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ABSTRACT
This paper presents an image denoising algorithm that uses

principal component analysis (PCA) in conjunction with

the non-local means image denoising. Image neighborhood

vectors used in the non-local means algorithm are first pro-

jected onto a lower-dimensional subspace using PCA. Con-

sequently, neighborhood similarity weights for denoising are

computed using distances in this subspace rather than the full

space. This modification to the non-local means algorithm

results in improved accuracy and computational performance.

We present an analysis of the proposed method’s accuracy as

a function of the dimensionality of the projection subspace

and demonstrate that denoising accuracy peaks at a relatively

low number of dimensions.

Index Terms— Non-local means, principal component

analysis, image denoising, image neighborhoods.

1. INTRODUCTION

Data-driven descriptions of structure are becoming increas-

ingly important in image processing applications such as de-

noising, regularization and segmentation. One strategy is to

use collections of nearby pixels, i.e. image neighborhoods, as

a feature vector for representing local structure. Image neigh-

borhoods are rich enough to capture the local structures of real

images, but do not impose an explicit model. This represen-

tation has been used as a basis for image denoising [1, 2, 3, 4]

and for texture image segmentation [5]. For both denoising

and segmentation, it has been demonstrated that the accuracy

of this strategy is on the same level as state-of-the-art methods

in general and exceeds them in particular types of images such

as those that have significant texture patterns. The drawback

is the relatively high computational cost. The image neigh-

borhood feature vector is typically high-dimensional, e.g. it

is 49 dimensional if 7×7 neighborhoods are used. Hence, the

computation of similarities between feature vectors incurs a

large computational cost. In this paper, we propose to project

the image neighborhood vectors to a lower-dimensional space

by principal component analysis (PCA). Then, the neighbor-

hood similarity weights required for denoising are computed
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from distances in this lower-dimensional space resulting in

significant computational savings. Furthermore, in Section 4,

we show that our approach results in increased accuracy over

using the full image neighborhood vector.

The motivation for our approach stems from the as-

sumption that image neighborhood vectors exist on a lower-

dimensional manifold rather than the full space. This assump-

tion is based on the observations by Huang and Mumford [6]

and Lee et al. [7] who found multi-dimensional intensity data

derived from image neighborhoods to be concentrated on

low-dimensional manifolds. Even though these manifolds are

unlikely to be linear, PCA can still be used to significantly

reduce the dimensionality of image neighborhood vectors.

2. RELATED WORK

Buades et al.introduced the non-local means image denois-

ing algorithm which averages the intensities of nearby pixels

weighted by the similarity of image neighborhoods [1]. Im-

age neighborhoods are typically defined as 5 × 5, 7 × 7 or

9 × 9 square patches of pixels which can be seen as 25,

49 or 81 dimensional feature vectors, respectively. Then,

the similarity of any two image neighborhoods is computed

using an isotropic Gaussian kernel in this high-dimensional

space. Finally, intensities of pixels in a search-window cen-

tered around each pixel in the image are averaged using

these neighborhood similarities as the weighting function.

More recently, Kervrann and Boulanger [3] have introduced

an adaptive search-window approach which attempts to mini-

mize the L2-risk with respect to the size of the search-window

by analyzing the bias and variance of the estimator. Awate

and Whitaker [2] introduced a statistical interpretation to

the neighborhood-weighted averaging methods. Their ap-

proach is based on treating image neighborhoods as a ran-

dom vector, computing its probability density function with

non-parametric density estimation and formulating image

denoising as an iterative reduction of that density.

Mahmoudi and Sapiro have proposed a method to im-

prove the computational efficiency of the non-local means al-

gorithm [8]. Their method removes unrelated neighborhoods

from the search-window using responses to a small set of pre-

determined filters such as local averages of gray value and

gradients. Unlike [8] and other methods, i.e. Gabor filter re-

sponses, which use predetermined feature vector definitions
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to construct relatively lower-dimensional representations, the

lower-dimensional vectors computed by PCA are data-driven

and are approximations to the full neighborhood vector.

