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Abstract

This paper presents a novel method for brain-tissue classification in magnetic reso-
nance (MR) images that relies on a very general, adaptive statistical model of image
neighborhoods. The method models MR-tissue intensities as derived from station-
ary random fields. It models the associated Markov statistics nonparametrically via
a data-driven strategy. This paper describes the essential theoretical aspects un-
derpinning adaptive, nonparametric Markov modeling and the theory behind the
consistency of such a model. This general formulation enables the method to easily
adapt to various kinds of MR images and the associated acquisition artifacts. It
implicitly accounts for the intensity nonuniformity and performs reasonably well
on T1-weighted MR data without nonuniformity correction. The method minimizes
an information-theoretic metric on the probability density functions associated with
image neighborhoods to produce an optimal classification. It automatically tunes its
important internal parameters based on the information content of the data. Com-
bined with an atlas-based initialization, it is completely automatic. Experiments on
real, simulated, and multimodal data demonstrate the advantages of the method
over the current state-of-the-art.
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1 Introduction

Tissue classification in magnetic resonance (MR) images of human brains is an
important problem in medical image analysis. The fundamental task in tissue
classification is to classify the voxels in the volumetric (three dimensional/3D)
MR data into gray matter, white matter, and cerebrospinal fluid tissue types.
This has numerous applications related to diagnosis, surgical planning, image-
guided interventions, monitoring therapy, and clinical drug trials. Such appli-
cations include the study of neuro-degenerative disorders such as Alzheimer’s
disease, generation of patient-specific conductivity maps for EEG source lo-
calization, determination of cortical thickness and substructure volumes in
Schizophrenia, and partial-volume correction for low-resolution image modal-
ities such as positron emission tomography.

Manual segmentation or classification of high-resolution 3-dimensional images
is a tedious task, which is impractical for large amounts of data. Because of
the complexity of this task, such classifications can be very error prone and
exhibit nontrivial inter-expert and intra-expert variability [9]. Fully automatic

or unsupervised methods, on the other hand, virtually eliminate the need for
manual interaction, and thus such methods for brain-tissue classification have
received significant attention in the literature.

Current state-of-the-art methods for automatic brain-tissue classification typ-
ically incorporate the following strategies: (a) parametric statistical modeling,
e.g. Gaussian, of voxel grayscale intensity for each tissue class, (b) Markov-
random-field (MRF) modeling to enforce spatial smoothness on the classifi-
cation, (c) methods to explicitly correct for the inhomogeneities inherent in
MR images, and (d) probabilistic-brain-atlas information in the classification
method. Several factors, however, continue to pose significant challenges to
the state of the art. These include:

• The intensities and contrast in MR images varies significantly with the pulse
sequence, and several other scanner parameters. The quality of MR data also
shows a certain amount of variation when produced at multiple sites with
different MR scanners.

• Magnetic resonance imaging (MRI) acquisition artifacts, which include the
Rician nature of the noise in magnitude-MR data [37] and partial voluming
effects [32], can cause the data to significantly deviate from the Gaussian
models, thereby compromising the quality of the classification.
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• Many methods treat the inhomogeneity as multiplicative noise (bias field)
and explicitly correct the MR intensities to reduce its effect. There are,
however, cases where the noise is no longer multiplicative. For certain kinds
of coil configurations or applications, such as neonatal brain MRI, however,
inhomogeneities do not adhere to standard multiplicative models [44].

To address these issues in an effective way, unsupervised classification ap-
proaches need to adapt to the data. One adaptation strategy is to automat-
ically learn the underlying image statistics from the data and construct a
classification strategy based on that model. Based on this key idea, this pa-
per presents a novel method for MRI brain-tissue classification that incorpo-
rates an adaptive nonparametric model of neighborhood/Markov statistics.
The method incorporates the information content in the neighborhoods in
the classification process. Together with a weak smoothness constraint on
the estimated Markov statistics, it virtually eliminates the need for explicit
smoothness constraints on the class-label image. The method produces an
optimal classification by iteratively maximizing a mutual-information metric
that relies on Markov probability density function (PDF). The algorithm ad-
justs all its important internal parameters automatically using a data-driven
approach and information-theoretic metrics. Combined with an atlas-based
initialization, it is fully automatic. It incorporates a priori information in
probabilistic-brain-atlases in a coherent manner via a Bayesian formulation.
Experiments on real, simulated, and multimodal data demonstrate the signif-
icant advantages of the method over the current state-of-the-art. The method
also performs reasonably well without any explicit inhomogeneity correction.

