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Principal Neighborhood Dictionaries for
Nonlocal Means Image Denoising
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Abstract—We present an in-depth analysis of a variation of the
nonlocal means (NLM) image denoising algorithm that uses prin-
cipal component analysis (PCA) to achieve a higher accuracy while
reducing computational load. Image neighborhood vectors are first
projected onto a lower dimensional subspace using PCA. The di-
mensionality of this subspace is chosen automatically using par-
allel analysis. Consequently, neighborhood similarity weights for
denoising are computed using distances in this subspace rather
than the full space. The resulting algorithm is referred to as prin-
cipal neighborhood dictionary (PND) nonlocal means. We investi-
gate PND’s accuracy as a function of the dimensionality of the pro-
jection subspace and demonstrate that denoising accuracy peaks at
a relatively low number of dimensions. The accuracy of NLM and
PND are also examined with respect to the choice of image neigh-
borhood and search window sizes. Finally, we present a quantita-
tive and qualitative comparison of PND versus NLM and another
image neighborhood PCA-based state-of-the-art image denoising
algorithm.

Index Terms—Image denoising, nonlocal means (NLM), parallel
analysis, principal component analysis, principal neighborhood.

I. INTRODUCTION

A S computational power increases, data-driven algorithms
have begun to gain in popularity in many fields. In image

processing, data-driven descriptions of structure are becoming
increasingly important. Traditionally, many models used in ap-
plications such as denoising and segmentation have been based
on the assumption of piecewise smoothness [1]–[3]. Unfortu-
nately, this type of model is too simple to capture the textures
present in a large percentage of real images. This drawback has
limited the performance of such models, and motivated data-
driven representations. One data-driven strategy is to use image
neighborhoods or patches as a feature vector for representing
local structure. Image neighborhoods are rich enough to cap-
ture the local structures of real images, but do not impose an
explicit model. This representation has been used as a basis
for image denoising [4]–[10], for texture synthesis [11], [12],
and for texture segmentation [13]. For both denoising and seg-
mentation, it has been demonstrated that the accuracy of this
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strategy is comparable to state-of-the-art methods in general
and exceeds them in particular types of images such as those
that have significant texture patterns. The drawback is the rel-
atively high computational cost. The image neighborhood fea-
ture vector is typically high dimensional. For instance, it is 49
dimensional if 7 7 neighborhoods are used. Hence, the com-
putation of similarities between feature vectors incurs a large
computational cost. One motivation of our work is to reduce the
computational complexity of methods that rely on image neigh-
borhood information.

The nonlocal means (NLM) image denoising algorithm av-
erages pixel intensities using a weighting scheme based on the
similarity of image neighborhoods [5]. The use of a lower di-
mensional subspace of the space of image neighborhood vectors
in conjunction with NLM was first proposed by Azzabou et al.
[8]. A very similar approach that uses covariance matrices in-
stead of correlation matrices for subspace computation is given
in [9]. In these methods, which we refer to as principal neighbor-
hood dictionary (PND) NLM, the image neighborhood vectors
are projected to a lower dimensional subspace using principal
component analysis (PCA). Then, the neighborhood similarity
weights for denoising are computed from distances in this sub-
space resulting in significant computational savings. More im-
portantly, it is also shown that this approach results in increased
accuracy over using the full-dimensional ambient space [8], [9].
While it is clear that a global sample of image neighborhoods
can not be represented in a reduced dimensionality linear sub-
space, the increased accuracy can be attributed to the robust-
ness of the similarity criterion to noise. In other words, pairwise
distances computed in the subspace defined by the significant
eigenvectors of a principal component decomposition are more
robust to additive noise than distances computed in the full-di-
mensional space. Another closely related paper uses singular
value decomposition of the image neighborhood vectors for se-
lecting the patches to be used in averaging [10].

One disadvantage of the approach in [9] is the introduction
of a new free parameter to the algorithm—the dimensionality
of the PCA subspace. Azzabou et al. propose to compare eigen-
values of the data correlation matrix to the noise variance to de-
termine the subspace dimensionality [8]. In this paper, we ex-
tend our previous work [9] and propose an automatic dimen-
sionality selection criteria using parallel analysis [14] that elim-
inates this free parameter. Compared to [8], our criteria does not
require the estimation of noise variance and is shown to produce
a more conservative estimate of dimensionality. We present a
detailed analysis of the performance of the method with respect
to subspace dimensionality and demonstrate that the dimension-
ality selection by parallel analysis provides good results. We
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also provide a detailed discussion of the effect of the smoothing
kernel width parameter and search window size selection. Fi-
nally, we compare the PND approach to the original NLM algo-
rithm [5] as well as another PCA-based state-of-the-art image
denoising algorithm [4].

II. RELATED WORK

A. Image Restoration and Denoising

A comprehensive review of the literature on image restora-
tion and denoising is beyond the scope of this paper. We only
give a brief summary of the closest related work. One approach
to image restoration arises from the variational formulation and
the related partial differential equations (PDEs). The Mum-
ford–Shah [1] and the Rudin–Osher–Fatemi total variation [3]
models are the pioneering works in variational formulations in
image processing. The PDE based approaches [2], [15], [16]
are closely tied to the variational formulations. For instance,
Nordstrom shows that the popular Perona and Malik anisotropic
diffusion PDE [2] is the first variation of an energy [17]. Tra-
ditionally, variational formulations have modeled images as
piecewise smooth or piecewise constant functions. While such
models are reasonable for some types of images such as certain
medical images and photographs of man-made objects, they
are too restrictive for other types of images such as textures
and natural scenes. To overcome this drawback, variational
formulations related to the NLM algorithm that can preserve
texture patterns have been proposed [18], [19].

