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Abstract—Image restoration is an important and widely studied problem in computer vision and image processing. Various image

filtering strategies have been effective, but invariably make strong assumptions about the properties of the signal and/or degradation.

Hence, these methods lack the generality to be easily applied to new applications or diverse image collections. This paper describes a

novel unsupervised, information-theoretic, adaptive filter (UINTA) that improves the predictability of pixel intensities from their

neighborhoods by decreasing their joint entropy. In this way, UINTA automatically discovers the statistical properties of the signal and

can thereby restore a wide spectrum of images. The paper describes the formulation to minimize the joint entropy measure and presents

several important practical considerations in estimating neighborhood statistics. It presents a series of results on both real and synthetic

data along with comparisons with current state-of-the-art techniques, including novel applications to medical image processing.

Index Terms—Filtering, restoration, nonparametric statistics, information theory.

�

1 INTRODUCTION

THE restoration of corrupted images is an important and
widely studied problem in computer vision and image

processing.1 By image restoration, we mean the recovery of an
image from a degraded version whose quality has been
undermined by some stochastic process. Most research
addresses the removal of additive, independent, random
noise, which is also the focus of many of the results in this
paper. However, such degradations can include a wide
variety of processes such as correlated noise, spatially
varying blurring (“smudging”), and nonstationary reduc-
tions in contrast.

Research in image restoration has led to a plethora of
algorithms based on diverse strategies such as linear systems,
statistics, information theory, and variational calculus.
However, most of the image filtering strategies make strong
assumptions about the properties of the signal and/or
degradation. Therefore, they lack the generality to be easily
applied to diverse image collections, and they break down
when images exhibit properties that do not adhere to the
underlying assumptions. Hence, there is still a need for
general image filtering strategies that are effective for a wide
spectrum of restoration tasks and are easily adaptable to new
applications.

This paper describes a novel unsupervised information-
theoretic adaptive filter (UINTA) for image restoration. It is a
more complete version of some of our previous work [3].
UINTA restores pixels by comparing pixel values with other
pixels in the image that have similar neighborhoods. The

underlying formulation relies on an information-theoretic
measure of goodness combined with a nonparametric model
of image statistics. UINTA minimizes a penalty function that
captures the entropy of the patterns of intensities in image
regions. Entropy is a nonquadratic functional of the image
intensities and, therefore, the filtering, obtained as the
derivation of the entropy, is nonlinear. UINTA operates
without a priori knowledge of the geometric or statistical
structure of the signal, but relies instead on some general
observations about the entropy of natural images. It does not
rely on labeled examples to shape its output and is therefore
unsupervised. UINTA automatically learns the true image
statistics from the degraded input data and constructs a
filtering strategy based on that model, making it adaptive.
Moreover, UINTA adjusts virtually all its important internal
parameters automatically using a data-driven approach and
information-theoretic metrics. Because UINTA is nonlinear,
nonparametric, adaptive, and unsupervised, it can restore a
wide spectrum of images with very little parameter tuning.

The remainder of the paper is organized as follows:
Section 2 discusses recent works in image filtering and their
relationship to UINTA. Section 3 describes the mathema-
tical formulation of UINTA and motivates the choice of the
particular information-theoretic measure based on joint
entropy. Entropy optimization entails the estimation of
probability density functions (PDFs). Hence, Section 4
describes a nonparametric multivariate density estimation
technique. It also describes the general problems associated
with density estimation in high-dimensional spaces and
provides some intuition behind the success of UINTA in
spite of these difficulties. Section 5 formulates a gradient-
descent scheme to optimize the joint-entropy measure and
addresses several important practical issues pertaining to
statistical estimation and its application to image neighbor-
hoods. Section 6 gives experimental results and analyzes
UINTA’s behavior on numerous real and synthetic images.
Section 7 summarizes the contributions of the paper and
presents ideas for further exploration.
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1. We mean image in the most general sense—a scalar or vector valued
function defined on an n-dimensional domain, sampled on a dense,
Cartesian grid.
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2 RELATED WORK

The literature on signal and image restoration is vast and a
comprehensive review is beyond the scope of this paper. This
section establishes the relationship of this work to several
important, relevant areas of nonlinear image filtering. Non-
linear filtering approaches are typically based on either
variational methods, leading to algorithms based on partial
differential equations (PDEs), or statistical methods, leading
to nonlinear estimation problems.

PDE-based image processing methods became wide-
spread after the work of Perona and Malik [27], where they
propose a modified version of the heat equation (calling it
anisotropic diffusion) that adapted the diffusivity to image
features. The anisotropic diffusion equation is also the first
variation of an image energy [25], [39] that seeks piecewise
constant solutions (in 1D—the situation is somewhat more
complex in multiple dimensions). Because such variational
approaches prefer certain image geometries, we refer to
these local geometric configurations as models. A multitude
of nonlinear PDE models have been developed for a wide
variety of images and applications [32], [46], including the
total variation model by Rudin et al. [33], PDE versions [6]
of the Mumford and Shah [24] variational model, the
cartoon-texture model by Vese and Osher [43], the
coherence enhancing flow by Weickert [47], and various
algorithms based on level sets [2], [36], [41], [26], [6]. These
nonlinear PDE models have proven to be very effective, but
only for particular applications where the input data is well
suited to the model’s underlying geometric assumptions.
Moreover, the parameter tuning is a challenge because it
entails fuzzy thresholds that determine which image
features are enhanced and which are smoothed away.