The rest of the paper is organized as follows. Section 2 discusses works in
MR-image classification and Markov modeling along with their relationships
to the proposed method. Section 3 presents the mathematical underpinnings
of the proposed method, which relies on an adaptive, MRF image model.
Section 4 formulates the classification as an optimal-segmentation problem
associated with an information-theoretic goodness measure on Markov image
statistics. Section 5 focuses on the application of the proposed method to
brain-tissue classification. It explains why the method performs reasonably
well in the absence of explicit inhomogeneity correction, describes a strategy
for data-driven choice of important internal parameters, and describes the
usage of the atlases during initialization and classification. Section 6 gives
the validation results and analysis on numerous real and simulated images.
Section 7 summarizes the contributions of the paper and presents ideas for
further exploration.
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2 Related Work

This section discusses works in MRI brain-tissue classification and nonpara-
metric Markov modeling along with their relationships to the proposed method.
It compares and contrasts the proposed strategy, in brief, with the key ideas
around which various classification strategies have evolved, including (a) par-
titioning based on grayscale voxel-intensity data, (b) regularization schemes
based on local interactions among class labels, and (c) spatial priors based on
probabilistic and anatomical atlases.

Wells et al. [59] present a method that couples tissue classification with in-
homogeneity correction based on maximum-likelihood parameter estimation.
They use the expectation-maximization (EM) algorithm of Dempster et al. [16]
to simultaneously estimate the unknown bias field and the classification. Leem-
put et al. [31,32] extend this approach by posing the problem in the context of
mixture density estimation to estimate the grayscale intensity PDFs for each
tissue type. They apply the EM algorithm to estimate these PDFs as well
as the bias and, in turn, the classification. Their approach assumes that each
tissue-intensity distribution conforms to a parametric Gaussian PDF whose
parameters are obtained via the EM algorithm. The proposed method, in con-
trast to typical EM-based strategies, does not impose any parametric model
on the tissue intensities. Instead, it automatically adapts to the data using
neighborhood sampling and nonparametric density estimation.

The EM-classification algorithm does not impose any smoothness constraint
on the classification and it is therefore susceptible to outliers in the tis-
sue intensities. Some approaches for tissue classification do not explicitly
account for noise, but employ image-denoising methods as a preprocessing
step [23,35]. Many subsequent works incorporate noise models into the classi-
fication without such preprocessing. Several authors [27,25,31,32,39,63] have
extended the EM-classification algorithm to incorporate spatial smoothness
via Gibbs/Markov priors on the label image. For instance, Kapur et al. [27] use
spatially-stationary Gibbs priors to model local interactions between neigh-
boring labels. Typically, these methods modify single-voxel tissue-probabilities
based on energies defined on local configurations of classification labels. They
assign lower energies to spatially-smooth segmentations, making them more
likely. Such strong Markov models, however, can over regularize the fine-
structured interfaces, e.g. the one between gray matter and white matter.
Hence, it is often necessary to impose additional heuristic constraints [25,31,32].
Ruf et al. [49] extend the EM approach to perform spatial regularization by in-
corporating the spatial coordinates of the voxels, in addition to their grayscale
intensities, in the feature vector.

This tissue-classification work dovetails with the mainstream image-processing
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literature, which presents a variety of algorithms that rely on MRF models
of images [21,8,38,34,52]. Such methods typically involve iterative stochastic-
relaxation schemes that compute local image updates based on random sam-
pling from local conditional PDFs. These conditional PDFs on neighborhood
configurations define an energy that is progressively reduced. Typically, the
methods specify the conditional PDFs in parametric forms, e.g. Gaussian [34].
In this way, they encode a set of probabilistic assumptions (priors) about
the geometric/statistical properties of the image data, and thus they are ef-
fective only when the data conforms sufficiently well to the prior. Further-
more, the previous work on MRI classification models each tissue class with
Gaussian-mixture models, which is homogeneous across the image. The pro-
posed method—rather than enforcing a particular Markov prior on the data—
learns the relevant Markov statistics nonparametrically from the input data
and bases the classification on this adaptive model.

Researchers have also used active contour models [14,55] to impose smooth-
ness constraints for segmentation. These methods typically attempt to mini-
mize the area of the segmentation boundary (smoothness) simultaneously with
proper fidelity to the data. These models produce results that can be quite sen-
sitive to the contour parameters that control the influence of the data and the
smoothness. Hence, these methods typically require careful manual parameter-
tuning. The proposed method, on the other hand, sets its important internal
free parameters via data-driven techniques using information-theoretic opti-
mality criteria. As a result, it easily applies to a wide spectrum of data with
little parameter tuning.

An important component in MRI brain tissue classification is the correc-
tion of intensity inhomogeneities or bias fields. Several approaches propose
an approach that couples iterative updates of the class labels with the bias-
field correction based on polynomial least-squares fitting [59,24,31]. Although,
the focus of this paper is not on inhomogeneity correction, it is compati-
ble with all such schemes. The literature also presents many methods that
aim at implicitly dealing with inhomogeneities in the classification method
itself [61,60,30,45,36]. For instance, Yan and Karp [61] employ an adaptive
K-means clustering strategy that, over many iterations, gradually takes the
feature-space points from increasingly-local neighborhoods. The initial seg-
mentation uses all points in the image but the final segmentation implicitly
accounts for local intensity variations such as those cause by the inhomogene-
ity field.