Wavelet denoising methods [20]–[24] have also been proven
to be very suitable for image restoration. In these approaches,
the wavelet transform coefficients are modeled rather than the
intensities of the image. By treating wavelet coefficients as
random variables and modeling their probability density func-
tions, image restoration can be set up as a problem of estimating
the true wavelet coefficients. Patch based approaches can be
seen as related to wavelet based approaches when patches are
considered as dictionaries [25].

B. Image Neighborhood Based Filtering

Buades et al. introduced the NLM image denoising al-
gorithm which averages pixel intensities weighted by the
similarity of image neighborhoods [5]. Image neighborhoods
are typically defined as 5 5, 7 7, or 9 9 square patches of
pixels which can be seen as 25, 49 or 81 dimensional feature
vectors, respectively. Then, the similarity of any two image
neighborhoods is computed using an isotropic Gaussian kernel
in this high-dimensional space. Finally, intensities of pixels
in a search-window centered around each pixel in the image
are averaged using these neighborhood similarities as the
weighting function. More recently, Kervrann and Boulanger [6]
have introduced an adaptive search-window approach which
attempts to minimize the L2-risk with respect to the size of
the search-window by analyzing the bias and variance of the
estimator. Kervrann and Boulanger also show that their method
is comparable in accuracy to state-of-the-art image denoising
methods based on wavelets [24] and Markov random field

models over neighborhoods [26]. Their method, as well as
the standard NLM algorithm, is also shown to outperform
classical methods such as total variation regularization [3], bi-
lateral filtering [27] and Wiener filtering. Awate and Whitaker
[7] introduced a statistical interpretation to the neighbor-
hood-weighted averaging methods. Their approach is based on
treating image neighborhoods as a random vector, computing
the probability density function with nonparametric density
estimation and formulating image denoising as an iterative en-
tropy reduction. Dabov et al. use the block-matching technique,
traditionally used in video processing, to stack similar 2-D
image neighborhoods in to a 3-D array [28]. A decorrelating
unitary transform is applied to the 3-D array to produce a
sparse representation. Then, denoising is achieved by applying
a threshold to these transform coefficients.

Mahmoudi and Sapiro have proposed a method to improve
the computational efficiency of the NLM algorithm [29]. Their
patch selection method removes unrelated neighborhoods from
the search-window using responses to a small set of predeter-
mined filters such as local averages of gray value and gradi-
ents. Unlike [29] the lower dimensional vectors computed in
[8]–[10] are data-driven. Additionally, in [8] and [9], the lower
dimensional vectors are used for distance computation rather
than patch selection.

Principal component analysis of neighborhoods have previ-
ously been used for various image processing tasks. Ke and
Sukthankar [30] use principal components of image gradient
neighborhoods as a descriptor in conjunction with SIFT fea-
ture points [31]. PCA of image neighborhoods was also used
for denoising [4]. However, in that work, PCA is computed for
local collections of image neighborhood samples and denoising
is achieved by direct modification of the projection coefficients.
In this paper and [8] and [9], PCA is computed once, glob-
ally rather than locally. This results in a computationally more
efficient algorithm. Furthermore, a nonlocal means averaging
scheme is used rather than direct modification of projection co-
efficients. We present quantitative and qualitative comparisons
to this method in Section IV-B. Finally, Elad and Aharon learn
a sparse and redundant basis of image neighborhoods, i.e., the
sparseland image patch model, for denoising images [25].

C. Parallel Analysis for Dimensionality Selection

There are various methods proposed in the literature for deter-
mining the number of components to retain in data analysis [32].
Parallel Analysis, originally proposed by Horn [14], is one of
the most successful methods for determining the number of true
principal components [33], [34]. Improvements to the original
parallel analysis method have also been proposed. For instance,
Glorfeld uses Monte-Carlo simulations which do not rely on
the normal distribution assumption of the original method and
is shown to generate more accurate estimates of the number
of components [35]. Several researchers have noted the short-
comings of the parallel analysis method in data with oblique
structure and proposed modifications [36], [37]. More recently,
parallel analysis has been proposed as a way to determine the
number of modes in shape analysis [38].
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III. METHODS

A. Nonlocal Means Algorithm

Starting from a discrete image , a noisy observation of at
pixel is defined as . Let denote a
square neighborhood centered around pixel . Also, let de-
note the vector whose elements are the gray level values of
at pixels in . Finally, is a square search-window centered
around pixel . Then, the NLM algorithm [5] defines an esti-
mator for as

(1)

where is a normalizing term.
The smoothing kernel width parameter controls the extent of
averaging. For true nonlocal means, the search window needs
to be the entire image for all , which would give rise to global
weighted averaging. However, for computational feasibility,
has traditionally been limited to a square window of modest size
centered around pixel . This is the limited-range implementa-
tion of the NLM algorithm as proposed in the pioneering work
by [5]. For instance, a 21 21 window is used in [5] whereas a
7 7 window is used in [8]. We investigate the search window
size’s effect in Section IV-C.

The success of the NLM algorithm is attributed to the re-
dundancy that is available in natural images. Constant intensity
regions present no problem as there are a very large number
of copies of similar neighborhoods in such areas of the image.
Edges and other 1-D structures also have a relatively large
number of copies of similar neighborhoods located along the
structure of interest. The hardest case is that of intensity con-
figurations that occur in textured regions. Buades et al. show
that even in such cases, one can find similar neighborhoods if
the search-window is sufficiently large [5].

