mosaics and volumes
rom hundreds of thousands of ssTEM images. That computational
arrier is the focus of this paper.

There are two image registration problems associated with
ssembling volumes from ssTEM imagery. First, the TEM field of
iew is insufficient to capture an entire section as a single image,
nd each section is imaged in overlapping tiles. For instance, a
anonical area (Anderson et al., 2009) in the retina yields over 1000
iles per section, where each tile is a 4096 × 4096 pixel, 16 bit image.
f film is used, the pixel densities can be even higher, but positional

etadata are lost requiring tile layout to be inferred as part of a soft-
are solution. In either case, warps due to the TEM aberrations and

ther distortions have to be corrected to generate seamless over-
aps between tiles. We refer to the entire process of assembling a
ingle section from multiple TEM tiles as section mosaicking. The
econd registration problem stems from the fact that each section
s cut and imaged independently: mosaicked sections thus have to
e aligned to each other. The coordinate transformation between
ections includes unknown rotation and nonrigid deformations due
o the section cutting and imaging processes. Typically, deforma-
ions in this section-to-section registration are larger than in the

osaicking stage. Once all sections are mosaicked and registered,
three-dimensional volume can be assembled.

.1. Related work

Image registration is a very active research topic in clinical
maging applications such as magnetic resonance imaging and
omputed tomography (Toga, 1999; Maintz and Viergever, 1999).
n general, image registration methods can be classified according
o a few criteria: types of features used for matching, coordinate
ransformation classes and targeted data modalities. Intensity-

ased methods compute transformations using image intensity

nformation (Bajcsy and Kovacic, 1989; Toga, 1999). Landmark-
ased methods match a set of fiducial points between images
Evans et al., 1988; Thirion, 1994, 1996; Bookstein, 1997; Rohr et
l., 1999, 2003). Fiducial points can be anatomical or geometrical in
ce Methods 193 (2010) 132–144 133

nature and are either automatically detected or input manually by
a user. The range of allowed transformations include rigid, affine,
polynomial, thin-plate splines or large deformations (Bookstein,
1989; Toga, 1999; Christensen et al., 1996; Davis et al., 1997; Rohr
et al., 1999). A common theme among most clinical image registra-
tion methods is a variational formulation of the problem which can
then be solved using the iterative optimization techniques such as
gradient descent. Unfortunately, such optimization techniques are
too slow and are too initialization dependent to be of practical use
for large-scale ssTEM image registration. Solutions to ssTEM image
registration problems must take into account the scale of the data.
For instance, a ssTEM data set with sufficient resolution and size to
reconstruct the connectivities of all ganglion cell types in retina is
approximately 16 terabytes (Anderson et al., 2009).

Image mosaicking has been studied in many application areas.
Irani et al. (1995) propose a method to compute direct mapping
from video frames to a mosaic representation for mosaic based rep-
resentation of video sequences. Panaromic image generation and
virtual reality (Kanade et al., 1997; Davis, 1998; Peleg et al., 2000;
Shum and Szeliski, 2002; Levin et al., 2004) other prominent appli-
cations areas for mosaicking. Vercauteren et al. (2006) propose a Lie
group approach to finding globally consistent alignments for in vivo
fibered microscopy. Early work for ssTEM registration in the litera-
ture has been manual or semi-automatic (Carlbom et al., 1994; Fiala
and Harris, 2001). For instance, Fiala and Harris proposed a method
which estimates a polynomial transformation from fiducial points
entered by a user (Fiala and Harris, 2001). Randall et al. (1998)
propose an automatic method for registering electron microscopy
images limited to rigid transformations. These and other earlier
studies targeted TEM datasets three orders of magnitude smaller
than those proposed in this paper: i.e. roughly 100 images instead
of 100,000. We recently proposed a fast method for registering
tiles within a section (mosaicking) which relies on the Fourier shift
property (Tasdizen et al., 2006). In the same work a landmark-
based approach was used to register the adjacent sections to each
other. Ultimately, we formulated the section-to-section registra-
tion in the Fourier shift framework as well (Koshevoy et al., 2007). A
closely related study describes an automatic method for large-scale
EM registration based on block matching using the normalized
cross-correlation metric and the iterative closest point algorithm
(Akselrod-Ballin et al., 2009). However, only rigid transformations
are considered. Another related work uses phase correlation for EM
Fig. 1. Relationship of image tiles and the mosaic space.
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aper, we discuss the technical details of the underlying algorithms
nd introduce a new, user-friendly graphical user interface (GUI)
olution to allow laboratories without expertise in computer sci-
nce to readily implement them. We also report the results of a
uantitative experiment to assess the accuracy and reliability of
he proposed approach. With the availability of these tools, the
ext hurdle in connectomics will be automation of image analysis,
llowing reconstructions of very large numbers of neuronal con-
ections and statistical analyses of network maps. Furthermore, the
oftware tools described in this paper can be applied to data sets
rom other microscopy platforms for connectomics such as ATLUM
Hayworth et al., 2006) or even to other imaging modalities such
s confocal microscopy. The software tools described in this paper
re publicly available.1

. Materials and methods

.1. Section mosaicking

Let {gi}N
i=1 and Wi : IR2 → IR2 denote the set of N two-

imensional image tiles constituting a mosaic image and the
orresponding coordinate transformations mapping the image tiles
nto a common mosaic coordinate space. Also let ˝i,j denote the
egion in the mosaic space that is the overlap of image tiles gi and gj
nder their corresponding coordinate transforms. An energy func-
ion measuring the image intensity mismatch in overlap regions,
iven a set of coordinate transforms W1, . . ., WN, can be computed
s

(W1, . . . , WN) =
N∑

i=1

∑
j<i

∫
x ∈ ˝i,j

(gi(W
−1
i (x)) − gj(W

−1
j (x)))

2
dx

+ ˛

N∑
i=1

J(Wi), (1)

here W−1
i is the inverse transform from the mosaic space into the

oordinate space of the i′th image tile and x denotes positions in
he mosaic space. Fig. 1 illustrates the relationship of the tiles with
espect to each other and the mosaic space. The scalar function J is
easures the smoothness of a given transformation and is known

s a regularization function. We can then choose the transforms
1(x), . . ., WN(x) that minimize this energy function. The parame-

er ˛ in (1) controls the relative importance of the regularizer and
herefore, the smoothness of the solution. Note that the coordinate
ransformations encode not only the positions of the tiles in the

osaic, but also the nonrigid warps that are needed to compensate
or the deformation introduced in image acquisition. Also note that
or pairs of nonadjacent images ˝i,j will be the empty set.