Statistical formulations have given rise to a wide variety of
image filters. For instance, the median and other order-
statistics on image neighborhoods can be quite effective [23].
Tomasi and Manduchi [42] describe a bilateral filter, which

does a robust averaging in Gaussian-weighted image neigh-
borhoods. A great deal of image processing work develops
from a stochastic model of image structure given by Markov
random fields (MRFs). Geman and Geman [18] exploit the
equivalence between MRFs and Gibbs distributions to model
images with Gibbs distributions, in which case, the optimal
image estimate is given as a fixed point of an iterative
procedure that relies on neighborhood-dependent updates.
The conditional probabilities for image neighborhood con-
figurations, namely, cliques, play a similar role to the image
energy in the variational approaches. The most widely used
models penalize intensity differences, but simultaneously
estimate hidden parameters that explicitly model intensity
edges, which pushes the iterative process toward piecewise-
constant solutions. The cliques in the MRF approach encode a
set of probabilistic assumptions (priors) about the geometric
properties of the signal and, thus, they are effective only when
the signal conforms sufficiently well to the prior. UINTA also
exploits the Markov property of the images, but in a different
context. Rather than imposing a particular model on the
image, UINTA learns the relevant conditional PDFs from the
input data and updates pixel intensities to decrease the
randomness of these conditional PDFs.

Fig. 1 demonstrates the effects of such strong models on
image filtering2 by showing the effects of some of the
prevalent nonlinear techniques on the Lena image. Aniso-
tropic diffusion (Fig. 1c) restores the cheeks but introduces
spurious edges near the nose and the lips. Bilateral filtering
[42] tends to smooth away fine textures, resulting in their
elimination, e.g., on the lips in Fig. 1d. Both of these
algorithms entail two free parameters, i.e., scale and contrast,
and require significant tuning. The coherence enhancing
diffusion forces specific elongated shapes in images, as seen
in the enlarged nostril and the lips’ curves in Fig. 1e. On the
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2. Please refer to the electronic copy to notice/distinguish subtle
features/differences in images.

Fig. 1. (a) Degraded Lena image: gray-scale values range: 0-100 gray-scale unit (G.U.). Zoomed insets of: (b) the degraded image and the results with
PDE-based methods, e.g., (c) anisotropic diffusion:K ¼ 0:5G:U:s, 20 iterations, (d) bilateral filtering: �domain ¼ 3 pixels, �range ¼ 12 G:U:, (e) coherence
enhancing diffusion: � ¼ 0:1 pixels, � ¼ 2 pixels, � ¼ 0:0001, C ¼ 0:0001, 15 iterations, and (f) curvature flow: time step = 0.2, eight iterations.



other hand, Fig. 1f shows the curvature flow [36], [26], which
is very similar to the total variation strategy of [33], that tends
to shrink features by rounding them off. The Lena image,
which appears to be a very typical gray-scale photograph,
does not adhere very well to the basic geometric models
underlying these algorithms.

An alternative to filtering with variational models is to
construct nonlinear transforms in the frequency domain. In
this context, the wavelet literature addresses image denoising
extensively. The current state-of-the-art wavelet denoising
methods [31], [35], [28], [40] treat the wavelet coefficients as
random variables and model their a priori marginal/joint
PDFs parametrically. They then estimate the coefficients of
the noiseless image given the observed coefficients of the
noisy image via various schemes such as Bayesian estimation.
The limitations of these methods stem both from the choice of
the particular wavelet decomposition basis and the para-
metric models imposed on the coefficients. A very recent
work [30] aims at the blind removal of correlated Gaussian/
mesokurtotic noise using Gaussian-scale-mixture signal
models in the wavelet domain. It adapts to the noise statistics
by estimating the noise covariance from the input image. The
sparse-code shrinkage strategy [21] chooses the transforma-
tion based on the statistical properties of the data, using
noiseless training data, in order to concentrate the energy in
only a few components and then shrinking the sparse
component values akin to wavelet-based methods.

Researchers analyzing the statistics of natural images in
terms of local neighborhoods also draw conclusions that are
consistent with MRF models of images. For instance, Huang
and Mumford [20] find the mutual information between the
adjacent pixel intensities to be rather large, attributing this
to the presence of spatial correlation in images. Lee et al.
[22] and de Silva and Carlsson [11] analyze the statistics of
3� 3 patches in images, in the corresponding high-dimen-
sional spaces, and find the data to be concentrated
in clusters and low-dimensional manifolds exhibiting a
nontrivial topology. UINTA also relies on the hypothesis
that natural images exhibit some regularity in neighbor-
hood structure and it discovers that for each image
individually in a nonparametric manner.

The literature shows several statistically-based image
processing algorithms that do rely on information theory.
The mean-shift algorithm [17], [38], [7], [9], [5] modifies image
intensities so that they move uphill on the PDF associated
with the gray-scale histogram of the image. At steady state
(assuming appropriate windowing strategies), all samples
converge to the nearest mode. The mean-shift procedure,
thus, can be said to be a mode seeking process. However, the
mean-shift algorithm operates only on image intensities (be
they scalar or vector valued) and does not account for
neighborhood structure in images. Thus, mean shift resem-
bles a kind of data-driven thresholding process, particularly
in the algorithm proposed by [9], in which the density
estimate is static as the algorithm iterates. This paper shows
the mathematical relationship between the mean-shift pro-
cedure and entropy reduction and thereby shows UINTA to
be a generalization of the mean-shift algorithm, which
incorporates image neighborhoods to reduce the entropy of
the associated conditional PDFs.