B. Principal Neighborhood Dictionary Nonlocal Means

In [8], [9], the distances in (1) are replaced
by distances computed from projections of onto a lower di-
mensional subspace determined by PCA. In the rest of this paper
we will refer to this method as the PND NLM algorithm. Let
denote the entire set of pixels in the image. Also, let be a ran-
domly chosen subset of . Treating as observations drawn
from a multivariate random process, we can estimate their co-
variance matrix as

(2)

where is the sample mean and is
the number of elements in the set . A small subset is
typically sufficient to accurately estimate the covariance matrix
and results in computational savings. The dimensionality of a

neighborhood vector is . For simplicity of notation, let
. Then is a matrix. Let be

the eigenvectors of , i.e., the principal neighborhoods, sorted
in order of descending eigenvalues. Let the -dimensional PCA
subspace be the space spanned by . Then the

Fig. 1. Top six principal components for 7� 7 image neighborhoods. Top to
bottom rows: Barbara, House, Lena, and Peppers principal components.

projections of the image neighborhood vectors onto this sub-
space is given by

(3)

where denotes the inner product of the two vectors.
Let be the -dimen-

sional vector of projection coefficients. Then, due to the or-
thonormality of the basis functions

(4)

Finally, define a new family of estimators for

(5)

where is the new normal-
izing term. Note that ; therefore, the proposed
approach with is equivalent to the standard NLM, i.e.,

.
Fig. 1 shows the top six principal neighborhoods, i.e., prin-

cipal components, computed from 7 7 neighborhoods for the
Barbara, House, Lena, and Peppers images (see Fig. 6). The first
eigenvector (left column) corresponding to the largest eigen-
value of is always approximately flat. This flat eigenvector
represents the average intensity in the 7 7 neighborhood. The
next two eigenvectors almost always represent two orthogonal
gradient directions which are necessary for representing edges.
The eigenvectors following these are more dependent on the
specific image. Generally, the next few eigenvectors represent
ridge patterns (rows 2–4 in Fig. 1); however, in the case of
strongly texture images, they can also represent the dominant
texture patterns (Barbara—columns 4&5, row 1 in Fig. 1). The
Barbara image (Fig. 6) is an example of the latter case due to
the abundant stripe patterns. In [8], the correlation matrix is used
in place of the covariance matrix. Differences in the principal
neighborhoods of the covariance and correlation matrices are
minor.

Significant principal neighborhoods are extremely robust
to additive, independent and identically distributed noise. It is
known that principal directions of a multivariate probability
distribution function are not altered by addition of spherically
symmetric noise. Therefore, for infinite sample sizes, the
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Fig. 2. PSNR (dB) as a function of the parameter � for the peppers image.

eigenvectors of the covariance matrix of image neighborhoods
will not be altered by addition of independent and identically
distributed noise to the image. Eigenvalues will be increased
by the noise variance amount. The effects of noise on the
eigenvalues of finite sample covariance matrices have also been
previously investigated [39]. Experimental evidence suggests
that principal neighborhoods (Fig. 1) that correspond to the
larger eigenvalues of the covariance matrix do not change in
any noticeable way in the presence of noise.

C. Smoothing Kernel Width Selection

Given a noisy image and a combination of and , there ex-
ists an optimal choice of the parameter in (5) that yields the
best output in terms of signal-to-noise ratio. To illustrate this
point, Fig. 2 shows the peak signal-to-noise ratio (PSNR) of
the estimator output as a function of for an image that was
corrupted with Gaussian noise . A rule-of-thumb for
choosing was given in [5] for the NLM algorithm with 7 7
image neighborhoods. More specifically, Buades et al. suggest
using . However, this choice of may not be optimal.
Furthermore, the optimal choice for varies significantly with
the image neighborhood size (applies to PND and the NLM
algorithm) and choice of subspace dimensionality (applies to
PND). For instance, it can be seen from Fig. 2 that the peak
PSNR is obtained at a lower value for the proposed approach
with than for the standard NLM algorithm. This observa-
tion conforms to our expectations because distances computed
in the subspace are necessarily smaller than distances computed
in the full-dimensional ambient space.

We will now show how rules for choosing near optimal pa-
rameters can be learned. We start by empirically finding the op-
timal for each combination of and for the set of test im-
ages used in this paper. This is repeated at various noise standard
deviations added to the images. To be more specific, given
a noisy image and a combination of and , golden section
search [40] is used to find the parameter value that maximizes
the output PSNR. The optimal value of behaves in a very pre-
dictable manner as a function of the noise level and PCA sub-
space dimensionality . In Fig. 3, optimal values are shown
as a function of for and of 7 7 image neigh-
borhoods. For a fixed , the relationship between optimal and

Fig. 3. Optimal � value as a function of Gaussian noise standard deviation �.
The data points correspond to the mean of the optimal � value for 8 test images
while the bars demonstrate the minimum and maximum optimal �.

TABLE I
ROWS 1 AND 2: SLOPE AND INTERCEPTS USED IN DETERMINING � FOR

VARIOUS SUBSPACE DIMENSIONALITY OF 7� 7 NEIGHBORHOODS.
ROW 3 AND 4: ERROR IN FIT TO OPTIMAL � AND LOSS IN OUTPUT PSNR

is linear. Therefore, for the -dimensional subspace of
image neighborhoods, can be chosen with the rule

(6)

Fig. 3 also shows the best linear fit to optimal as a function
of . We use these linear fits as an automatic way of choosing

given an image neighborhood size and . Table I shows the
linear fit parameters for several choices of of 7 7 image
neighborhoods. Also shown are the error in the linear fit to the
optimal values and the resulting loss of PSNR in the denoised
images. We note that as expected, the PSNR loss resulting from
using the automated selection instead of the optimal is small.
Parameters such as those shown in Table I can be precomputed
for all and of interest. Furthermore, as can be seen in Fig. 2,
the output PSNR curves have smooth, broad maxima. In other
words, the peak PSNR is somewhat robust to small sub-optimal-
ities in the selection of . Therefore, we expect that produced
by these linear fit parameters will produce results for a much
larger set of images than those from which they were learned.
It is important to note that the parameters in (6) also depend on
patch size. Fig. 3 demonstrates the analysis for 7 7 patches.
The same analysis could be repeated for other patch sizes as
well. An alternative method for selecting could be to analyze
the bias and variance of the estimator. This type of analysis is
used for selecting a search-window size in [6].