More recently, researchers have realized the importance of the non-stationarity

of head images in tissue classification, and several authors introduce global in-
formation in the form of anatomical atlases [54,13,48]. Typically, they use
atlases in one of two ways. First is to convert the classification problem into a
deformable-registration problem between the MR-image and the anatomical
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brain atlas. Once the registration is done, the method uses the resulting trans-
formation to map the anatomical structure from the atlas onto the data to
produce a segmentation based on the labels in the atlas. Several authors use
probabilistic atlases, which are generated from ensembles of head images. These
atlases encode tissue probabilities (rather than discrete label values) at each
voxel, and are used as a prior in the EM estimation described previously [12].
The proposed method uses probabilistic atlases for the initialization, which is
important to the success of the algorithm, and can include probabilities from
atlases in the posterior estimation.

The proposed method learns Markov statistics nonparametrically entailing es-
timation of PDFs in high-dimensional spaces. For instance, for a first-order
local neighborhood having 6 voxels, i.e. 2 neighbors along each cardinal axis,
we need to estimate PDFs on a 7-dimensional space (center voxel along with
its neighbors). High-dimensional spaces are notoriously challenging for data
analysis because they are so sparsely populated. This is one of the effects of
the curse of dimensionality [51,50]. Despite theoretical arguments suggesting
that density estimation beyond a few dimensions is impractical due to the un-
availability of (theoretically) sufficient data, the empirical evidence from the
literature is more optimistic [50,43]. Indeed, the results in this paper confirm
that observation. Furthermore, the proposed method relies on a stationary
Markov model implying that the neighborhood random vector has identical
marginal PDFs, thus lending itself to more accurate density estimates [50,51].
Researchers analyzing the statistics of natural images in terms of local neigh-
borhoods describe results that are consistent with Markov image models.
For instance, Lee et al. [29] as well as Silva and Carlsson [15] analyze the
statistics of 3-pixel × 3-pixel neighborhoods in images, in the corresponding
9-dimensional spaces, and find the data to be concentrated in clusters and
low-dimensional manifolds exhibiting nontrivial topologies. Therefore, in the
feature space, locally, the Markov PDFs are lower-dimensional entities that
lend themselves to better density estimation.

The literature presents some examples of algorithms that empirically learn the
Markov image statistics. Popat and Picard [43] were among the pioneers to
use nonparametric Markov sampling in images. They model the Markov im-
age statistics via cluster-based nonparametric density estimation, unlike the
Parzen-window scheme described in this paper. They exploit their nonpara-
metric Markov model for image restoration, image compression, and texture
classification. Their learning approach, however, relies on training data, which
limits its practical use. In contrast, the proposed method learns the Markov
statistics of the image directly from the input data. Several researchers, mostly
in the computer-graphics literature, have proposed texture-synthesis algo-
rithms that rely on learning Markov statistics from a sample texture image
to construct new images having the same Markov statistics as the input tex-
ture [20,58,40]
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The method described in this paper, an extension of [53], builds on the pre-
vious work by the authors in [3,4], which lays down the building blocks for
unsupervised learning of Markov image statistics and proposes entropy reduc-
tion on Markov statistics for restoring generic gray scale images. This paper
describes the essential theoretical aspects underpinning adaptive, nonparamet-
ric Markov modeling and the theory behind the consistency of such a model. It
also provides a different perspective towards the optimal choice of parameters
in the associated nonparametric density estimation.

3 Adaptive Image Modeling via Nonparametric Markov Random

Fields

The proposed method constructs a segmentation strategy based on a Markov
statistical image model [34] that it learns automatically from the input data. It
formulates the segmentation problem as an optimization problem to maximize
the dependency or mutual information [11] between the segmentation labels
and the Markov image statistics (see Section 4). This section presents the
statistical theory behind the novel adaptive-MRF image model underpinning
the proposed classification approach.

A random field [18,52] is a family of random variables X(Ω; T ), for some index
set T , where, for each t ∈ T , the random variable X(Ω; t) is defined on the
sample-space Ω. If we let T be a set of points defined on a discrete Cartesian
grid and choose one ω ∈ Ω, we have a realization of the random field called
the digital image, X(ω, T ). For 3D images, t is a 3-tuple and T is the set of
voxels in the image. We denote a specific realization X(ω; t) (the intensity at
voxel t), as a deterministic function x(t).