A trivial minimizer for the first term in (1) that incurs no penalty
s a set of translations that map the image tiles to entirely dis-
oint areas of the mosaic space with no overlap regions. In pairwise
mage registration applications, this problem can be circumvented
n several ways. One possibility is to fix one image, defining a coor-
inate transform only for the moving image and to choose J to
enalize the deviation of the moving image’s transform from the
nity map (elastic deformation penalty). This solution is not appli-
able to our problem since all images need to be mapped into a

ommon mosaic space which requires transformations with large
ranslational components. Therefore, translational components of
he transformations cannot be penalized in J for our application.
owever, in the absence of such a penalty in J, the trivial solution

1 The Neural Circuit Reconstruction (NCR) Toolset can be downloaded from
ttp://www.sci.utah.edu/software.html.
ce Methods 193 (2010) 132–144

mentioned above is not avoided. Another possibility for registering
image pairs is to use the prior knowledge that the pair completely
overlaps to define the integral in (1) over the entire domain of the
fixed image rather than the overlap area. This solution is also not
practical for our problem because pairs of tiles overlap only par-
tially or not at all. A possible solution for the mosaicking problem
when the average overlap area between adjacent tiles is known, is
to minimize (1) under the additional constraint which prescribes
the total area of the overlapping regions. Even then, a fundamen-
tal problem is the difficulty of finding the globally optimal solution
for (1). Our approach is inspired by the variational formulation in
(1), but it focuses on a fast, practical solution rather than formally
finding an optimal solution to (1).

There are two alternative scenarios with differing workflows. In
the first scenario, we assume no prior knowledge about the approx-
imate locations of the tiles in the mosaic space, as in manual film
acquisition. Our mosaicking workflow in this case is composed of
several stages.

1. Find pairs of overlapping tiles and compute their pairwise dis-
placement (Section 2.1.1).

2. Infer a layout of the mosaic using only the displacements found
in first stage (Section 2.1.2).

3. Refine the mosaic using displacements (Section 2.1.3).
4. Refine the mosaic using nonrigid transformations (Section 2.1.4).

The first stage in the solution, finding overlapping pairs and
computing their displacement, is a O(N2) operation where N is the
number of tiles in the mosaic. In the second and simpler scenario
(digital capture), an approximate displacement is known from posi-
tional metadata. This also implies that we know which pairs of tiles
overlap; therefore, the first two stages of the above workflow are
not necessary in this case. The refinement of the mosaic using rigid
displacements (stage 3) is still necessary before nonrigid refine-
ment (stage 4) because the positional metadata reported by the
microscope has very low accuracy.

2.1.1. Closed-form estimate of pairwise tile displacement and
overlapping tile pair detection

The first problem is to find pairs of overlapping tiles and their
relative displacement. The main constraint at this stage of the algo-
rithm is computational complexity because this procedure will
applied to approximately N2 pairs where N is the total number
of tiles in a section. If we restrict the class of allowed coordi-
nate transformations between pairs of tiles to only translation, i.e.
displacement, a fast closed-form solution based on phase corre-
lation exists (Kuglin and Hines, 1975; Castro and Morandi, 1987;
Girod and Kuo, 1989). While directly evaluating the cross correla-
tion of two images via two-dimensional convolution and finding
the displacement that produces the largest correlation is the most
straightforward method for finding the unknown translation, this
is computationally very expensive. The Fourier shift property and
phase correlation present a much faster alternative. Let F[g](u, v)
denote the two-dimensional Fourier transform of image g(x, y)
where u and v denote the variables in the frequency domain. For
notational simplicity we will drop the frequency variables and use
F[g] to mean F[g](u, v). Given an image g of size Q × R, a (xo, yo)
pixel circular shift of g is defined as

gcirc(xo,yo)(x, y) ≡ g((x − xo)modQ, (y − yo)modR). (2)
Then, the well known Fourier transform shift property (Gonzalez
and Woods, 1992) gonzalez provides a simple rule relating the
Fourier transforms the image and its circularly shifted version

F[gcirc(xo,yo)] = e−j(uxo+vyo)F[g]. (3)

http://www.sci.utah.edu/software.html
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In other words, circularly shifting the image in the spatial
omain corresponds to a multiplication with a complex exponen-
ial in the frequency domain. The complex exponential can be be
solated by computing the cross power spectrum. In general, the
ross power spectrum of two images g and h is defined as

(g, h) = F[g]F∗[h]
|F[g]F∗[h]| = F[g]F∗[h]√

F[g]F∗[g]F∗[h]F[h]
, (4)

here F∗ denotes the complex conjugate of the Fourier transform.
or image g and its circularly shifted version gcirc(xo,yo) simplifies to

(g, gcirc(xo,yo ) = ej(uxo+vyo). (5)

ince, in this case, the cross power spectrum isolates the complex
xponential due to the circular shift, the displacement vector (xo,
o) can be recovered simply by taking the inverse Fourier transform
f the cross power spectrum

−1[S(g, gcirc(xo,yo )] = F−1[ej(uxo+vyo)] = ı(x − xo, y − yo), (6)

here F−1[·] is the inverse Fourier transform and ı(x − xo, y − yo)
s the Dirac delta function located at (xo, yo). In other words, the
nverse Fourier transform of S(g, gcirc(xo,yo ) is an image which has a
ingle non-zero entry at pixel location (xo, yo).