D. Automatic Subspace Dimensionality Selection

The original parallel analysis method [14] compares the
eigenvalues of the data covariance matrix to eigenvalues of
the covariance matrix of an artificial data set. This artificial
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Fig. 4. Sorted eigenvalues of the Lena image ���, eigenvalues from parallel
analysis ���, and eigenvalues from modified parallel analysis ���.

data set is generated by drawing samples from a multivariate
normal distribution with the same dimensionality , the same
number of observations , and the same marginal standard
deviations as the actual data. Let for denote the
eigenvalues of sorted in descending order. Similarly, let
denote the sorted eigenvalues of the artificial data covariance
matrix. Parallel analysis estimates data dimensionality as

(7)

The intuition is that the is a threshold for below which
the th component is judged to have occurred due to chance.

An improvement to parallel analysis is to use Monte Carlo
simulations to generate the artificial data [35] which removes
the assumption of normal distribution. In our algorithm, we gen-
erate the artificial data by randomly permuting each element of
the neighborhood vector across the sample . Let denote
the element of the neighborhood vector . For each gen-
erate a random permutation of the sequence
and let . Then, the random vectors are com-
posed from the elements . The artificial eigenvalues are
computed from the covariance matrix of . This method for
computing the artificial covariance matrix keeps the marginal
distributions intact while breaking any interdependencies be-
tween them. Fig. 4 shows the and computed in this manner
from the Lena image. The number of significant components is
under-estimated as two.

Several researchers have previously discussed that parallel
analysis has a strong tendency to underestimate the number of
components in data where the first component is much more sig-
nificant than the rest of the components (oblique structure) [36],
[37]. This is the case with image neighborhoods where the first
component, which is always approximately the average inten-
sity in the neighborhood (see Fig. 1), has a much larger eigen-
value than the rest of the components. Therefore, we propose
a modification to the parallel analysis algorithm in which we
remove the effect of the first component. We compute the av-
erage intensity of the neighborhood and
generate a new set of neighborhood vectors whose elements are

. Finally, the artificial data are generated from the
permutations . Fig. 4 also shows artificial eigen-
values computed in this modified manner. The number of sig-
nificant components is found to be 6.

Fig. 5. Parallel Analysis: (a) Lena and (b) Barbara with noise � � ��.

Fig. 6. Images used in the experiments.

Fig. 5(a) shows the parallel analysis applied to the noisy ver-
sion of the Lena image. The number of significant
components is still computed as 6 which shows the robustness
of the method. Fig. 5(b) shows the parallel analysis results for
the noisy Barbara image. In this case, the number of significant
components is 14. This larger number can be attributed to the
textured nature of the image which generates additional salient
neighborhood components.

Notice that the moving from left to right in Fig. 4, the values
decrease. Hence, the parallel analysis method is not equivalent
to a fixed threshold applied to the data eigenvalues. This is dif-
ferent from [8] where data eigenvalues are directly compared
to an estimate of noise variance. Another difference of the pro-
posed dimensionality selection from the method used in [8] is
that parallel analysis does not require a previous estimate of the
noise variance. Finally, it can be seen from Fig. 5 that a direct
comparison to noise variance ( in this case)
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Fig. 7. PSNR (dB) versus PCA subspace dimensionality for various neighborhood sizes and noise levels. For each plot: low noise �� � ��� top curve, medium
noise �� � ��� middle curve, high noise �� � ��� bottom curve. Top to bottom rows: Barbara, Boat, Fingerprint, and Lena images.

would result in a significantly larger dimensionality estimate
than the parallel analysis method. This can be problematic be-
cause as will be discussed in Section IV-A, the dimensionality
selected by parallel analysis correlates very well with the dimen-
sionality that yields the best denoising results in experiments.

Typically, the artificial eigenvalues are simulated multiple
times. However, we have found that if is sufficiently large,
i.e., 10% of the entire set of pixels , a single simulation almost
always gives the same result as multiple simulations. This is
desirable from a computational complexity point of view.

It is well known that the least significant eigenvalue of a
sample covariance matrix can be used as an estimator for the
noise variance. More specifically, Muresan and Parks [4] have
suggested using the smallest eigenvalue of the covariance of
sample image neighborhoods as an estimator for noise vari-
ance; in other words, . This estimator is biased to
slightly underestimate the noise standard deviation due to the
finite sample size; however, we find this bias to be quite small.

Finally, this noise estimate can be used together with (6) to se-
lect a parameter. The pseudo-code for the PND algorithm is
given below along with the subroutines for the modified parallel
analysis and PCA.

IV. EXPERIMENTS

In this section, we present detailed experimental results
studying the behavior of the PND algorithm with respect to
subspace dimensionality (Section IV-A) and search-window
size selections (Section IV-C). We also present quantitative and
qualitative comparisons with the original NLM algorithm [5] as
well as the adaptive PCA (APCA) algorithm [4] (Section IV-B).
All of the experiments were performed on a set of eight images
(shown in Fig. 6) including those used by Portilla etal [24]
and several additional images. We study the performance of
the proposed approach using images corrupted with additive,
independent Gaussian noise with standard deviation 10, 25,
and 50.
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A. Subspace Dimensionality and Image Neighborhood Size

We first present results that systematically study the behavior
of the estimator given by (5) with respect to the PCA subspace
dimensionality. In Section IV-B, we will compare the perfor-
mance of the full PND algorithm, including automatic dimen-
sionality selection, to the NLM [5] and APCA [4] algorithms.