Weissman et al. [48] propose the DUDE algorithm that
addresses the problem of denoising data sequences gener-
ated by a discrete source and received over a discrete,

memoryless channel. It assumes no knowledge of the source
statistics and yet performs (asymptotically) as well as any
denoiser (e.g., one that knows the source statistics), thereby
making DUDE universal and optimal. DUDE assigns image
values based on the similarity of neighborhoods gathered
from image statistics, which resembles the construction of
conditional probabilities in UINTA. However, the DUDE
approach does not account for noise in the neighborhoods
that are used to condition the probabilities for the reconstruc-
tion and it is limited to discrete-valued signals. While the
DUDE algorithm is demonstrably effective for removing
replacement noise, it is less effective in case of additive noise,
which is more important in scientific applications.

There are some examples in the literature of algorithms
that learn the statistics of image neighborhoods. Popat and
Picard [29] were among the first to use nonparametric
Markov sampling in images. Their approach models the
higher-order nonlinear image statistics via cluster-based,
nonparametric density estimation and they apply it to
image restoration, image compression, and texture classifi-
cation. However, their approach relies on training samples,
which limits its practical use—the proposed method learns
the statistics of the signal directly from the degraded data.
The literature dealing with texture synthesis also sheds some
light on the principles underlying UINTA. Texture synth-
esis algorithms rely on image statistics from an input image
to construct novel images that bear a qualitative resem-
blance to the input [12], [15], [45]. This is a different
application and these algorithms do not rely on informa-
tion-theoretic formulations, but they demonstrate the power
of neighborhood statistics and mode-seeking processing in
capturing essential aspects of image structure.

3 JOINT ENTROPY-BASED IMAGE FILTERING

This section presents the mathematical formulation of
UINTA, which relies on a random-field image model. It
concludes with a high-level algorithmic description of
UINTA.

3.1 Random-Field Image Model

A random field [13] is a family of random variables Xð�;T Þ,
for some index set T , where, for each fixed T ¼ t, the
random variable Xð�; tÞ is defined on the sample space �. If
we let T be a set of points defined on a discrete Cartesian
grid and fix � ¼ !, we have a realization of the random
field called the digital image, Xð!; T Þ. In this case, ftgt2T is
the set of pixels in the image. For two-dimensional images, t
is a two-vector. If we fix T ¼ t and let ! vary, then XðtÞ is a
random variable on the sample space. We denote a specific
realization Xð!; tÞ (the intensity at pixel t) a deterministic
function xðtÞ.

If we associate with T a family of pixel neighborhoods
N ¼ fNtgt2T such thatNt � T , t =2Nt, and u 2 Nt if and only if
t 2 Nu, then N is called a neighborhood system for the set T .
Points in Nt are called neighbors of t. We define a random
vector Y ðtÞ ¼ fXðtÞgt2Nt

corresponding to the set of inten-
sities at the neighbors of pixel t. We also define a random
vectorZðtÞ ¼ ðXðtÞ; Y ðtÞÞ to denote image regions, i.e., pixels
combined with their neighborhoods. For the formulation in
this paper, we assume a stationary ergodic process (in
practice, this assumption can be relaxed somewhat, as
explained in Section 5.2). We denote the original (not
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degraded) image by Xð!; T Þ and its associated set of
neighborhood intensities by Y ð!; T Þ and regions by Zð!; T Þ.
Correspondingly, for the observed degraded image, we use
~XXð!; T Þ, ~YY ð!; T Þ, and ~ZZð!; T Þ. For notational simplicity, we

use the shorthand for random variables XðtÞ as X and their
realizations xðtÞ as x, dropping the index t.

3.2 Neighborhood Entropy for Image Filtering

The UINTA strategy is to reduce the entropy, hð ~XXj ~YY ¼ ~yyÞ,
of the conditional PDF for each pixel-neighborhood pair,
ð ~XX ¼ ~xx; ~YY ¼ ~yyÞ, by manipulating the value of each center
pixel ~xx. For this, UINTA employs a gradient descent
strategy. Note that a gradient descent on hð ~XXj ~YY Þ has
components corresponding to both the center pixel ~xx and
the neighborhood ~yy and, thus, the entire region, ð~xx; ~yyÞ, could
be updated in a gradient descent scheme. In practice,
however, we update only the center pixel ~xx, that is, we
project the gradient onto the direction associated with the
center pixel. Given this projection, UINTA is a reweighted
gradient descent on either the joint entropy hð ~XX; ~YY Þ or the
conditional entropy hð ~XXj ~YY Þ—they are equivalent for this
particular descent strategy.

The choice of entropy as the optimization measure follows
from several observations. We assume independent and
identically distributed (IID) additive zero-mean noise (in
some of our other work, we explore adapting UINTA to other
specific noise models [4]). Then, the addition of two
independent random variables, i.e., the signal and additive
noise, increases the entropy [37], [10]. Entropy reduction
reduces the randomness in corrupted PDFs and tries to
counteract noise. Of course, continued entropy reduction
might also eliminate some of the normal variability in the
signal (original image). However, we have found that noise-
free images tend to have very low entropy relative to their
noisy counterparts. Therefore, entropy reduction first affects
random degradations substantially more than the signal.
Furthermore, the entropy reduction is limited by an informa-
tion-based stopping criterion, as described in Section 5.2.3.

3.3 High-Level Structure of the UINTA Algorithm

This section gives a high-level view of the UINTA
algorithm.

1. The input degraded image I has a set of intensities
f~xxgt2T , neighborhoods f~yygt2T , and regions f~zzgt2T ¼
fð~xx; ~yyÞgt2T .Thesevaluesformtheinitialvalues(I0 ¼ I)
of a sequence of images I0; I1; I2; . . . , with correspond-
ing intensities x̂x0; x̂x1; x̂x2; . . . .