For the formulation in this paper, we assume X to be a Markov random

field [18,52]. This implies that the conditional PDF of a random variable X(t),
at voxel t, given all other voxel intensities is exactly the same as the conditional
PDF conditioned on only the voxel intensities in the neighborhood or spatial
proximity of voxel t. Essentially, this enforces local statistical dependence for
voxel intensities during image formation. In this way, Markovity relies on the
notion of a neighborhood, which we define next.

If we associate with T a family of voxel neighborhoods N = {Nt}t∈T such that
Nt ⊂ T , and u ∈ Nt if and only if t ∈ Nu, then N is a neighborhood system

for the set T . Voxels in Nt—can include t itself—are within the neighborhood
of voxel t. Section 5.6.1 discusses the neighborhood shape used in the paper.
We define a random vector Z(t) = {X(t)}t∈Nt

. In this paper, we refer to the
PDFs P (Z(t)) as Markov PDFs.
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3.1 Unsupervised Learning of Markov Statistics

The proposed method exploits the Markovity property in images, but we know
neither the functional forms nor the parameter values for the Markov model,
i.e. the PDFs P (Z(t)). Images obtained by varying MRI-parameter values, e.g.
T1, T2, and PD, or varying noise and bias fields represent distinct Markov
models. For a segmentation method to be effective in all such cases, we propose
an adaptive Markov model that derives from the input data.

A statistical model is a set of PDFs on the sample space associated with
the data. Parametric statistical modeling parameterizes this set using a few
control variables. An inherent difficulty with this approach is to find suit-
able parameters such that the model is well-suited for the data. For instance,
most parametric PDFs are unimodal whereas typical practical problems in-
volve multimodal PDFs. Nonparametric statistical modeling [19] fundamen-
tally differs from this approach by not imposing strong parametric models
on the data. It provides the power to model and learn arbitrary PDFs via
data-driven strategies.

In order to rely on image samples to produce nonparametric estimates of
Markov statistics, we must assume that different neighborhood-intensities in
the image are derived from the same PDF. Mathematically, this is the notion
of stationarity associated with a random field. A stationary region R ⊂ T is
one where the Markov PDFs P (Z(t)) are exactly the same for all voxels t in
that region [18,52], i.e.

∀t ∈ R, P (Z(t)) = P (Z). (1)

In other words, the Markov statistics are shift invariant. For brain-MR images,
the Markov PDFs at voxels in individual parts of the brain, such as white
matter or gray matter, are similar and, hence, the piecewise-stationary model
holds to some degree. Stationarity provides many observations {z(t)}t∈R, all
derived from P (Z).

Stationarity alone, however, is not sufficient to provide accurate estimates of
the Markov PDFs from a single observed image. To do this, we must rely on
another statistical property, namely ergodicity. Essentially, ergodicity guaran-
tees accurate estimation of certain ensemble properties of the random field,
e.g. the Markov PDFs P (Z), from observations {z(t)}t∈R in a single realiza-
tion of the stationary random field, i.e. the observed image. Mathematically, it
guarantees that, for certain quantities associated with P (Z), the spatial aver-
ages (i.e. over R) converge to the ensemble averages (i.e. over z) as the size of
the image |R| tends to infinity [52]. It does so by ensuring that: (a) the random
variables become progressively more independent with increasing spatial dis-

8



tance at a sufficiently-rapidly rate and (b) random variables become indepen-
dent as the shift between them approaches infinity. Therefore, spatial averages
over sufficiently-large regions appear as averages of nearly-independent ran-
dom variables and, subsequently, the weak law of large numbers [52] ensures
the convergence of such averages to the desired ensemble average, as described
in more detail in Section 3.2.

To represent the PDFs of image neighborhoods, P (Z), we use the nonparamet-
ric Parzen-window technique [41,19]. The Parzen-window probability estimate
for P (Z = z) is defined as the ensemble average

P (Z = z) =
1

|S|
∑

y∈S

Gn(z − y; Ψn), (2)

where S is a random sample [18,52] drawn from the PDF P (Z), n = |Nt| is
the neighborhood size, and Gn(z; Ψn) is the n-dimensional Gaussian kernel
with zero mean and covariance matrix Ψn. Having no a priori information
on the structure of P (Z), we choose an isotropic Gaussian kernel Ψn = σIn,
where In is the n × n identity matrix. Ergodicity enables us to approximate
the ensemble average as a spatial average

P (Z = z) ≈ 1

|A|
∑

t∈A

Gn(z − z(t); Ψn), (3)

where the set A is a small subset of R. Taking A = R increases the algorithmic
complexity of the scheme. Section 5.4 describes an effective technique of choos-
ing this Parzen-window sample. The density estimate varies with the kernel-
parameter σ value. Properly tuning σ is especially critical in high-dimensional
spaces because of the relatively-high sparseness of the spaces; Section 5.5 de-
scribes a data-driven technique to estimate an optimal kernel-parameter σ
value.