Fig. 7 illustrates the best PSNR at the optimal parameter
values. The rows correspond to four of the eight test images; the
other four images behave similarly and are omitted for brevity.
From left to right, the columns correspond to 5 5, 7 7 and
9 9 image neighborhoods. In each graph, the PSNR of the
denoised image is plotted against the PCA subspace dimen-
sionality. Recall that when the PCA subspace dimensionality
is equal to the number of pixels in the proposed algorithm is
equivalent to the NLM algorithm. Therefore, the original NLM
algorithm corresponds to the rightmost data point of each graph.
Finally, each graph shows three curves corresponding to the
three input noise levels.

In all cases, the best results are obtained at a relatively low
PCA subspace dimensionality . The curves shown in Fig. 7
(except for Barbara) have a very characteristic shape: steeply
increasing PSNR for , a knee around and flat or
gradually declining PSNR for . For higher noise levels, the
PSNR declines significantly beyond the knee whereas for lower
noise levels it is flatter. In other words, the advantage of the
proposed approach over the standard NLM algorithm increases
with higher input noise levels. The increased accuracy at lower

values can be attributed to the observation that distances com-
puted in the lower dimensional space are likely to be more ac-
curate than distance computed from the full-dimensional space
because PCA discards the most irrelevant dimensions. This ex-
planation based on the accuracy of distances is also supported
by the observation that the difference in PSNR between PND
and NLM increases with increasing input noise level.

For the Barbara image the best ranges from 7 to 20 de-
pending on the image neighborhood size and input noise level.
The higher subspace dimensions necessary for obtaining the
best PSNR with this image can be attributed to its complex tex-
tured nature. Recall from Fig. 1 that unlike the other images,
the top principal components of Barbara image include texture
components (stripe patterns which are common in that image).
This results in a larger number of salient principal components
compared to the other images.

While Fig. 7 clearly illustrates the effects of PCA subspace
dimensionality on the quality of denoising results, Table II of-
fers an easier comparison across various image neighborhood
sizes. For each test image, Table II includes three rows, one for
each input noise level. Each row gives the best PSNR values at
the optimal choice of for different neighborhood sizes. In other
words, the best PSNR value corresponding to the maxima of the
curves in Fig. 7 is included in Table II. Results for image neigh-
borhoods ranging from 3 3 to 9 9 are provided. Also, results
by using only the center pixel intensity (1 1 image neighbor-
hood) are given for comparison. Finally, the overall best PSNR
across the various neighborhood sizes for a particular image and
noise level is shown in boldface.

TABLE II
PSNR VALUES AT THE OPTIMAL SUBSPACE DIMENSIONALITY. INPUT PSNR

FOR THREE NOISE LEVELS (� � 10, 25, 50) SHOWN IN COLUMN 2. COLUMNS

3-7 SHOW THE RESULTS AT THE BEST DIMENSIONALITY FOR NEIGHBORHOOD

SIZES FROM 1� 1 TO 9� 9. THE OVERALL BEST PSNR ACROSS THE

NEIGHBORHOOD SIZES FOR A PARTICULAR IMAGE AND NOISE LEVEL IS

SHOWN IN BOLDFACE

As other researchers have previously shown, the NLM algo-
rithm outperforms algorithms which only use the center pixel
intensity such as bilateral filtering. Also notice that the best
image neighborhood size increases with input noise level. It
can be argued that this is a trade-off between the reliability of
weights versus curse of dimensionality. Larger image neigh-
borhoods result in a higher dimensional feature space. This re-
sults in a sparser samples (curse of dimensionality) and less re-
liable weighted averages in (1) and (5) due to a lack of nearby
sample points. On the other hand, larger image neighborhoods
also provide a more pronounced averaging effect in (1) and (5)
due to the larger spatial extent of the principal neighborhoods.
This can result in weights less susceptible to noise. As the noise
level increases, weight reliability becomes increasingly impor-
tant; hence, larger image neighborhoods are preferred.

B. Comparison With NLM and APCA Algorithms

Table III shows the values selected by parallel analysis as
described in Section III-D for various neighborhood sizes and
noise levels. Table IV compares the results of the proposed al-
gorithm with these automatically chosen and values to the
results of the NLM algorithm. The parameter for the NLM
algorithm is also selected with the same rules for a fair com-
parison. Note that this results in better PSNR outcomes for the
NLM algorithm compared to choosing as suggested
in [5]. When the noise is moderate or high, PND significantly
(greater than 1 dB difference) outperforms NLM denoising. The
advantages of the proposed approach increase with increasing
noise level. For low noise , PND performs slightly
better for five of the eight images while NLM performs slightly
better for three of the eight. As the noise level decreases, the
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TABLE III
PCA SUBSPACE DIMENSIONALITY SELECTED BY PARALLEL ANALYSIS

TABLE IV
PSNR FOR IMAGES DENOISED WITH PND AND NLM [5]. FOR EACH IMAGE,

THE 3 ROWS CORRESPOND TO NOISE LEVELS � � 10, 25, AND 50

length of the projection of image neighborhoods in the com-
plementary space that is orthogonal to the PCA subspace also
decreases. Consequently, the distances in the PCA subspace be-
come better approximations to the distances in the full-dimen-
sional space. In other words, the difference between the two dis-
tance computations become minimal, which in turn results in
very similar performance of the two approaches. However, note
that image neighborhoods can not be perfectly represented in re-
duced dimensionality linear subspaces; hence, in the absence of
noise, distances computed in lower dimensional subspaces are
sub-optimal.