2. For each image region ẑzm, compute

@hðX̂XjŶY ¼ ŷymÞ=@x̂xm:
3. Construct imageImþ1, using finite forward differences

on the gradient descent, with intensities x̂xmþ1 ¼
x̂xm � �@h=@x̂xm, where � is the time step explained in
Section 5.2.1.

4. Check stopping criteria, as explained in Section 5.2.3.
If not done, go to Step 2, otherwise, Imþ1 is the output.

Although each step of the UINTA algorithm operating on a
single pixel in Step 3 is merely a gradient descent on the center
pixel, the interactions from one iteration to the next are quite
complex. The updates on the center-pixel intensities in Step 3
affect, in the next iteration, not only the center pixels but also
the neighborhoods. This is because the image regions overlap

and the set of pixels that form the centers of regions is the
same as that which form the neighborhoods. Thus, UINTA
filtering consists of two kinds of processes. One is the first-
order optimization process, which computes updates for pixels
based on their neighborhoods. The other second-order
process causes updates of the neighborhoods based on the
role of those pixels as centers in the previous iteration.

4 NONPARAMETRIC MULTIVARIATE DENSITY

ESTIMATION

Entropy optimization entails the estimation of higher-order
conditional PDFs. This introduces the challenge of high-
dimensional, scattered-data interpolation, even for modest
sized image neighborhoods. High-dimensional spaces are
notoriously challenging for data analysis (regarded as the
curse of dimensionality [38], [34]) because they are so sparsely
populated. Despite theoretical arguments suggesting that
density estimation beyond a few dimensions is impractical,
the empirical evidence from the literature is more optimistic
[34], [29]. The results in this paper confirm that observation.
Furthermore, stationarity implies that the random vector
~ZZ ¼ ð ~XX; ~YY Þ has identical marginal PDFs, thus lending itself
to more accurate density estimates [34], [38]. Also, UINTA
relies on the neighborhoods in natural images having a
lower-dimensional topology in the multidimensional fea-
ture space [22], [11]. Therefore, in the feature space, locally
the PDFs of images are lower-dimensional entities that lend
themselves to better density estimation.

We use the Parzen-window nonparametric density
estimation technique [14] with an n-dimensional Gaussian
kernel Gnð~zz;�nÞ. Having no a priori information on the
structure of the PDFs, we choose an isotropic Gaussian, i.e.,
�n ¼ �In, where In is the n� n identity matrix. Using
optimal values of the Parzen-window parameters is critical
for success and that can be difficult in such high-dimen-
sional spaces; we describe a method in Section 5.2 for
automatically choosing this parameter.

For a stationary ergodic process, the multivariate Parzen-
window estimate is

P ð ~ZZ ¼ ~zziÞ �
1

jAij
X
tj2Ai

Gnð~zzi � ~zzj;�nÞ; ð1Þ

where the set Ai is a small subset of T , chosen at random for
each ti, and ~zzj is shorthand for ~zzðtjÞ. Thus, each iteration of
UINTA requires a computation time OðjAijjT jÞ and results
in a stochastic approximation for the PDFs.

4.1 A Stochastic Approximation for Entropy

Entropy is the expectation of negative log-probability and,
therefore, we can approximate it with the sample mean [44].
For a stationary ergodic process,

hð ~ZZÞ ¼ �EP ½logP ð ~ZZÞ� �

� 1

jT j
X
ti2T

log
1

jAij
X
tj2Ai

Gnð~zzi � ~zzj;�nÞ

2
4

3
5: ð2Þ

The set Ai, which generates the density estimate P ð~zziÞ,
should not contain the point ti itself—because this biases the
entropy estimates. Typically, the samples in setAi are a small
fraction of those in T , chosen at random. This has two
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important implications. First, it significantly reduces the
computational cost for the entropy estimation, fromOðjT j2Þ to
OðjAijjT jÞ. Second, becauseAi is different for each element of
T for each iteration, the entropy estimate hð ~ZZÞ is stochastic.
Hence, a gradient descent entropy optimization technique
results in a stochastic-gradient algorithm [19]. The stochastic-
gradient alleviates the effects of spurious local maxima
introduced in the Parzen-window density estimate [44].

5 ENTROPY MINIMIZATION ON CONDITIONAL PDFs

Entropy minimization in UINTA relies on the derivative of
the entropy with respect to ~xxi � ~xxðtiÞ for each ti 2 T . Each ~xxi
undergoes a gradient descent based on the entropy of the
conditional PDF estimated from Ai. The gradient descent is

@~xxi
@�
¼� @hð

~XXj ~YY ¼ ~yyiÞ
@~xxi

� 1

jT j
@ logP ð~xxij~yyiÞ

@~xxi
¼ 1

jT j
@ logP ð~zziÞ

@~xxi
ð3Þ

¼ � 1

jT j
@~zzi
@~xxi

X
tj2Ai

Gnð~zzi � ~zzj;�nÞP
tk2Ai

Gnð~zzi � ~zzk;�nÞ
��1
n ð~zzi � ~zzjÞ; ð4Þ

where @~zzi=@~xxi is a projection operator that projects an
n-dimensional vector ~zzi onto the dimension associated with
the center pixel intensity ~xxi and � is a dummy evolution
parameter. Fig. 2 elucidates this process.

If we choose a � > 0 (and finite), the entropy for a finite
set of samples is always bounded. We perform a (projected)
gradient descent on a bounded energy function and, thus,
for sufficiently small time steps, the process converges.
Steady-state convergence is rarely the goal, however, and
stopping criteria are presented as a practical consideration
in Section 5.2.3.