3.2 Consistency for the Nonparametrically-Estimated Markov Model

The power of the Markov model on the random field and nonparametric den-
sity estimation comes with some additional theoretical constraints that war-
rant mention. In order for the Parzen-window estimation to converge [41,19]
the kernel parameter σ must decrease with the increasing number of samples.
This relationship can be derived from the data itself, and several authors have
proposed maximum-likelihood based schemes for estimating σ [7,22]. We have
found that a constant multiple of the maximum-likelihood σ works well for
MRI classification. Section 5.5 discusses the practical issues in more detail.
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Another important issues is consistency. A consistent system is one where
the joint PDF P ({X(t)}t∈T ) of all the random variables gives, using rules of
probabilistic inference, each conditional PDF uniquely. Besag’s proof of the
Hammersely-Clifford theorem [6], also known as the Markov-Gibbs equivalence
theorem, shows that the conditional Markov PDFs P (X(t)|Y (t)) must be
restricted to a specific form in order to give a consistent structure to the
entire system.

The Markov PDFs that the proposed method learns empirically from the data
do, indeed, yield a consistent system asymptotically i.e. as the amount of data
tends to infinity, because of the convergence of the Parzen-window density
estimate. This convergence holds only when the observations in the sample
are independently generated from a single underlying PDF. The stationarity
of the Markov random field implies that all observations are derived from a
single PDF. However, in our case, these observations are the neighborhood-
intensity vectors, which share neighboring voxel values. Independence requires
sampling from a subset U of the entire voxel-set T , such that no two voxels in
the subset have overlapping neighborhoods (∀a, b ∈ U : Na∩Nb = φ). The con-
straint of nonoverlapping neighborhoods leads to a wastage of a large amount
of data ({z(t)}t∈T\U ) [6], which would, in practice, lead to too few image sam-
ples. However, Levina [33] shows that in this particular situation (overlapping
neighborhoods), converge holds even in the case of overlapping data, and thus
it is appropriate to sample from the entire set of image neighborhoods.

4 Optimal Segmentation via Mutual-Information Maximization on

Markov Statistics

This section formulates the classification problem as an optimal-segmentation
problem using with an information-theoretic goodness measure associated with
the Markov PDFs. It begins by forming a connection between information-
theoretic measures, such as mutual information, entropy [11], and classifica-
tion.

Loosely speaking, the mutual information between two random variables quan-
tifies the degree of functional dependence between them. For functionally-
dependent random variables, each variable uniquely determines the other, and
the mutual information is maximized. On the other hand, independent random
variables convey no information about each other, and their mutual informa-
tion is zero (minimal). For image segmentation [28], we can say that a good
segmentation is one in which the voxel-neighborhood intensity values provide
the most information about the class labels. Likewise, knowing the voxel class
should provide a the most reliable estimate of the voxel neighborhood. Clearly,
there is no strict functional dependence and images are inherently stochastic,
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but mutual information provides a well-founded mechanism for quantifying
the degree to which these properties hold.

For the Markov image model, we consider a discrete random variable L that
maps each voxel t to the class to which it belongs, i.e. L(t) = k if voxel t is in
class k. Let {Tk}K

k=1 denote a mutually-exclusive and collectively-exhaustive
decomposition of the image domain T into K stationary-ergodic MRFs such
that Tk = {t ∈ T : L(t) = k}. Stationarity implies that for each class k,
the conditional PDFs P (Z(t)|L(t) = k) are the same ∀t ∈ Tk. For notational
simplicity, we refer to these conditional PDFs, one for each class k, as P (Z|L =
k) = Pk(Z). Using these conditional PDFs, we can also define a joint PDF
P (L, Z) between L and Z. At each voxel t, an instance (l(t), z(t)) is drawn
from the joint PDF. What we observe are, however, only the intensity vectors
z(t). The labels l(t) remain unknown and those are precisely what we want to
recover. We define the optimal segmentation as the one that maximizes the
mutual information between L and Z, i.e.

I(L, Z) = h(Z) − h(Z|L) = h(Z) −
K
∑

k=1

P (L = k)h(Z|L = k), (4)

where I(·) is the mutual information function and h(·) is the entropy (or
differential entropy for continuous random variables). Entropy is a measure
of randomness or uncertainty associated with a PDF [11], and regions Tk

having low entropies h(Z|L = k) for Markov PDFs exhibit a high degree of
predictability in their neighborhoods.

The entropy of class k is

h(Z|L = k) = −
∫

ℜ|Nt|

Pk(Z = z) log Pk(Z = z)dz, (5)

where |Nt| is the neighborhood size and Pk(Z = z) is the probability of ob-
serving a neighborhood-vector z in class k.