TABLE V
PSNR FOR IMAGES DENOISED WITH PND AND APCA [4]. FOR EACH IMAGE,

THE 3 ROWS CORRESPOND TO NOISE LEVELS � � 10, 25, AND 50

We also compare the PND method to the Adaptive PCA
(APCA) method of Muresan and Parks [4]. In APCA local
PCAs are used to project the image neighborhoods on to a local
basis. The maximum likelihood estimator for a given projection
coefficient is computed using estimates of noise variance and
that coefficient’s variance. Similar to PND and NLM, the APCA
algorithm entails a choice of image neighborhood size. We tested
the APCA algorithm with 5 5, 7 7, and 9 9 neighborhood
sizes. For the rest of the parameters in our implementation of
APCA, we use the suggestions given in [4]: The size of the
window used for local PCA is referred to as the training region
in [4] and is fixed as a 21 21 square window. The maximum
likelihood estimators apply to the 7 7 central denoising region
of each training region. Finally, adjacent denoising regions
overlap by three pixels as suggested in [4] to avoid blocking
artifacts. Table V compares the PND and APCA methods for
the various image neighborhood sizes and noise variances. In
general, APCA outperforms PND; however, for the House and
Peppers images PND performs better. The performances are
roughly even for the Flinstones and Brain MRI images. However,
despite the overall better quantitative performance of the APCA
algorithm over PND, there are visual artifacts that are associated
with APCA denoising which do not occur with the PND or
NLM algorithms. Fig. 8 illustrates detailed denoising results
for the APCA, PND and NLM algorithms for portions of some
test images. Local, directional oscillatory artifacts associated
with the APCA algorithm can be seen in the Barbara and House
images. These artifacts are most noticeable in the tablecloth
region of the Barbara and the background in the House image.
Furthermore, the artifacts are more significant in the cases with
higher noise. Artifacts are not observed in the Fingerprint image,
possibly because the local PCA model is a very good fit for the
homogeneous texture pattern found in this image. Finally, notice
that the PND algorithm outperforms NLM visually as well as
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Fig. 8. Visual comparison of APCA [4], PND and NLM denoising [5] using 7� 7 image neighborhoods.

quantitatively. This can be seen in the tablecloth, pants and
other striped patterned regions of the Barbara image, especially
for the case with higher noise.

We have implemented the PND, NLM and APCA algorithms
in MATLAB (Copyright The Mathworks, Inc.). Table VI pro-
vides the run times of the two algorithms for the eight test im-
ages. The run times for the NLM and APCA algorithms are ap-
proximately the same for images of the same size, whereas the
run times for the PND algorithm depend on the subspace dimen-
sion selected by the parallel analysis subroutine (see Table III).
PND is always faster than NLM and APCA. The computational
complexity of NLM is where , and

are the number of pixels in the image, in the search window
and in the neighborhood vector , respectively. In compar-

ison, the complexity when using a -dimensional subspace is
. The additional costs in building the covariance

matrices for PCA and parallel analysis is . The cost
for computing the projection coefficients
are and . Eigenvectors are computed once glob-
ally for a small matrix ; this cost is negligible. As
pointed out in Algorithm 1, we choose as a random subset of

with one tenth the size; hence, . Therefore, the
total complexity for PND is .
This is significantly smaller than the NLM cost because typi-
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cally . For typical window sizes used in the literature,
and . If larger search windows are used,

which can be desirable from a PSNR point of view, the compu-
tational savings over NLM and APCA increase.

Algorithm 1 PND

Generate all image neighborhood vectors

Pick a random subsample with elements

ParallelAnalysis

for to do

end for

for to do

end for

return

Algorithm 2 ParallelAnalysis

for to do

for to do

end for

end for

for to do

Generate , a random permutation of numbers 1 to

Let for

end for

return

Algorithm 3 PCA

return Sorted eigenvalues and eigenvectors of the
covariance matrix .

TABLE VI
COMPUTATION TIMES (IN SECONDS) FOR THE PND, NLM APCA ALGORITHMS.

ALL ALGORITHMS WERE CODED INMATLAB . THEHOUSE, PEPPERS, AND

BRAIN MRI ARE 256� 256, ALL OTHERS ARE 512� 512

C. Effect of Search Window Size

As explained in Section III-A, this paper and other nonlocal
means image filtering approaches in the literature use the lim-
ited-range implementation for computational feasibility. In the
limited-range implementation, the search window in (1) is
defined to be a square window of limited size centered at pixel

rather than the entire set of pixels in the image. This brings
into question whether the limited-range implementation effects
the performance of NLM. In other words, how does denoising
performance change with the size of ? Most nonlocal means
based papers in the literature such as [5], [8]–[10], [29] have
chosen a fixed search window size. In contrast, Kervrann and
Boulanger [6] propose an adaptive search-window approach
based on an analysis of estimator’s the bias and variance. In
this section, we investigate the effects of search-window size
in fixed size approaches.