PCA of image neighborhoods was previously used for de-

noising [4]. However, in that work, PCA is computed for local

collections of image neighborhood samples and denoising is

achieved by direct modification of the principal components.

In this paper, PCA is computed once, globally rather than lo-

cally which results in a more computationally efficient algo-

rithm. Also, we use the non-local means averaging scheme

rather than direct modification of principal components.

3. METHODS

Starting from a true, discrete image u, a noisy observation of

u at pixel i is defined as v(i) = u(i) + n(i). Let Nk and

v(Nk) denote a square neighborhood of fixed size centered

around pixel k and the image neighborhood vector whose ele-

ments are the gray level values of v at Nk, respectively. Also,

Sk is a square search-window of fixed size centered around

pixel k. Then, the non-local means algorithm [1] defines an

estimator for u at pixel i as

û(i) =
∑
j∈Si

1
Z(i)

e−
‖v(Ni)−v(Nj)‖2

h2 v(j), (1)

where Z(i) =
∑

j∈Si
e−‖v(Ni)−v(Nj)‖2/h2

is a normalizing

term and parameter h controls the extent of averaging.

We propose to replace the distances ‖ v(Ni) − v(Nj) ‖2

in (1) by distances computed from projections of v(N ) onto

a lower-dimensional subspace determined by PCA. Let M be

the number of pixels in the image neighborhood N . Also,

let {bp}M
p=1 be the eigenvectors of the M × M empirical co-

variance matrix for the set of all image neighborhood vec-

tors {v(N )j}Q
j=1 where Q denotes the total number of pix-

els in the image. Furthermore, the eigenvectors are sorted

in descending order according to their respective eigenvalues.

Then, the projections of the image neighborhood vectors onto

the d-dimensional PCA subspace is

v[d] (Ni) =
d∑

p=1

〈v (Ni) ,bp〉︸ ︷︷ ︸
fp(Ni)

bp, (2)

where fp (Ni) is the length of i’th vector’s projection onto the

p’th basis vector. Due to the orthonormality of the basis

‖v[d] (Ni) − v[d] (Nj)‖2 =
d∑

p=1

(fp (Ni) − fp (Nj))
2
. (3)

Finally, we define a new family of estimators for d ∈ [1, M ]

û[d](i) =
∑
j∈Si

1
Zd(i)

e−
Pd

p=1 (fp(Ni)−fp(Nj))
2

h2 v(j), (4)

where Zd(i) =
∑

j∈Si
e−

Pd
p=1 (fp(Ni)−fp(Nj))

2
/h2 is the

new normalizing term. Note that v[M ] (Ni) = v (Ni); there-

fore, the proposed approach with d = M is equivalent to the

standard non-local means, i.e. û[M ](i) = û(i).

4. RESULTS

The proposed approach was tested on a set of eight images

(shown in Figure 3) including those used in [9] and several

additional images. Images were corrupted with additive, in-

dependent Gaussian noise and denoised using a 7 × 7 image

neighborhood N and a 21 × 21 search window S as in [1].

Buades et al. [1] also suggest using h = 10σ where σ is the

standard deviation of the additive noise. For the proposed

method, the optimal choice for h depends on the dimension-

ality d of the PCA subspace. To illustrate this point, Figure 1

shows the PSNR after denoising as a function of h for an im-

age that was corrupted with Gaussian noise (σ = 15). Note

that the peak PSNR is obtained at a lower h value for the pro-

posed approach with d = 10 than for the standard non-local

means algorithm. This observation conforms to our expecta-

tions because distances computed in a subspace are necessar-

ily smaller than distances computed in the full space.
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Fig. 1. PSNR (dB) as a function of the parameter h for the

peppers image. The PSNR for the noisy image is 24.6.

In general, the denoising parameter can be chosen with

the rule h = α(d)σ. We determine the scalar α(d) in the

following manner. For each test image, a noise level σ and

a given PCA subspace dimensionality d , the optimal value

for h was found empirically. Figure 2 shows the mean, min-

imum and maximum of the optimal h value over the set of

test images as a function σ for d = 10 and for the non-local

means algorithm (d = 49). Notice that, for any given d, there

is a linear relationship between the mean of optimal h and σ.