In practice, we have a linear shift rather than a circular shift. The
ethod described in (Girod and Kuo, 1989) is for tracking an object

ver a flat background in a video sequence. In that case, the above
erivation for circular shifts still holds for linear shifts. However, the
hase correlation of overlapping but distinct EM images presents a
ore complex scenario. In this case, we cannot expect to recover
single Dirac delta function at the correct shift location. Instead,
e treat the inverse Fourier transform of the cross power spectrum

etween two EM tiles gi and gj as a displacement probability image

i,j(x, y) = Real

{
F−1

[
FiF∗

j√
FiF∗

i

√FjF∗
j + ε

]}
, (7)

here for simplicity we use Fi to denote F[gi] and Real{·} is the
eal part of its complex argument. The addition of a small positive
onstant ε to the denominator avoids the problem of division by 0.
aking the real part of the inverse Fourier transform discards any
maginary component due to numerical accuracy limitations. Note
hat (7) also assumes that EM image tiles gi and gj are of the same
ize. If this is not the case, the EM image tiles should be padded to
he size of the largest tile. While (7) does not strictly define an image
f probabilities, it can be interpreted as such because larger values
f Pi,j(x, y) correspond to displacements that are more probable. As
iscussed above, for partially overlapping images, the exact rela-
ionship Pi,j(x, y) = ı(x − xo, y − yo) does not hold. However, if the
mount of overlap is sufficient, the maximum of Pi,j(x, y) should
orrespond to the true displacement between images gi and gj. In
ractice, finding this maximum is non-trivial because for most elec-
ron microscopy images the Pi,j(x, y) contains many spurious weak
ocal maxima. This can be seen in Fig. 2 (left) which shows Pi,j(x, y)
omputed for two tiles with approximately 10% overlap. Also, Pi,j
or two non-overlapping images may contain several weak max-
ma, complicating the decision whether two image tiles overlap or
ot. These problems are not addressed in (Girod and Kuo, 1989)
ince the target application in that paper is object tracking from
ideo. Our solution which addresses these practical difficulties is
iscussed next.

We have found that five steps are necessary in practice to

dentify the location of the correct maxima in Pi,j. These steps
re performed by the executable ir-fft. The first step is to pre-
mooth all image tiles gi to reduce the amount of noise and to
mooth Pi,j(x, y) to reduce the number of spurious local maxima.
he second step is to select and apply a threshold to Pi,j(x, y) to
ce Methods 193 (2010) 132–144 135

isolate the strongest peaks. We choose the threshold at the 99th
quantile of the histogram of Pi,j(x, y). In other words, 1% of the
total pixels in P are considered as possible displacement locations.
Notice that if the image gi and gj do not overlap, some pixels in
Pi,j(x, y) will still pass the threshold. In other words, at this stage
the strongest peaks are identified only in a relative sense. In the
third step, we look for a cluster of at least five 8-connected pixels
that indicate a strong maximum. If the maxima pixels are scat-
tered across Pi,j(x, y), it is likely there is no strong maximum.
The coordinates of the maxima are calculated as the centers of
mass of the corresponding clusters. Due to the periodicity of the
Fourier transform, clusters that are broken across the image bound-
ary are merged together. Notice that at this stage it is possible
to have more than one displacement vector candidate per tile
pair.

The fourth step is to verify which, if any, of the maxima found
in the previous step is the true displacement between the image
pair. Non-overlapping image pairs typically produce a Pi,j(x, y) with
several maxima points at roughly the same value, while the Pi,j
of two matching tiles produces one maximum significantly higher
than the rest. If the strongest maxima is at least twice as large as
the rest, it is marked as a good match; otherwise, we determine
that the tiles do not overlap. We have found the proposed method
works best for pairs of tiles that overlap at least 10% in area. In
our application, adjacent image tiles have around 10–15% overlap.
Therefore, displacement vectors resulting in less than 5% of overlap
or greater than 30% overlap are discarded. Minimum and maximum
allowable overlap percentages can be specified using the -ol flag in
ir-fft.

Results of our image matching on two tiles with approxi-
mately 10% overlap is demonstrated in Fig. 2. Notice that while
Pi,j(x, y) has its global maximum at approximately at the cor-
rect displacement vector, there are many local maxima with
strengths that are comparable to the global maxima. The ratio of
the global maximum to the local maxima depends on the over-
lap area between the two tiles. For this reason, displacement
vectors for tiles with very small overlaps cannot be computed reli-
ably.

Finally, due to the image periodicity assumption of the
Fourier transform a global peak at (xo, yo) can correspond to
any one of four possible displacement vectors (xo, yo), (Q − xo,
yo), (xo, R − yo) and (Q − xo, R − yo) where (Q, R) is the size of
the image tiles. Therefore, once a valid global peak is identi-
fied at pixel location (xo, yo) in the fourth step, we have to
generate all four possible displacements between the pair of
images, compute the cross correlation of each and choose the
displacement vector that results in the best match as the fifth
step.

2.1.2. Mosaic layout
In Section 2.1.1 we described a method to compute the displace-

ment vectors Ti,j between any overlapping image tile pair gi and
gj. However, what is needed is a mapping Wi from each tile to a
common mosaic space as described in (1) and illustrated in Fig. 1.
We will refer to the process of converting pairwise displacements
Ti,j to displacement vectors Ui from gi to the mosaic space as the
mosaic layout process. Vercauteren et al. (2006) provide a mathe-
matically rigorous treatment of this problem using Lie groups. In
this paper, our focus is on the scalability of the solution to mosaics
containing thousands of EM tiles as required in connectomics. The

executable ir-fft implements the mosaic layout algorithm as well as
the computation of the pairwise displacements described in Section
2.1.1.