The entropy of the Markov PDF associated with the entire image, h(Z), is
independent of the label assignment L and we can ignore it during the opti-
mization. Thus, Equation (4) implies that the optimal segmentation is the one
that minimizes a weighted average of entropies h(Z|L = k) of the K Markov
PDFs associated with the K stationary-ergodic regions. The present mutual-
information-based energy gives more importance, or weight, to reducing en-
tropies of larger regions in the image in direct proportion to their size—the
weights are the probability of occurrence of the classes P (L = k) in the image.
Rewriting I(L, Z) = h(L) − h(L|Z) provides more insight into this optimal-
ity metric. We see that the metric encourages segmentations with equal voxel
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counts for the classes (uniform PDF for L implying maximal h(L)) while de-
manding high predictability of the label at each voxel t given its neighborhood
intensities z(t) (low h(L|Z = z(t)) leading to low h(L|Z)).

Equations (4) and (5) give the optimal segmentation as

{T ∗
k }K

k=1 = argmin
{Tk}

K

k=1

(

K
∑

k=1

P (L = k)h(Z|L = k)

)

(6)

= argmin
{Tk}

K

k=1

(

−
K
∑

k=1

P (L = k)
∫

ℜ|Nt|

Pk(Z = z) log Pk(Z = z)dz

)

. (7)

Treating entropy as the expectation of negative log-probability and approxi-
mating the expectation, in turn, by the sample mean [11], we get

{T ∗
k }K

k=1 = argmin
{Tk}

K

k=1

(

−
K
∑

k=1

P (L = k)EPk(Z)

[

log Pk(Z)
]

)

(8)

≈ argmin
{Tk}

K

k=1

(

−
K
∑

k=1

P (L = k)
1

|Sk|
∑

z∈Sk

log Pk(Z = z)

)

, (9)

where Sk is a random sample [18,52] derived from the PDF Pk(Z). Assuming
ergodicity [18], in addition to stationarity, enables us to approximate ensemble
averages using Sk with spatial averages using Tk. Hence we have

{T ∗
k }K

k=1 ≈ argmin
{Tk}

K

k=1

(

−
K
∑

k=1

P (L = k)
1

|Tk|
∑

t∈Tk

log Pk(Z = z(t))

)

. (10)

To estimate P (L = k) from the data, we observe that the discrete random
variable L can take only K possible values. Furthermore, |Tk| voxels, out of a
total of |T | voxels, have L(t) = k. Thus,

P (L = k) =
|Tk|
|T | . (11)

Substituting Equation (11) in Equation (10) gives

{T ∗
k }K

k=1 ≈ argmin
{Tk}

K

k=1

(

− 1

|T |
K
∑

k=1

∑

t∈Tk

log Pk(Z = z(t))

)

. (12)

The probabilities Pk(Z = z(t)) are given by the Parzen-window density esti-
mate in Equation (3), i.e.
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Pk(Z = z(t)) ≈ 1

|At|
∑

u∈At

Gn(z(t) − z(u); Ψn), (13)

where the set At is a small subset of Tk. Section 5.4 describes how to construct
At, unique for each voxel t, to efficiently estimate the probability.

So far, we have not taken into account any a priori information in the segmen-
tation process and we have derived all probabilities solely from the data. The
formulation, however, extends in a straightforward manner to include a pri-

ori information using standard Bayesian strategies followed by optimization
involving the resulting posterior probabilities. Section 5.3 discusses how to
integrate a priori information in the form of brain-tissue probabilistic atlases
into the proposed method. For the minimization in Equation (12), we manip-
ulate the regions Tk using an iterative gradient-descent optimization strategy,
as discussed in Section 5.2.

5 MR-Image Brain-Tissue Classification

For brain-MR images, the goal is to segment the image into K = 4 regions
corresponding to the (a) white matter, (b) gray matter, (c) cerebrospinal fluid,
and (d) all other tissue types. This section starts by giving a high-level version
of the proposed iterative classification algorithm along with an initialization
strategy. It gives a few ways of incorporating a priori information in the
probabilistic atlases into the proposed method. It describes the details of an
efficient strategy for choosing the Parzen-window sample At, explains why the
method performs reasonably well without explicit inhomogeneity correction,
and describes a optimal data-driven choice of important internal parameters.

5.1 Initial Classification Using Probabilistic Atlases

The proposed classification algorithm seeks local optima of mutual informa-
tion from an initial assignment of class labels, {T 0

k }K
k=1. These labels must

be sufficiently close to the solution to provide distinct density estimates for
the different classes. For this, we use co-registered probabilistic atlases for the
white matter, gray matter, and cerebrospinal fluid. We obtain these atlases
from the ICBM repository [47], which also provides an average-T1 image reg-
istered with these atlases. These atlases give the a priori probability for a
voxel belonging to one of these tissue types. We define the initialization as the
maximum-a-priori estimate. We first register the average-T1 image to the data
using an affine transformation and then use the transformation to resample
the three probability images. The initialization is therefore:
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(1) Perform affine registration between the average-T1 image, associated with
the atlas, and the data.