Fig. 9 plots the PSNR performance of the NLM and PND
algorithms versus search window size. More specifically, the
x-axis is the length of the sides of the square window . From
Fig. 9, we can see that denoising performance for both algo-
rithms first increases with search window size and then satu-
rates beyond a size of approximately 17 17. In fact, for cer-
tain images such as Lena, Brain MRI, and Boat there is a slight
degradation in performance beyond this size. This performance
degradation is more noticeable with NLM than PND. The only
exception appears to be the Fingerprint image for which de-
noising accuracy monotonically increases for all search window
sizes we tested. These observations suggest that, for most im-
ages. the success of the NLM algorithm could be attributed more
to its use of image neighborhoods than its nonlocal nature. In
general, it is likely that using larger search-windows do not pro-
vide additional neighborhood examples that are close to the one
being denoised. In the case of the Fingerprint image there is
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Fig. 9. PSNR versus length of search window side. Top: NLM. Bottom: PND.

a single dominant texture, modulo rotation, that is present ev-
erywhere. Hence, larger search-windows can provide additional
useful examples; however, due to the presence of rotation, we
still expect that PSNR accuracy would saturate beyond a certain
point. The decreasing performance phenomenon needs to be in-
vestigated further. One possible cause is related to the choice of
the smoothing kernel width parameter. It also suggests that both
NLM and PND can benefit from an adaptive search-window size
such as the one proposed in [6].

V. CONCLUSION

The accuracy and computational cost of the NLM image de-
noising algorithm [5] is improved by computing neighborhood
similarities, i.e., averaging weights, after a PCA projection to
a lower dimensional subspace. Unlike the predetermined filters
introduced in [29] for reducing the NLM computational cost,
PND, and the methods described in [8] and [10] are data-driven
and can adapt to the statistics of a given image. Also, in [29], the
weights are still computed from the original high-dimensional
vectors after the selection of neighborhoods to include in the
weighted average. In this work, the lower dimensional projec-
tions are not only used as a search criteria but also for computing
similarity weights resulting in better accuracy in addition to re-
duced computational cost. It is clear that image neighborhoods
can not be modeled in a global, linear subspace. Nevertheless,
better accuracy is explained in terms of the increased reliability
in the similarity weights when they are computed in a subspace
that captures most of the true variability in neighborhoods and
limits the effects of noise. For images with very regular textures
such as a fingerprint image, it was observed that APCA performs
better than PND both visually and quantitatively. This results

suggests that i) a semi-local PCA instead of global PCA could
also benefit the proposed method, and ii) it might be necessary
to adaptively select a different subspace dimensionality in dif-
ferent image parts to better capture texture patterns. Finally, we
showed that parallel analysis can be used to automatically de-
termine a subspace dimensionality that yields good results.

The NLM algorithm has been previously applied to color im-
ages by measuring distance in the RGB image neighborhood
space [29]. Similarly, the proposed approach can be extended to
color images by performing in the RGB image neighborhood
space which is formed by concatenating image neighborhoods
in the three channels into a single vector. Another interesting
direction for future research is to use a separate bandwidth for
each element of the projected vector in (5). While the ele-
ments of have equal marginal distributions, the same is not
true for , and a possible room for improvement is to use the
PCA eigenvalues to determine different bandwidth parameters
for the different projection coefficients. Finally, the Principal
Neighborhoods approach can also be easily applied to other de-
noising and segmentation algorithms that use similarity mea-
sures based on image neighborhood vectors [6], [7], [13].

ACKNOWLEDGMENT

The author would like to thank the Utah Science Technology
and Research Initiative for their support. He would also like to
thank J. Cates, T. Fletcher, and R. Whitaker for helpful discus-
sions on parallel analysis, as well as the anonymous reviewers
whose comments helped greatly improve the paper.

REFERENCES

[1] D. Mumford and J. Shah, “Optimal approximations by piecewise
smooth functions and associated variational problems,” Commun.
Pure Appl. Math., vol. 42, no. 4, pp. 577–685, 1989.

[2] P. Perona and J. Malik, “Scale-space edge detection using anisotropic
diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 7, pp.
629–639, Jul. 1990.

[3] L. I. Rudin, S. J. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, vol. 60, pp. 259–268, 1992.

[4] D. D. Muresan and T. W. Parks, “Adaptive principal components and
image denoising,” in Proc. Int. Conf. Image Processing, 2003, vol. 1,
pp. 101–104.

[5] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Conf. Computer Vision and Pattern Recog-
nition, 2005, pp. 60–65.

[6] C. Kervrann and J. Boulanger, “Optimal spatial adaptation for patch-
based image denoising,” IEEE Trans. Image Process., vol. 15, no. 10,
pp. 2866–2878, Oct. 2006.

[7] S. P. Awate and R. T. Whitaker, “Unsupervised, information-theoretic,
adaptive image filtering for image restoration,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 3, pp. 364–376, Mar. 2006.

[8] N. Azzabou, N. Paragios, and F. Guichard, “Image denoising based on
adapted dictionary computation,” in Proc. Int. Conf. Image Processing,
2007, vol. III, pp. 109–112.

[9] T. Tasdizen, “Principal components for non-local means image de-
noising,” in Proc. Int. Conf. Image Processing, 2008.

[10] J. Orchard, M. Ebrahim, and A. Wang, “Efficient nonlocal-means de-
noising using the SVD,” in Proc. Int. Conf. Image Processing, 2008.

[11] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Proc. IEEE Int. Conf. Computer Vision, 1999, pp.
1033–1038.

[12] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured
vector quantization,” in Proc. SIGGRAPH, 2000, pp. 479–488.

[13] S. P. Awate, T. Tasdizen, and R. T. Whitaker, “Unsupervised texture
segmentation with nonparametric neighborhood statistics,” in Proc.
Eur. Conf. Computer Vision, 2006, pp. 494–507.

[14] J. L. Horn, “A rationale and test for the number of factors in factor
analysis,” Psychometrica, vol. 30, no. 2, pp. 179–185, 1965.



2660 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 12, DECEMBER 2009

[15] J. Weickert, Anisotropic Diffusion in Image Proc. Teubner, Germany:
Verlag, 1998.