Given a displacement vector Ti,j between any overlapping image
tile pair gi and gj, the correlation coefficient between the tiles in the



136 T. Tasdizen et al. / Journal of Neuroscience Methods 193 (2010) 132–144

F tion o
s e refe
a

o

�

w
a
t
n
a
i
t
g
c
H
p
i
i
f
t
a
d
c
m
p
d
m

ig. 2. Left: Pi,j(x, y) for two image tiles with approximately 10% overlap. The loca
hown in cyan and red displaced with the computed vector. (For interpretation of th
rticle.)

verlap area ˝i,j is defined as

i,j =
∑

x ∈ ˝i,j
(gi(x) − �i)(gj(Ti,j + x) − �j)√(∑

x ∈ ˝i,j
(gi(x) − �i)

2
)(∑

x ∈ ˝i,j
(gj(Ti,j + x) − �j)

2
) ,

(8)

here x denotes the (x,y) position of a pixel, and �i and �j are the
verage intensity of images gi and gj in the overlap region, respec-
ively. Then, we define a cost function between gi and gj as the
egative of the correlation coefficient: Ci,j = − �i,j. Notice that Ci,j
re fixed once the pairwise displacements Ti,j have been computed
n Section 2.1.1. The mosaic layout process starts by placing an arbi-
rary tile as an anchor image in the mosaic space. Without loss of
enerality, let f0 be the anchor tile. Then, the tile with the lowest
ost mapping to the anchor image is laid down into the mosaic.
owever, for a given pair of tiles, there can be two kinds of map-
ings. A direct mapping exists if the pair was determined to overlap

n Section 2.1.1. We also consider indirect cascaded mappings via
ntermediate tiles. For example, there may exist a direct mapping
0:f1 between tiles f0 and f1, and another mapping f1:f4 between
iles f1 and f4. Then an indirect mapping f0:f1:f4 between tiles f0
nd f4 can be created via the intermediate tile f1 by summing the
isplacement vectors for the mappings f0 to f1 and f1 to f4. This new

ascaded displacement vector forms an alternative to the direct
apping f0:f4. In fact, if f0 and f4 do not overlap, then the only

ossible mappings between those tiles will be indirect cascaded
isplacement vectors. For a mosaic with N tiles, we consider direct
appings and indirect mappings with 1:N − 2 intermediate tiles.
f the global maximum can be seen around the top left corner. Right: the two tiles
rences to color in this figure legend, the reader is referred to the web version of the

We define the cost of a cascaded mapping to be the maximum of
the pairwise costs Ci,j along the cascade. For instance, the cost of the
cascaded mapping f0:f1:f4 is max(C0,1, C1,4). The mapping with the
smallest cost is preferred even when it has greater cascade length.
Typically, there are many redundant mappings between the anchor
tile and any other tile in the mosaic. Using these redundant map-
pings between presents an opportunity to select the best mapping
possible. This is important because we expect that a certain por-
tion of the pairwise displacements found in Section 2.1.1 will be
erroneous. Tiles are successively laid down in the same manner
always choosing the best possible mapping to tiles already in the
mosaic.

2.1.3. Displacement refinement
In the scenario where stage position information is available

the pairwise tile displacement computations and the mosaic layout
process becomes unnecessary. This reduces the overall compu-
tational cost from O(N2) to O(N). However, we have found that
stage position information can be inaccurate, and attempting to
perform nonrigid refinement starting from tile positions initial-
ized directly from stage positions is prone to finding suboptimal
solutions. Furthermore, for very large mosaics assembled with-

out stage position information, the mosaic layout generated by the
algorithms described in Sections 2.1.1 and 2.1.2 can also result in
suboptimal solutions if directly followed by nonrigid refinement.
Therefore, we first refine the displacement vectors in an iterative
fashion before nonrigid refinement. Let Ni denote the set of tiles
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hat overlap tile i. We define the energy

2(U′
1, . . . , U′

N) =
N∑

i=1

∑
j ∈ Ni

�2
i,j||(U′

i − U′
j) − (Ui − Uj)||2. (9)

here the weighting �2
i,j

is the square of the correlation coefficient
efined in (8). Notice that Ui − Uj denotes the preferred relative
osition of a pit of tiles where the tile-to-mosaic displacements. If
icroscope metadata provides approximate positions for each tile,
e use this information only to determine adjacency relationships

nd compute Ui − Uj directly with the procedure described in Sec-
ion 2.1.1 for adjacent tile pairs i,j. If no metadata is available, Ui
re found with the procedures described in Sections 2.1.1 and 2.1.2
nd Ui − Uj are then computed for adjacent tile pairs i,j. In equation
9), the tension vector (U′

i − U′
j) − (Ui − Uj) between gi and a neigh-

oring tile gj which overlaps with it is defined to have a zero energy
n the preferred relative position Ui − Uj. The weighting �2

i,j
places

ore weight on pairs that have stronger correlation at their pre-
erred displacement which makes the solution more robust. We

inimize the energy defined in Eq. (9) with respect to the new
isplacement vectors U′

i. For uniqueness of the solution, the first
ile can be used as an anchor and U′

1 treated as a constant vector
qual to U1 rather than a free variable in the optimization. While
q. (9) could be minimized in least squares form, we choose an
terative minimization strategy to impose an additional constraint
n how far a tile is allowed to move away from its preferred posi-
ion. We have found that 5–10 iterations are sufficient to find a
ood solution. Finally, since the transformations at this stage are
ne displacement vector per tile, scaling and rotation of tiles is not
ossible. These nonrigid transformations are addressed in the next
ection.