Then, α(d) is chosen as the slope of this linear relationship.

Figure 3 shows the PSNR after denoising as a function of d
for all test images using the h values chosen in this manner.

Results are presented for three levels of noise standard devi-

ation σ = 10, 25, 50. Recall that d = 49 is identical to the

non-local means algorithm (the right-most data point on each
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Fig. 2. Optimal h value as a function of Gaussian noise stan-

dard deviation σ. The data points correspond to the mean of

the optimal h value over the set of 8 test images while the bars

demonstrate the minimum and maximum optimal h.

curve in Figure 3). In all cases, the proposed approach out-

performs the standard non-local means algorithm. The best

results are obtained at a relatively low PCA subspace dimen-

sionality d. More specifically, for all images except barbara,

choosing d = 6 yields either the highest PSNR or a PSNR

very close to the highest. For these images, the curves shown

in Figure 3 have a characteristic shape: steeply increasing

PSNR for d < 6], a knee around d = 6 and gradually declin-

ing PSNR for d > 6. The increased accuracy at lower d values

can be attributed to the observation that distances computed

in the lower-dimensional space are likely to be more accu-

rate than distance computed from the full-dimensional space

because PCA discards the most irrelevant dimensions. The

barbara image presents an exception where the best choice

for d ranges from 10 to 15 depending on the amount of noise.

The computational complexity of the non-local means

algorithm is O(QRM) where Q, R and M are the number of

pixels in the image, in the search window S and in the neigh-

borhood vector N , respectively. In comparison, the complex-

ity when using a d-dimensional subspace is O(QRd). The

additional costs in building the covariance matrix for PCA

and computing the coefficients fp in (2) are O(QM2) and

O(QMd), respectively. Unlike [4], which denoises images

directly by local PCA projections, our approach computes

the PCA once globally. Eigenvectors are computed once

globally for a small matrix (M × M ); hence, this cost is

negligible. Therefore, the total complexity for the proposed

approach is O
(
Q

(
Rd + M2 + Md

))
. This is significantly

smaller than the non-local means algorithm cost because typ-

ically R >> M . For the specific window sizes used in this

work (R = 441 and M = 49), the non-local means cost is

O(21609Q). In comparison, the cost for our approach with

d = 6 is O(5341Q). Furthermore, the covariance matrix can

be estimated from a small fraction of the image neighbor-

hood vectors, resulting in further computational savings. For

instance, if 10% of the vectors are used for this purpose, the

cost is reduced to O(3080Q).

5. DISCUSSION

We showed that both the accuracy and computational cost

of the non-local means image denoising algorithm [1] can

be improved by computing neighborhood similarities after a

PCA projection. Unlike the predetermined filters introduced

in [8] for reducing the non-local means computational cost,

our approach is data-driven and can adapt to the statistics of a

given image. In [8] after the selection of neighborhoods to in-

clude in the weighted average, the weights are computed from

the original high-dimensional vectors. In our approach, the

lower-dimensional projections are not only used as a search

criteria but also for computing neighborhood similarities re-

sulting in increased accuracy in addition to reduced compu-

tational cost. Both approaches can also be easily applied to

other denoising and segmentation algorithms that use similar-

ity measures based on image neighborhood vectors [2, 3, 5].

We found that denoising accuracy peaked at d = 6 for

all except one test image suggesting that the choice of PCA

subspace dimensionality can be fixed for a wide class of im-

ages. An interesting question is whether there is a fundamen-

tal difference in the complexity of image neighborhoods of

the barbara image. As mentioned in Section 1, the mani-

fold of image neighborhood vectors is unlikely to be linear.

Hence, the number of dimensions for the subspace can poten-

tially be further reduced by employing nonlinear dimension-

ality reduction methods instead of PCA.
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Fig. 3. PSNR (dB) vs. PCA subspace dimensionality for three noise levels.
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