5.1 Relationship to the Mean-Shift Procedure

The mean-shift procedure [17], [38], [7], [9] moves each
sample in a feature space to a weighted average of other
samples using a weighting scheme that is similar to Parzen
windowing. We can also view this as moving samples
uphill on a PDF. Comaniciu and Meer [9] propose an
iterative mean-shift algorithm for image intensities, where
the PDF does not change with iterations, for image
segmentation. Each gray-scale or vector pixel intensity is
drawn toward a local maximum in the corresponding PDF.

This section shows how UINTA relates to the mean-shift
procedure. Consider, as an example, a gradient descent on
the entropy of the gray-scale pixel intensities. This gives

@~xxi
@�
¼ �� @hð

~XXÞ
@~xxi

�

� �

jT j
X
tj2Ai

G1ð~xxi � ~xxj;�1ÞP
tk2Ai

G1ð~xxi � ~xxk;�1Þ
��1

1 ð~xxi � ~xxjÞ:
ð5Þ

Finite forward differences, ~xxmþ1 ¼ ~xxm � �@h=@~xxm, with a
time step � ¼ jT j�2 give

~xxmþ1
i ¼ ~xxmi þ

P
tj2Ai

~xxmj G1ð~xxmi � ~xxmj ;�1Þ
P
tk2Ai

G1ð~xxmi � ~xxmk ;�1Þ
� ~xxmi

2
64

3
75

¼
X
tj2Ai

~xxmj Wjð~xxmi ; ~xxmj ; Ai;�1Þ:

ð6Þ

Thus, each new pixel value is a weighted average of a
selection of pixel values from the previous iteration with
weights Wjð�Þ > 0 and

P
j Wjð�Þ ¼ 1. Taking Ai ¼ T gives

exactly the mean-shift update proposed by Fukunaga and
Hostetler [17]—note that, in UINTA, the PDFs on which the
samples climb get updated after every iteration. Thus, the
mean-shift algorithm is a gradient descent on the entropy
associated with the gray-scale intensities of an image. We
observe that samples ~xx are being attracted toward every other
sample, with a weighting term that diminishes with the
distance between the two samples. The UINTA updates have
the same form, except that the weights are influenced not only
by the distances between intensities ~xx, but also by the
distances between the neighborhoods ~yy. That is, pixels in
the image with similar neighborhoods have a relatively larger
impact on the weighted mean that drives the updates of the
center pixels.

5.2 Implementation Issues

The UINTA algorithm as presented in previous sections
presents a number of significant engineering issues that are
important to its effectiveness. These concern the setting of
various free parameters, accounting for the nonstationary
statistics of real images, and avoiding artifacts associated
with the grid and grid boundaries.

5.2.1 Update Rates

The update via gradient descent introduces a constant, the
time step �, which controls the proportionality between the
derivatives of the energy and the rate at which the solution is
updated. As discussed in Section 5.1, a time step of � ¼ jT j�2

gives rise to a mean-shift on the conditional PDFs. However,
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Fig. 2. (a) An example 2D PDF, P ð~xx; ~yyÞ, on feature space, < ~xx; ~yy > . (b) A contour plot of the PDF depicts the forces (vertical arrows) that reduce the
entropy of the conditional PDFs P ð ~XXj ~YY ¼ ~yyÞ, as in (3). (c) Some pixels in Ai (black dots) along with the neighborhoods (squares around the dots)
yielding feature space samples ~zzi. The thickness of the squares indicate the weights, as in (4), for the intensities of pixels in Ai. The thickest square
denotes the neighborhood around the pixel being processed. (d) Attractive forces (arrow width � force magnitude) act on a sample (~zz : circle) toward
other samples (~zzj : squares) in the set Ai, as per (4). The resultant force acts toward the weighted mean (star) and the sample ~zz moves based on its
projection (vertical arrow).



because of the interactions between neighborhoods from one

iteration to the next, that time step can cause the algorithm to

overshoot and oscillate in an unstable manner. Because the

pixels in the neighborhoods each perform a mean shift, the

resulting motion in the feature space can be as much asffiffiffiffiffiffiffiffiffiffi
jNtjþ1
p

times the mean shift update, where jNtj is the number

of pixels in the neighborhood. Thus, a stable, reliable time

step is � ¼ jT j�2=
ffiffiffiffiffiffiffiffiffiffi
jNtjþ1
p

. We have found that this is more

conservative than it needs to be and we have used � ¼
0:2jT j�2 for all of the results in this paper.

5.2.2 Parameters for Density Estimation

Parzen windowing, using a finite number of samples, is very

sensitive to the value of� [14]. Many algorithms/applications

with low dimensional features spaces (e.g., 2 or 3) operate by

manually tuning the scale parameter. However, because

UINTA relies on a sparsely populated high dimensional

space, it is very difficult to manually find values for � that

allow the samples to interact properly without excessively

smoothing the PDF. Also, UINTA being iterative and

dynamic, the best scale parameter changes every iteration.

UINTA finds � via a data-driven approach. Because the goal

is to minimize joint entropy, a logical choice is to choose a

value for � that minimizes the same. Fig. 3a confirms the

existence of a unique minimum. Fig. 3b shows that, for

sufficiently large jAij, the choice of � is not sensitive to the

value of jAij, thereby enabling UINTA to automatically

choose jAij to an appropriate value before the filtering begins.

We have implemented both differential (Newton’s method)

and discrete (Fibonacci search) methods for finding the

optimal scale and both offer acceptable results. Fig. 3c depicts

the decreasing trend for � as the filtering progresses, which is

common to every example and is consistent with UINTA’s

entropy-reducing action bringing samples closer in the

feature space.