.1.4. Nonrigid refinement
Each image tile undergoes an unknown warp due to electron

ptical aberrations and distortions induced by both the section
rocess and intense electron beam exposure. Therefore, it is impor-
ant to use a flexible, nonrigid transformation in image registration
o generate seamless overlaps between tiles. The nonrigid image
egistration algorithm has two essential components: (1) a class
f coordinate transformations, and (2) a method for finding the
best” transform Wi for each image, from the class of transforms
eing considered. During the earlier stages of algorithm develop-
ent, several continuous polynomial transforms were explored, in

articular bivariate cubic Radial Distortion and Legendre polyno-
ial transforms. These transforms suffer from a trade-off where

he stability of the transform is related inversely to the degree
f the polynomial. Our final approach uses a locally defined
ransform and is implemented by the executable program ir-
efine-grid. A coarse rectilinear grid of control points are placed
n to each tile. The number of control points (vertices) in the
rid are defined by the -mesh flag of ir-refine-grid. Each vertex
n this grid stores two sets of coordinates—the local tile coordi-
ates and the mosaic space coordinates. The tile coordinates are
xed and the image is warped by changing the mosaic space coor-
inates directly. The mapping Wi(x) from any point x in the tile
pace into mosaic space is trivial due to the uniform structure
f grid of control points. One has to find the mesh quad (solid
ectangle in Fig. 3) containing the tile space point and perform a
ilinear interpolation between the mosaic space coordinates of the
uad vertices.
For the class of transform described above, finding the “best”
ransforms Wi is equivalent to finding the “best” mosaic coordi-
ates for the vertices in the grid. At each vertex, a small image
eighborhood of the tile is sampled in the mosaic space (shown
s dashed rectangle in Fig. 3). A corresponding neighborhood is
ce Methods 193 (2010) 132–144 137

sampled also from all of the neighboring tiles in the mosaic. For
sampling these neighborhoods in mosaic space, we need to be
able to map any mosaic coordinate x′ back to tile coordinates
W−1

i (x) as shown in Fig. 3. For this purpose, the grid of control
points is treated as a triangle mesh by breaking each quadrilat-
eral element of the grid of control points into two triangles. To
map a coordinate from the mosaic space into the tile space, the
mesh is searched for the triangle containing the given mosaic
space point (shown as triangle in Fig. 3). Then, the barycentric
coordinates of the point are used to calculate the corresponding
tile space point by interpolating the tile space vertex coordinates
of the triangle. We use a triangle mesh due to ease and effi-
ciency of implementation using OpenGL: The tile space coordinates
correspond to the OpenGL texture coordinates, and the mosaic
space coordinates correspond to the OpenGL triangle vertex coor-
dinates.

Any two neighborhoods sampled as described above can be
matched using the same Fourier shift method described in Sec-
tion 2.1.1. When a tile overlaps with more than one neighboring
tile, the resulting displacement vectors are averaged. The neighbor-
hood has to be only as large as necessary to capture a meaningful
amount of image texture for phase correlation to work. The size
of the neighborhoods is chosen such that the control points are
spaced at approximately 1/3 of the neighborhood size which cre-
ates overlapping neighborhoods for adjacent control points. For the
retinal connectome volume (Anderson et al., 2009), we downscale
tile images by a factor of 8 and use a 8 × 8 grid of control points. This
translates into 96 × 96 pixel neighborhoods. Therefore, in this case,
instead of pairs of tiles, we find the displacement between pairs of
96 × 96 pixel neighborhoods using the same method as in Section
2.1.1. The displacement vectors produced by this matching are used
to correct the mosaic space coordinates of the vertex. Also, note that
the -cell flag of ir-refine-grid can be used instead of the -mesh flag
to specify the size of the neighborhoods to be used in matching
rather than the number of control points in the grid. In this case
the number of control points are again spaced at 1/3 the neighbor-
hood size. The -mesh and -cell arguments of ir-refine-grid should
not be used simultaneously.

!!The procedure described above can be used to compute
mosaic positions of grid control points at the edges of the tiles that
overlap with neighboring tiles. We still need to propagate this posi-
tion information to the control points in the interior portions of
the grid that do not overlap neighboring tiles. Furthermore, there
can be errors in the mosaic position computation. To address these
problems we take the following approach. The displacement vec-
tors calculated at each vertex are median filtered to remove the
outliers. The displacement vectors are then blurred with a Gaus-
sian smoothing filter which propagates the information to interior
control points.

This algorithm requires several passes to ensure convergence.
After each pass new neighborhoods are sampled using the newly
updated mosaic coordinates of the control points and the position
computation procedure is repeated. The number of passes can be
set using the -it flag of ir-refine-grid. For the retinal connectome
data we have found four passes to be sufficient. Fig. 4 illustrates
three different areas of the mosaic before and after the nonrigid
refinement. Intensities in overlapping areas are averaged. Before
nonrigid refinement this results in blurry images in overlapping
areas due to the non-precise nature of the alignment (Fig. 4 left).
After nonrigid refinement averaging results in crisp images (Fig. 4
right). Another way to visually assess the quality of the alignment

is by assigning each pixel in the mosaic the intensity from the tile
that it is closest to (Fig. 5). Notice that tile boundaries are clearly
visible if only the stage positions from the metadata are used (Fig. 5
top). whereas tile boundaries are hard to detect with the eye after
refinement (Fig. 5 bottom).
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which reads in the input image tiles and the transforms computed
either by ir-fft or by the nonrigid refinement tools and generates
an actual image.
Fig. 3. Tile-to-mosaic and

.2. Section-to-section registration

Section-to-section registration is very similar to the distortion
orrection described above. As the orientation of the sections is
rbitrary, however, we cannot use image correlation to directly
stimate the section-to-section translation parameters. Thus we
rst perform a brute-force search for tile translation/rotation
arameters on downscaled 128 × 128 pixel thumbnails of the
osaics. As downscaling eradicates nearly all image texture, the
osaics are preprocessed to enhance large blob-like features, e.g.

ell bodies. The enhancement algorithm is implemented by the
r-blob executable and is defined as follows:

. The image is partitioned into a regular square grid of roughly
17 × 17 pixels per square. The size of the squares can be con-
trolled using the -r flag in ir-blob.

. The intensity variance is calculated within each square.

. The intensity variances for the squares computed in the previous
step are sorted and the median variance (�median) is selected.

. The algorithm iterates through all image pixels, and for each
pixel calculates mean pixel variance within the local 17 × 17
pixel neighborhood centered at that pixel. Let �(x, y) denote
the variance computed in this manner at pixel location (x, y).
Then, the output pixel value is proportional to ((�median + 1)/(�(x,
y) + 1)).