(2) Resample the white matter, gray matter, and cerebrospinal fluid atlases
based on the transformation obtained in the previous step.
Let P a

k (t), k = 1, 2, 3 be the a priori probability, given by the atlas, for
the t-th voxel belonging to the k-th tissue type.

(3) Compute the probabilities for the class (say class k = 4) comprising all
the nonbrain tissue types:

∀t ∈ T : P a
4 (t) = 1 −

3
∑

k=1

P a
k (t). (14)

(4) Assign the initial class labels:

∀t ∈ T : L0(t) = argmax
k

P a
k (t). (15)

5.2 Classification Algorithm

From the Markov PDFs, which are estimated from the initial classification,
we reassign voxels based on optimizing the information content of the labels.
We observe that the energy in Equation (12) can be reduced if each voxel t
is assigned to the class k that maximizes the probability Pk(Z = z(t)). This
is an iterative process where the Markov PDFs define a classification that, in
turn, redefines the PDFs. Because the PDFs get implicitly redefined after every
iteration, via the updated classification, the PDF estimates lag, so to speak, the
classification. We have found this to be an acceptable approximation, although
some recent work [26] introduces some additional terms in the update rule to
avoid this lag.

Given a classification {T m
k = {t ∈ T : Lm(t) = k}}K

k=1 at iteration m, the
algorithm iterates as follows:

(1) For k = 1, 2, 3, 4, ∀t ∈ T , estimate P m
k (Z = z(t)) nonparametrically, as

described in Section 4.
(2) Update the classification labels:

∀t ∈ T : Lm+1(t) = argmax
k

P m
k (Z = z(t)). (16)

(3) Stop upon convergence, i.e. when ‖ Lm+1 −Lm ‖2< δ, where δ is a small
threshold.
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5.3 Bayesian Classification Using Probabilistic-Atlas Driven Priors

The registered, probabilistic atlas plays another role in the proposed clas-
sification algorithm. Instead of using data-driven probabilities alone for the
classification updates, we can employ a Bayesian estimation strategy to com-
pute the probabilities. The likelihood terms are the data-driven probabilities
Pk(Z = z(t)) that we have computed via Parzen-window density estimation.
The posterior is therefore the likelihood multiplied by the prior P a

k (t), which
we derive from the probabilistic atlas.

For the proposed method, empirical evidence suggests that using the atlas
directly as a prior can strongly dominate over the likelihood and introduce
systematic biases in the classification [42]. For instance, for regions where the
prior probability is zero, or near zero, the likelihood can have little effect. In
such a case, the final segmentation may be very much like the initialization.
Section 6.2 discusses empirical results and the effect of different priors on
the proposed method in more detail. Such behavior is likely an artifact from
either the limited variability in the atlas, due to a limited population and
construction, or the degree of misfit that remains after an affine registration. In
practice, the prior strictly interpreted from the atlas is too strong, and we have
investigated two ways of weakening its affect on the final solution. Section 6.2
(see Figure 5) demonstrates the performance with both these priors.

One way of weakening the atlas prior is to use the atlas for discriminating
only between two tissue types, namely the brain and nonbrain tissue. In this
way, the prior does not interfere with the more subtle distinctions between
the different brain tissues. For this, we sum the atlas probabilities for the
white matter, gray matter, and cerebrospinal fluid to create one composite
atlas that only gives the spatial probability for any kind of brain tissue. This
is equivalent to redefining P a

k (t), ∀t ∈ T as

For k = 1, 2, 3, ∀t ∈ T : P a
k (t) = 1 − P a

4 (t) (17)

We call this the 2-class prior.

Another way of reducing the strength of the prior is to voxel-wise rescale the
atlas probabilities in such a way that the probabilities continue to add up to
one but are less discriminating between the tissue types. We have used the
following function for the desired effect.

For k = 1, 2, 3, ∀t ∈ T : P a
k (t) =

1 − v

4
+ vP a

k (t), (18)

where v ∈ [0, 1] is a free parameter. The redefined prior probabilities continue
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to add up to unity: ∀t :
∑4

k=1 P a
k (t) = 1. A value of v = 1 makes no change to

the atlas probabilities, whereas v = 0 makes every class equiprobable. In this
paper we provide experimental results with a moderate value of v = 0.5. We
call this the scaled-atlas prior.