5.2.3 Stopping Criteria

An analysis of simple examples shows the existence of
nontrivial steady states, e.g., an image which is a discrete
sampling of a linear function such as a ramp. Empirical
evidence shows that the filtering algorithm does sometimes
converge to interesting results. However, for most applica-
tions, convergence to a fixed point is not a useful goal. As
with many other iterative filtering strategies, several
iterations of the gradient descent are sufficient for accep-
table restoration, but this requires either parameter tuning
or the definition of suitable stopping criteria.

The choice of stopping criteria for this algorithm depends
on a number of factors. For instance, in the absence of any
knowledge of the signal, noise, or other types of degradation,
the algorithm will inevitably require some parameter tuning.
We assume that noiseless images have conditional PDFs with
low entropy and degradations substantially increase this
randomness. We have found empirically (and it seems
reasonable) that entropy reduction via gradient descent starts
by counteracting the randomness introduced by the noise
much more than reducing the inherent randomness in the
signal. Thus, an effective strategy is to stop when the relative
rate of change of entropy, from one iteration to the next, falls
below some threshold.

When the level of additive noise is known, UINTA can
iterate until the root-mean-square (RMS) difference (resi-
dual) between input and the processed image equals the
noise level. We have found empirically that this method is
quite effective (see Fig. 4) and we have used this approach
in all of the examples for which noise levels are known.

5.2.4 Piecewise Stationarity and Local Sampling

In practice, image statistics are not homogeneous and are
more accurately modeled as piecewise stationary-ergodic.
Thus, the set of samples Ai used for processing pixels ~xxi
should consist of pixel neighborhoods that are spatially
nearby. To achieve this, we choose a unique set of samples for
each pixel at random using a Gaussian distribution on the
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Fig. 3. (a) hð ~XX; ~YY Þ as a function of � (jAij ¼ 1; 000) (for the Lena image in Fig. 1). (b) hð ~XX; ~YY Þ and � are almost unaffected for jAij > 1; 000. To give
smoother curves, each measurement, for a particular jAij, is averaged over three different random sets Ai. The following graphs use the Lena image
corrupted with IID additive Gaussian noise Nð0; 100Þ. (c) hð ~XX; ~YY Þ, � and RMS error. (d) Effect of local sampling scheme on UINTA filtering.

Fig. 4. RMS errors versus iterations for several images (see Section 6) with varying additive-noise levels. The circles represent the points where the
residual equals the noise level.



image coordinates, centered at the pixel in question with
� ¼ 40. Thus, the set Ai is biased and contains more pixels
near the pixel being processed. This strategy gives consis-
tently better results than uniform sampling. Furthermore, we
have found that it performs well for any choice of � that
encompasses more than several hundred pixels. Fig. 3d also
shows that UINTA’s performance degrades gracefully for
suboptimal values of this parameter.

5.2.5 Rotational Invariance and Boundary Conditions

Square neighborhoods generate results with artifacts ex-
hibiting preferences for grid-aligned features. A solution is to
weight the intensities, making neighborhoods more isotro-
pic. UINTA incorporates such fuzzy weights by using
an anisotropic feature-space distance metric, kzkM¼

ffiffiffiffiffiffiffiffiffi
zTMz
p

,
where M is a diagonal matrix with the elements being the
appropriate weights on the influence of the neighbors on the

center pixel. For the random vector Z to have identical
marginal PDFs that aid in density estimation, as explained in
Section 4, we require the weights to be somewhat homo-
geneous. Figs. 5a and 5b shows a disk-shaped mask that
achieves this balance. The intensities near the center are
unchanged (mi ¼ 1), while the intensities near the corners
are weighted down gradually (via cubic-spline interpola-
tion) to zero. The proposed isotropic mask is a gray-scale
version of the DUDE [48] strategy of using a binary disc-
shaped mask for discrete (half-toned) images. Note that
scaling the center-pixel intensity more than its neighbors
leads to an elongated space ð ~XX0; ~YY 0Þ along ~XX0—in the limit,
when all neighbors are weighted zero, leading to a thresh-
olding as in the mean-shift algorithm [9]. Fig. 5d also shows
that UINTA’s performance degrades gracefully for subopti-
mal values of the neighborhood size.

Typical image boundary conditions, e.g., replicating
pixels or toroidal topologies, can produce neighborhoods
that distort the feature-space statistics. UINTA handles
boundary neighborhoods by collapsing the feature space
along the dimensions corresponding to the neighbors
falling outside the image. UINTA crops the square regions
crossing image boundaries and processes them in the
lower-dimensional subspace, as in Fig. 5c. This strategy
results in important modifications in two stages of UINTA.
First, the cropped intensity vectors take part in a mean-shift
process reducing entropies of the conditional PDFs in the
particular subspace where they reside. Second, UINTA
chooses the Parzen window size, �, based only on the
regions lying completely in the image interior.

6 EXPERIMENTS AND RESULTS

This section gives experimental results on numerous real and
synthetic images along with the analysis of UINTA’s
behavior and qualitative and quantitative comparisons with
the state-of-the-art wavelet methods. The only parameters
that UINTA exposes to the user are: 1) the size of the
neighborhoods and 2) the width of the Gaussian that defines
the extent from which local samples are taken for density
estimation (for truly stationary images, samples would be
global). Empirical results show that UINTA’s performance
degrades gracefully—no drastic effects as in typical PDE-
based filtering schemes—for suboptimal values of these
parameters. We use masked, rotationally symmetric,
9� 9 neighborhoods, as described in Section 5.2.5. Parzen
windowing in all of the examples uses a local Gaussian
random sampling (standard deviation 40 pixels) in the image
domain with 1,000 samples (i.e., jAij ¼ 1; 000), as explained in
Section 5.2.4. We use additive zero-mean IID Gaussian noise.
We recompute the size of the Parzen window � after each
iteration, as explained in Section 5.2.2.