As a result, areas with large variance are assigned low values
hile areas with small variance such as the interior of large blobs

re assigned large values. The moving section is rotated in incre-
ents on 1◦ and matched against the fixed section by computing
translation between the fixed section and the rotated moving

ection. For each orientation, the translation is computed closed-
orm using phase correlation as described in Section 2.1.1. Then we
hoose the rotation angle which results in the largest correlation
oefficient as defined by Eq. (8) for the displacement found by the
hase correlation method for that rotation. This brute force match-

ng algorithm is implemented by the ir-stos-brute executable. We
ave found that when preprocessed by ir-blob to enhance large
lobby structures such as cell bodies, accurate rotation and dis-
lacement between image pairs at coarse resolution can be found
eliably. Finally, the rotation and translation parameters corre-
ponding to the best brute force match metric at coarse resolution
re used to initialize the grid of control points for the nonrigid trans-

orm of the moving slice at a fine resolution. The transform is then
omputed as explained in Section 2.1.4, except the displacement
ectors are applied to the moving slice only. The nonrigid trans-
orm refinement for section-to-section alignment is implemented
y ir-stos-grid. Similar to ir-refine-grid, the user needs to spec-
ic-to-tile transformations.

ify the number of control points in the transform grid. This can be
directly accomplished using the -grid flag in ir-stos-grid. Alterna-
tively, the space in pixels between control points on the grid can
be specified using the -grid spacing flag. The size of the neigh-
borhood associated with each control point can be specified using
the -neighborhood flag. Finally, a volume can be built using the
computed transformations using the ir-stom program.

2.3. Command line tools

In this section, we describe the command line tools which imple-
ment the algorithms discussed in Sections 2.1 and 2.2. All command
line tools were implemented using the Insight Segmentation and
Registration Toolkit (ITK) software framework (Ibanez et al., 2003).
We also discuss the parameters used by the tools and the set-
tings used in our workflow for building the retinal connectome
(Anderson et al., 2009). These parameters can be customized by
other users as needed for their applications.

2.3.1. ir-fft
The ir-fft program implements the pairwise tile displacement

computation (Section 2.1.1) and mosaic layout (Section 2.1.2). The
input to ir-fft is two or more image tiles. The input images are
specified with the -data argument when running ir-fft from the
command line. The input images do not have to be in any particular
order since no prior adjacency information is assumed. The output
of ir-fft is a text file with .mosaic extension containing the full tile
transformation information Ui for the mosaic generated. We will
refer to this file as the mosaic file in the rest of this paper. The name
of the output mosaic file is specified with the -save argument. An
actual output mosaic image is not created by ir-fft. There are two
motivations for this choice. First, the transformations generated
by ir-fft are rigid tile displacements only and typically computa-
tion of nonrigid transforms is also necessary before a final output
is created. Second, as most TEM mosaics are very large, our Viking
viewer2 interactively loads only those image tiles appearing on the
screen and applies the transformations at run-time. For users want-
ing to create a single, fixed-resolution output image, we have also
implemented a command line tool ir-assemble (discussed below)
The following arguments are also supported by ir-fft:

2 The Viking viewer is not discussed in this paper; however, a separate manuscript
describing Viking is under preparation. Viking will be made publicly available.
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•

•

Fig. 4. Several areas of the mosaic where multiple image tiles overlap before an

-ol overlap min overlap max: Specify the minimum and maximum
allowed overlap ratio (0: no overlap, 1: full overlap) between
adjacent tiles. These arguments are useful for constraining the
range of allowable displacement vectors if such prior knowledge
from the image acquisition phase exists as described in Section
2.1.1. Default values are 0.05 and 1, respectively. For the retinal
connectome we have used 0.05 and 0.3, respectively. This choice
correspond to a minimum 5% allowed overlap between adjacent

tiles.
-clahe slope: Specifies the contrast slope limit (greater than or
equal to 1) for CLAHE clahe histogram equalization (Zuiderveld,
1994). The default is 1 which means no histogram equalization.
Values larger than 1 results in the CLAHE algorithm being applied
r nonrigid refinement. Intensities are averaged from multiple overlapping tiles.

to 256 × 256 windows as a preprocessing step. This is useful for
computing pairwise displacement vectors in image sets with poor
contrast. For the retinal connectome we use a slope value of 6.

• -sh downsample factor: Downsample the image tiles by a
specified factor for purposes of speeding up the transform com-
putations. The default value is 1 (no downsampling). Note, images
at full resolution can still be assembled later if a value greater
than 1 is used; however, accuracy of the transformations may be

reduced. In practice, we use a downsampling factor of 8 without
noticing adverse effects.

Other arguments are supported which can be used to further
customize the operation of ir-fft; however, they are not listed here
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ig. 5. An area where several tiles overlap aligned using stage positions from me
ssigned the intensity from the tile it is closest to. Note the clearly visible tile boun

s their use are not necessary in a typical workflow. A list of avail-
ble arguments can be obtained by executing any command line
ool without any arguments.

.3.2. ir-refine-translate
The command line tool ir-refine-translate implements the iter-

tive displacement refinement discussed in Section 2.1.3. The input
nd output mosaic files are specified with the -load and -save
rguments, respectively. The downscaling factor specified with -sh
lso applies to ir-refine-translate as described for ir-fft. A contrast
nhancement may be specified using the -clahe argument as for
r-fft. Additionally, the following arguments are also supported:

-it iterations: Number of refinement iterations.
-max offset dmax: Tiles are allowed to move a maximum dis-
tance dmax from their preferred positions.
-threads number of threads: The number of threads to be used
can be set with the -threads argument. Default value is the num-
ber of hardware cores.
.3.3. ir-refine-grid
The ir-refine-grid program implements the nonrigid warp com-

utation discussed in Section 2.1.4. The input and output mosaic
les are specified with the -load and -save arguments, respec-
only (top) and our mosaicking algorithms (bottom). Each pixel in the mosaic is
when only stage positions are used.

tively. The downscaling factor specified with -sh also applies to
ir-refine-grid as described for ir-fft. A contrast enhancement may
be specified using the -clahe argument as for ir-fft. The number
of threads to be used can be set with the -threads argument. The
following arguments are also supported:

• -it iterations: Specifies the number of iterations described in Sec-
tion 2.1.4. The default value is 10, in practice good results can
be achieved with fewer iterations. Four iterations were used in
building the retinal connectome.