[16] T. Chan, J. Shen, and L. Vese, “Variational Pde models in image proc,”
Notice Amer. Math. Soc., vol. 50, pp. 14–26, 2003.

[17] K. N. Nordstrom, “Biased anisotropic diffusion: A unified regulariza-
tion and diffusion approach to edge detection,” Image Vis. Comput.,
vol. 8, no. 4, pp. 318–327, 1990.

[18] S. Kindermann, S. Osher, and P. W. Jones, “Deblurring and denoising
of images by nonlocal functionals,” Multiscale Model. Simul., vol. 4,
no. 4, pp. 1091–1115, 2005.

[19] T. Brox, O. Kleinschimdt, and D. Cremers, “Efficient nonlocal means
for denoising of textural patterns,” IEEE Trans. Image Processing, vol.
17, no. 7, pp. 1083–1092, Jul. 2008.

[20] A. Hyvarinen, P. Hoyer, and E. Oja, “Sparse code shrinkage:
Denosing of nongaussian data by maximum likelihood estimation,”
Neural Comput., vol. 11, no. 7, pp. 1739–1768, 1999.

[21] J. Starck, E. Candes, and D. Donoho, “The curvelet transform for image
denoising,” IEEE Trans. Image Process., vol. 11, no. 6, Jun. 2000.

[22] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, “A joint
inter and intrascale statistical model for bayesian wavelet based
image denoising,” in IEEE Trans. Image Process., 2002, vol. 11, pp.
545–557.

[23] L. Sendur and I. Selesnick, “Bivariate shrinkage functions for wavelet-
based denoising exploiting interscale dependency,” IEEE Trans. Signal
Process., vol. 50, pp. 2744–2756, 2002.

[24] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli, “Image de-
noising using scale mixtures of gaussians in the wavelet domain,” IEEE
Trans. Image Process., vol. 12, pp. 1338–1351, 2003.

[25] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionary,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[26] S. Roth and M. J. Black, “Fields of experts: A framework for learning
image priors with applications,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2005, vol. 2, pp. 860–867.

[27] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color im-
ages,” in Proc. Int. Conf. Computer Vision, 1998, pp. 839–846.

[28] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image de-
noising with block-matching and 3d filtering,” Proc. SPIE Electronic
Imaging: Alg. and Sys., N. Networks, and Machine Learning, vol.
6064, 2006.

[29] M. Mahmoudi and G. Sapiro, “Fast image and video denoising via non-
local means of similar neighborhoods,” IEEE Signal Proc. Lett., vol.
12, no. 12, pp. 839–842, Dec. 2005.

[30] Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive representation
for local image descriptors,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2004, vol. 2, pp. 506–513.

[31] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proc. Int. Conf. Computer Vision, 1999, pp. 1150–1157.

[32] J. L. Horn and R. Engstrom, “Cattell’s scree test in relation to bartlett’s
chi-square test and other observations on the number of factors
problem,” Multivariate Behav. Res., vol. 14, pp. 283–300, 1979.

[33] W. F. Velicer, “Determining the number of components from the matrix
of partial correlations,” Psychometrika, vol. 41, pp. 321–327, 1976.

[34] J. C. Hayton, D. G. Allen, and V. Scarpello, “Factor retention decisions
in exploratory factor analysis: A tutorial on parallel analysis,” Org. Res.
Meth., vol. 7, no. 2, pp. 191–205, 2004.

[35] L. W. Glorfeld, “An improvement on horn’s parallel analysis method-
ology for selecting the correct number of factor’s to retain,” Educ.
Psych. Meas., vol. 55, no. 3, pp. 377–393, 1995.

[36] N. E. Turner, “The effect of common variance ans structure on random
data eigenvalues: Implications for the accuracy of parallel analysis,”
Educ. Psych. Meas., vol. 58, no. 4, pp. 541–568, 1998.

[37] A. Beauducel, “Problems with parallel analysis in data sets with
oblique simple structure,” Meth. Phys. Res. Online, vol. 6, no. 2, pp.
141–157, 2001.

[38] J. Cates, P. T. Fletcher, M. Styner, H. Hazlett, and R. T. Whitaker,
“Particle-based shape analysis of multi-object complexes,” in Proc.
Int. Conf. Medical Image Computing and Comp. Assisted Intervention,
2008, pp. 477–485.

[39] R. Everson and S. Roberts, “Infering the eigenvalues of covariance ma-
trices from limited, noisy data,” IEEE Trans. Signal Process., vol. 48,
no. 7, pp. 2083–2091, Jul. 2000.

[40] J. Kiefer, “Sequential minimax search for a maximum,” in Proc. Amer.
Math. Soc., 1953, pp. 502–506.

Tolga Tasdizen (S’98–M’00–SM’09) received the
B.S. degree in electrical and electronics engineering
from Bogazici University in 1995 and the M.S. and
Ph.D. degrees in engineering from Brown University,
Providence, RI, in 1997 and 2001, respectively.

After a postdoctoral researcher position in the Sci-
entific Computing and Imaging (SCI) Institute at the
University of Utah, he was a Research Assistant Pro-
fessor in the School of Computing at the same institu-
tion. Since 2008, he has been an Assistant Professor
in the Department of Electrical and Computer Engi-

neering at the University of Utah. He is also a Utah Science Technology and
Research Initiative (USTAR) faculty member in the SCI Institute. His research
interests are in image processing and pattern recognition with a focus on appli-
cations in biological and medical image analysis.

Dr. Tasdizen is an associate member of Bio Imaging and Signal Processing
Technical Committee (BISP TC) of the IEEE Signal Processing Society. He is
also an organizer for the International Workshop on Microscopic Image Anal-
ysis with Applications in Biology (MIAAB).