All original images have intensities ranging from 0 to 100.
As a visualization aid for comparing different images/
results, the intensities of all images within a set have been
consistently rescaled to span the available range of intensities.
The UINTA implementation in this paper relies on the Insight
Toolkit [1].

Fig. 6 shows the result of UINTA filtering on the Lena
image. UINTA preserves and enhances fine structures, such
as strands of hair or feathers in the hat, while removing
random noise without imposing a piecewise constant
intensity profile. The results are noticeably better than any
of those obtained using other methods shown in Fig. 1. Fig. 6
also shows the results of processing an MRI image of a human
head. These examples show UINTA’s ability to adapt to a
variety of gray-scale features in real images approximated by
piecewise stationary models.

The fingerprint image in Fig. 7 is an example where the
degradation involves smudges (blurring) and is clearly not
additive noise. UINTA enhances the light and dark lines
without significant shrinkage. UINTA performs a kind of
multidimensional classification of neighborhoods—there-
fore, some features in the top-left are lost because they
resemble the background more than the ridges. For the
stopping criteria, we use the relative change in entropy as
described in Section 5.2.3. Fig. 7 also presents the results with
other restoration strategies for visual comparison with
UINTA. The piecewise smooth image models associated
with anisotropic smoothing, bilateral filtering, and curvature

AWATE AND WHITAKER: UNSUPERVISED, INFORMATION-THEORETIC, ADAPTIVE IMAGE FILTERING FOR IMAGE RESTORATION 7

Fig. 5. (a) Preserving rotational invariance via a neighborhood mask consisting of a flat central circular plateau with cubic splines on the sides. (b) The

discrete sampling of the mask (black � 1, white � 0) for a 9� 9 neighborhood. (c) Anisotropic neighborhoods at boundaries. (d) Effect of

neighborhood size on UINTA filtering (for the Lena image corrupted with IID Gaussian Nð0; 100Þ noise).



flow (Figs. 7g, 7h, and 7i) are clearly inappropriate for this
image. The coherence enhancing filter (Fig. 7j) does not
succeed in retaining or enhancing the light-dark contrast
boundaries. It also forces some elongated structures to grow
or connect. An unrestricted mean-shift filtering (Fig. 7k) on
image intensities (with the PDF not changing with iterations)
yields a thresholded image, while retaining most of the noise.
Wavelet denoising (Fig. 7l) is unable to get rid of the smudges
and excessively smoothes other regions of the image.

Fig. 8 gives an example of restoring the standard House
image corrupted with IID additive noise Nð0; 100Þ. Table 1
shows the RMS errors with the standard test images of the
House, Lena, Barbara, and Peppers. The wavelet denoising
technique yields a lower RMS error for this image, but
introduces ringing-like artifacts in smooth regions.

Fig. 9 shows the application of UINTA to an image of hand-
drawn curves (noise Nð0; 625Þ). The noise level is high
enough so that thresholding cannot yield the original image.
UINTA learns the pattern of black-on-white curves and forces
the image to adhere to this pattern. However, UINTA does
make mistakes when curves become too close, exhibit very
sharp bends, or when the noise introduces ambiguous gaps.
The wavelet denoised image depicts significant artifacts
around the edges, giving a higher RMS error (Table 1).

The entropy reduction associated with UINTA does
impose a kind of statistical simplification on the image
and that statistical simplicity corresponds, in many cases, to
geometric simplicity. Fig. 10 shows the results of many
UINTA iterations on the hand-drawn image of Fig. 9a.
UINTA has no explicit geometrical model and yet it
gradually smooths out the kinks in these curves producing
progressively simpler geometric structures. The entropy of
straighter curves is lower because of reduced variability in
the associated neighborhoods. The result is qualitatively
similar to that of curvature-reducing geometric flows [36],
[26], suggesting a strong link between variational and
statistical characterizations of images.

In order to better analyze the behavior of UINTA and
compare its performance with state-of-the-art wavelet de-
noisers, we present results with a diverse collection of
synthetic images. We provide examples on the simulated
fingerprint image (Fig. 11a), the simulated range data of the
human head (Fig. 11e), and the synthetic Reptile image [16]
(Fig. 11i). Table 1 shows the RMS errors. UINTA performs
better on the fingerprint, almost equally well on the range
data and poorer on the Reptile image. Thus, it seems that
UINTA performs better as a denoiser when it can find
sufficiently many patterns in the degraded image to be able to
distinguish the degradation from the underlying signal.
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Fig. 6. (a) and (c) Noisy images: Lena and MRI head. (b) and (d) UINTA filtered images. (e), (g), (i), (k) and (f), (h), (j), (l) show magnified portions of

the degraded and filtered images, respectively.



Moreover, the statistical models underlying the wavelet
denoisers are empirically derived from photographs, like the
Reptile image. Fig. 12 shows a real image of a building facade
that exhibits a certain degree of redundancy. UINTA is able to
exploit that to perform almost as well as the best wavelet
denoiser in terms of RMS error (see Table 1) and with fewer
visual artifacts.