• -cell size: Specifies the neighborhood size associated with each
control point in the grid transformation. When -cell is specified
and -mesh is omitted, the number of control points is calculated
automatically to produce a predetermined percentage of overlap
between adjacent neighborhoods.

• -mesh rows cols: Specifies the number of control points in
the grid transformation. When -mesh is specified and -cell is
omitted, the neighborhood size is calculated automatically to
produce a predetermined percentage of overlap between adja-

cent neighborhoods. A 8 × 8 mesh was used for building the
retinal connectome.

• -displacement threshold offset in pixels: The average displace-
ment change threshold at which the tool should stop iterating.
Defined in pixels. Default value is 1.
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Fig. 6. Screenshots of Iris in action: (a) mosaic wizard view, (b) volume wizard view, (c) volume builder access to ir-tools for advanced users, and (d) customization of
ir-tools parameters for advanced users.

Fig. 7. Four sections from the rabbit retinal connectome which comprises 341 sections. The sections shown are at approximately equal intervals in the volume progressing
clockwise from top left. Each section is approximately 32 GB and comprises 1000 tiles.
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ig. 8. A vertical section from a transgenic rabbit retina comprising over 2200 sep
ixel image. Insets show several areas at varying levels of zoom to demonstrate the

.3.4. ir-assemble
Output images can be assembled from a mosaic file using ir-

ssemble. The input mosaic and output image files are specified
ith the -load and -save arguments, respectively. The down-

caling factor specified with -sh also applies to ir-assemble as
escribed for ir-fft. The number of threads to be used can be set
ith the -threads argument. The following argument is also sup-
orted:

-feathering [none|blend|binary]: Selects the feathering mode
used in the portions of the mosaic where multiple tiles over-
lap. The none mode simply averages pixels. The blend mode
uses a weighted averaging where the weight of a tile’s con-
tribution to a given mosaic pixels is inversely proportional
to proximity. The binary mode uses the only the intensity
value from the tile closest to the pixel of interest. This mode
is especially useful for evaluating the quality of the image
registration.

.3.5. ir-blob
The ir-blob program implements the blob-like feature enhance-

ent algorithm described in Section 2.2 which is used as a
reprocessing step before the determination of unknown rotation
nd translation between a pair of sections. The input and out-
ut image files are specified with the -load and -save arguments,
espectively. The downscaling factor specified with -sh also applies
o ir-blob as described for ir-fft. The following argument is also
upported:

-r radius: Variances are computed for (2 × r + 1) × (2 × r + 1)
squares. The default values is 2. A value of r = 8 was used in build-
ing the retinal connectome.

.3.6. ir-stos-brute
The ir-stos-brute program implements the brute-force search

or the unknown rotation and translation between a pair of sec-
ions. A mosaic file is specified using the -load argument. An output
ection-to-section transform file (.stos extension) name is specified
sing the -save argument. The downscaling factor specified with -
h also applies to ir-stos-brute as described for ir-fft. The following

rgument is also supported:

-refine: Specifies that the brute force registration results are
refined in a multi-resolution fashion. Default value is not refine.
EM tiles assembled in a completely automated fashion. Each tile is a 4096 × 4096
nt of information available in the mosaic.

2.3.7. ir-stos-grid
The ir-stos-grid program refines a section-to-section registra-

tion initialized by ir-stos-brute by resampling the initial transform
on to a mesh and using local neighborhood matching at the mesh
vertices similar to ir-refine-grid. The input and output.stos files
are specified with the -load and -save arguments, respectively. The
downscaling factor specified with -sh also applies to ir-stos-grid
as described for ir-fft. A contrast enhancement may be specified
using the -clahe argument as for ir-fft. The following arguments
are also supported:

• -fft median radius minimum mask overlap: The median radius
specifies the radius of the median filter used to denoise the
displacement vector image. The minimum mask overlap speci-
fies the minimum area overlap ratio between neighbors. Default
values are 1 and 0.5, respectively. For building the retinal con-
nectome values of 2 and 0.25 were used.

• -grid rows cols: Specifies the number of control points in the grid
transformation.

• -grid spacing number of pixels: Specifies the grid spacing in pix-
els. A value of 192 was used for building the retinal connectome.
Either -grid or grid spacing should be used, but not both.

• -neighborhood size: Specifies the size of the neighborhoods used
for matching at each mesh vertex. A value of 128 was used in
building the retinal connectome.

• -it iterations: Specifies the number of iterations of mesh refine-
ment. A value of 4 was used for building the retinal connectome.

• -displacement threshold offset in pixels: The average displace-
ment change threshold at which the tool should stop iterating.
Defined in pixels. Default value is 1.

2.3.8. ir-stom
The ir-stom program outputs a series of sections, specified by

the -save argument, all registered to the first section using a series
of .stos files as input. The .stos files specified with the -load argu-
ment are the section-to-section transforms between consecutive
sections in a stack of sections. The nth section is generated by cas-
cading the first n − 1 .stos files to get a transform mapping section
n to the space of the first section.

2.4. Graphical user interface for mosaicking and

section-to-section registration: Iris

We also developed a cross-platform graphical user interface
called Iris that allows easy access to the ir-tools used in mosaicking
and section-to-section registration. Iris provides a mosaic wizard
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Table 1
Quantitative assessment of accuracy using a simulated image capture for various
overlap amounts.

Overlap (in % of tile size) Average displacement (in pixels)

15% 0.013
10% 0.028

8% 0.066

thousands of neurons across the volume which required correlat-
ing close to 200,000 profiles from one section to the next which
would not be possible if the section-to-section alignment was low
quality.