When operating within a specific application domain,
UINTA can perform much better by learning from ideal or
noiseless image examples. Fig. 13 shows a demonstration of

this concept on simulated MRI data from the BrainWeb [8]
project. We corrupt a head MRI T1 image with IID additive
Gaussian noise and use two other similar, but not identical,
images for learning the neighborhood statistics of typical
brain MR images. Fig. 13a shows one of the two images
representing the nonparametric prior model. This example
shows the power of such learning—the UINTA restored
image exhibits structures that are barely visible in the
degraded version and fares considerably better than the
wavelet denoiser, both qualitatively and quantitatively.

AWATE AND WHITAKER: UNSUPERVISED, INFORMATION-THEORETIC, ADAPTIVE IMAGE FILTERING FOR IMAGE RESTORATION 9

Fig. 7. (a) Degraded fingerprint image with (b), (c) zoomed insets. (d) UINTA restored image with (e), (f) zoomed insets. Zoomed insets of the
fingerprint image processed with (g) anisotropic diffusion: K ¼ 0:45 gray-scale values, 99 iterations, (h) bilateral filtering: �domain ¼ 3 pixels, �range ¼
15 gray-scale values, (i) curvature flow: time step = 0.2, five iterations, (j) coherence enhancing diffusion: � ¼ 0:1 pixels, � ¼ 2 pixels, � ¼ 0:0001,
C ¼ 0:0001, 15 iterations, (k) unrestricted mean shift [5]: �domain ¼ 2 pixels, �range ¼ 5 gray-scale values, five iterations, and (l) wavelet denoising [31]:
�noise ¼ 14 gray-scale values.

Fig. 8. (a) House image and its (b) zoomed inset. Zoomed insets of the (c) noisy image, (d) UINTA filtered image, and (e) Wavelet denoised [31] image.



The UINTA formulation also generalizes easily to
simultaneous restoration of a sequence of images, e.g.,
multimodal MRI, exploiting the relationships between
images to further enhance performance. Fig. 14 shows an
example with multimodal restoration. This entails a
simultaneous restoration of T1, T2, and PD images in a
coupled manner, treating the combination of three images
as an image of vectors and looking at PDFs in the combined
probability space. Although, in this paper, we show results
with multimodal images that are well aligned, our experi-
ments suggest that the restoration is fairly robust to minor
registration errors. Here again, UINTA fares better than the
wavelet denoiser.

7 CONCLUSIONS AND DISCUSSION

UINTA is a novel, unsupervised, information-theoretic,
adaptive filter that improves the predictability of pixel
intensities from the intensities in their neighborhoods by
decreasing the joint entropy. UINTA can preserve and
enhance structures in a way that resembles many nonlinear,

variational filters, but does so without any explicit geometric
image model. Because it is nonparametric, it can adapt to the
statistics of the input image and, therefore, it applies quite
readily to new applications with little parameter tuning. The
stochastic gradient-descent algorithm for minimizing joint
entropy entails density estimation in high-dimensional
spaces and relies on Parzen windowing with automatic
parameter selection. In order to be effective for image
processing the UINTA algorithm operates with a feature-
space metric that preserves rotational symmetry and allows
for boundary conditions. The UINTA algorithm is a general-
ization of the mean-shift classification algorithm [17], [9], [7]
that conditions the distribution based on the pixel neighbor-
hood. Results show that the statistics of image neighborhoods
are sufficiently regular for reliable image restoration.

Despite these promising results, this paper presents only a
preliminary implementation that could benefit from some
engineering advances. For instance, the method of density
estimation with single-scale isotropic Parzen-window ker-
nels is clearly insufficient for all situations and it is reasonable
that kernels be chosen adaptively to accommodate the signal
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TABLE 1
RMS Errors Comparing UINTA with the Current State-of-the-Art Wavelet Denoisers

Note: The standard test images of Barbara and Peppers [31] do not appear in this paper.

Fig. 9. (a) Hand-drawn curves with a (b) zoomed inset. Zoomed insets of the (c) noisy image, (d) UINTA-filtered image, and (e) wavelet denoised

[31] image.

Fig. 10. (a) Hand-drawn curves. (b) and (c) show UINTA filtered images after 100 and 200 iterations, respectively.



or noise. The computation times for the implementation are
impractical for most applications. This is because the
algorithmic complexity OðjT jjAijEDÞ, where D is the image
dimension and E is the extent of the neighborhood along a
dimension, is exponential inE. Improving the computational
scheme is an important area of future work.

An intrinsic limitation of UINTA is that its performance
degrades for images not having truly stationary statistics.
Indeed, comparisons against wavelet-based denoisers shed
light on the kinds of images where UINTA does particularly
well. One of the interesting empirical outcomes of this

paper is that the method degrades elegantly as these
conditions are relaxed.

The implications of the empirical results in this paper are
significant. They show that it is possible to construct
nonparametric density estimations in the very high-dimen-
sional spaces of image neighborhoods. These results also
suggest that the statistical structure in these spaces capture
important geometric properties of images. The UINTA
formulation also generalizes in several different ways. All
of the mathematics, statistics, and engineering in this paper
is appropriate for any kind of densely sampled data,
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Fig. 11. (a) Simulated fingerprint image. (b) Noisy image. Difference between the filtered and the noiseless images for (c) UINTA and (d) the wavelet

denoiser [31]. (e) Head range data. (i) Reptile image [16]. Zoomed insets of the (f)-(j) noisy images, (g)-(k) UINTA filtered images, and (h)-(l) wavelet

denoised images [31].

Fig. 12. (a) Building facade image. Zoomed insets of the (b) noisy image, (c) UINTA filtered image, and (d) wavelet denoised image [31].



including higher-dimensional image domains and vector-
valued data. The challenge is the increase in computation
time, which is already quite significant. The same scheme
could easily apply to other image representations, such as
image pyramids, wavelets, or local geometric features.
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