Table 2
Quantitative assessment of accuracy by comparison to manual registration.
T. Tasdizen et al. / Journal of Neur

nd a volume wizard that automates these workflows with default
arameters as well as a volume builder that allows detailed access
o all the command line tools and associated parameters (Section
.3) for advanced users. Iris also supports a batch mode, that allows
unning any multiple of tools as well as any selected number of sec-
ions. Each tool has a unique icon which is used to mark information
bout it. Fig. 6 shows several screenshots illustrating the different
odes of operation.
The mosaic wizard facilitates building a mosaic from a user-

pecified directory of images. It loads the images, runs the
ools (ir-fft, ir-refine-translate, ir-refine-grid, ir-assemble) with
efault parameters, and exports an assembled image. The volume
izard operates similarly. It loads the mosaics, runs the tools (ir-

tos-brute, ir-stos-grid, ir-stom) with default parameters, and
xports a stack of aligned images. A third wizard, the volume
uilder, allows users to customize tool parameters, change the
ipeline flow by skipping tools or sections, reorganize sections,
nd finally export the data. This enables users to optimize volume
ssembly.

. Results

.1. Retinal connectome

The ir-tools described in this paper were used to build the first
arge-scale retinal connectome. The retinal connectome RC1 con-
ists of 341 serial sections (nominally 70 nm thick), each captured
nd assembled as a mosaic of approximately 1000 tiles. Each tile
s a 4096 × 4096 pixel imaged at 2.18 nm per pixel. This amounts
o approximately 32 Gigabytes per section and 16 Terabytes (after
rocessing) for the entire volume. The original image capture time
or the volume was 5 months. Enhancements in the capture pro-
ess now allow capture in 3 months (a rate of about 5000 images
aily). The image assembly was performed on a single eight-core
Ghz computer. Mosaicking times for a single 1000 tile section was
pproximately 16 min for ir-refine-translate, 64 min for ir-refine-
rid and 12 min for ir-assemble. Together with conversion from
he MRC to TIF format approximately 8 sections can be mosaicked
ach day. The computational complexity of ir-refine-translate is
(NM log M) where N is the number of tiles in the section and M is

he number of pixels per tile. The computational complexity of ir-
efine-grid is O(PQ log Q ) where P is the number of control points
sed and Q is the size of the neighborhood associated with each con-
rol point. Since approximate positions were known from metadata
e did not need to use ir-fft in our workflow which has computa-

ional complexity O(N2M log M). Section-to-section alignment was
ess than 1 min per pair for ir-stos-brute and approximately 8 min
er pair for ir-stos-grid. The computational complexity of ir-stos-
rid is also O(PQ log Q ). The total volume assembly time was 3
eeks.

Other datasets are also readily assembled. Fig. 8 is an image of
etina from rabbit expressing the rhodopsin P347L transgene. The
mage contains over 2200 TEM tiles captured and mosaicked in a
ompletely automated fashion.

.2. Quantitative validation of accuracy

We also performed two experiments to quantify the accuracy
f our image registration methods. First a simulation experiment
as performed to assess the accuracy of ir-fft for various amounts
f overlap between tiles. A single section from the RC1 dataset (see
ig. 7) was chosen. We performed a simulated capture of a portion
f this section by extracting 42 image tiles with 15% overlap, each
000 × 5000 pixels. We then ran ir-fft with the default options to
enerate a new mosaic. When the positions of the tiles in the result-
Fig. 9. 5 × 5 tile mosaic used for comparison of manual vs. automatic registration.

ing mosaic were compared to ground truth, the maximum error in
displacement was found to be 0.05 pixels, with a mean error of 0.01
pixels. This corresponds to a mean error of 0.1 nm in real image
space. We performed the same experiment for several amounts of
% overlap between tiles. The average errors in displacement are
reported in Table 1.

For the second quantitative experiment, a mosaic consisting of
25 tiles (5 × 5 tile layout and each tile is 512 × 512 pixels) was man-
ually and automatically registered using both rigid transforms only
and nonrigid transforms. The mosaic is shown in Fig. 9. Table 2
shows the root mean square difference in pixels between the con-
trol points in both cases. Notice that the manual and automatic
registration are essentially identical for rigid transforms and are
very close for the nonrigid case.

It is not possible to directly quantify the accuracy of section-to-
section alignment because there is no ground truth for the warping
due to the section cutting, i.e. it is not known what changes are
due to the cutting process and what changes are due to the neu-
rons changing shape and position. Furthermore, an experiment
performing alignment after a simulated warp would essentially be
equivalent to the mosaicking experiment outlined above due to
the similarity of the algorithms. However, we were able to track
Average displacement (in
pixels)

Manual vs. automatic rigid transform % 2.55 × 10−10

Manual vs. automatic nonrigid transform 1.45



1 oscien

4

a
f
t
c
t
i
m
b
t
n
u
t
i
t
t
a
m

A

E
a
(
h

R

A

A

B

B

B

B

C

C

C

C

C

D

D

D

D

E

44 T. Tasdizen et al. / Journal of Neur

. Discussion

We have developed a computationally efficient and robust fully
utomatic method for large-scale image registration. The per-
ormance of the method was successful in both generating >10
erabyte-scale image volumes and extremely large single slices
omposed of over 2000 individual images. We have validated quan-
itative accuracy of the method for mosaicking these types of
mages using a simulated experiment. Though we envisioned the

ain application of our publicly available software tools would
e biological neural network analyses, such as connectomics, the
ools can easily be applied to other large image datasets and are
ot limited to studies of the nervous system. Thus large-scale vol-
metric ultrastructural analyses of other complex heterocellular
issues (histomics) are also feasible. Nor are these approaches lim-
ted to electron microscopy per se. Preliminary results indicate that
he algorithms successfully mosaic and serial section data genera-
ion by high-resolution optical platforms. Future work will explore
utomated large-scale image volume construction in other imaging
odalities such as confocal optical microscopy.
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