5.4 Parzen-Window Sampling and Implicit Models of Inhomogeneity

This section discusses effective strategies for choosing the sample At during
the Parzen-window density estimation of the probability Pk(Z = z(t)) of ob-
servation z(t) at voxel t. We construct At as a small randomly-chosen subset
of neighborhoods throughout Tk. The random selection results in a stochas-
tic approximation for the PDFs that alleviates the effects of spurious local
maxima introduced in the finite-sample Parzen-window density estimate [57].
MRI head images are not truly stationary and we have found that, in practice,
image statistics are more consistent in proximate regions in the image than
between distant regions, either because of piecewise stationarity or continuity
in image statistics. To account for this, we use a local sampling strategy. In
this local-sampling framework, for each voxel t, we define a unique sample
At as a random sample [18,52] drawn from an isotropic 3D Gaussian PDF,
defined on the image-coordinate space, with mean at the voxel t and variance
σ2

spatial. Thus, the sample At is biased and contains more voxels near the voxel t
being processed. We have found that the method performs well for any choice
of σspatial that encompasses more than several hundred voxels. The empirical
results in Table 1 (shown later in Section 6.1) confirm that the performance
of the proposed method degrades gracefully for suboptimal values of this pa-
rameter. For all of the results in this paper, we use σspatial = 15 voxels along
each cardinal direction. This local-sampling strategy also plays an important
role in implicit inhomogeneity handling. The local-sampling strategy enables
the method to subsume the bias field in the estimated Markov statistics that
determine the segmentation.

5.5 Parzen-Window Kernel Parameter

The nonparametric Parzen-window scheme for estimating Markov PDFs en-
tails setting an appropriate value for the kernel-parameter σ. Section 3.2 de-
scribed a maximum-likelihood based estimate for this parameter and discussed
the theoretical advantages of such a strategy. A maximum likelihood estimate
for σ is equivalent to the choice that minimizes the entropy of the Markov
statistics assuming the entire image was derived from a single stationary-
ergodic random field. That is,
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argmax
σ

(

∏

t∈T

P (Z = z(t); σ)

)

= argmin
σ

(

−
∑

t∈T

log P (Z = z(t); σ)

)

≈ argmin
σ

(

∑

z∈Sσ

[

− log P (Z = z; σ)
]

)

= argmin
σ

(

EP (Z;σ)

[

− log P (Z; σ)
]

)

= argmin
σ

h(Z; σ), (19)

where Sσ is a random sample [18,52] derived from the PDF P (Z; σ), and
h(Z; σ) is the σ-dependent entropy of the random variable Z. Indeed, the
relationship between log-likelihood and entropy is well-documented in the lit-
erature [57]. We use the iterative Newton-Raphson optimization scheme [46]
to find the optimal σ value.

The Parzen-window parameter σ, essentially controls the smoothing on the
data in the feature space (seven dimensional in our case) of neighborhood-
intensity vectors. However, σ must be commensurate with the number and
density of samples in that space, and thus it should adapt to different sam-
pling strategies and applications. We have found that the optimal (maximum-
likelihood) σ, estimated from limited data, does not properly “connect” all
of the configurations of gray matter neighborhoods in feature space, thereby
breaking the manifold into many distinct pieces prone to misclassification.
In practice, to obtain desirable results with finite data, we impose a weak
smoothness constraint on the Markov PDFs of each class, by multiplying the
optimal σ by a factor α larger than unity. The choice of the precise value of
this multiplicative factor α is not critical and Table 1 in the next section con-
firms that the algorithm is quite robust to small changes in α, i.e. α varying
between five and ten. All of the results in this paper employ α = 10.

5.6 Implementation Issues

5.6.1 Neighborhood Size and Shape

In this paper, while working with 3-dimensional MR data, we use a neigh-
borhood comprising 7 voxels which correspond to the two voxel neighbors
in each of the three cardinal directions. In case of anisotropic MR data we
must weight the intensities, making neighborhoods isotropic. We incorpo-
rate such fuzzy weights by using an anisotropic feature-space distance metric,
‖ z ‖M=

√
z′Mz, where z

′
is the transpose of the vector z and M is a diag-

onal matrix with the diagonal elements being the appropriate weights on the
influence of the neighbors on the center voxel. We select the weight for each
neighbor to be reciprocal of the grid spacing along its associated axis.
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5.6.2 Data-Driven Choice for the Parzen-Window Sample Size

Section 5.5 described that we choose the maximum-likelihood (or, equiva-
lently, minimal-entropy) based value of the Parzen-window Gaussian standard-
deviation kernel parameter σ. We have found [3,4] that for sufficiently large
|At|, the choice of σ is not sensitive to the value of |At|, thereby enabling us to
automatically set |At| to an appropriate value before the classification begins.
Thus, given the Markov neighborhood and the local-sampling Gaussian vari-
ance σspatial, the method chooses the critical Parzen-window kernel parameters
σ and |At| automatically in a data-driven fashion using information-theoretic
metrics.

6 Results and Validation

This section gives validation results on real and synthetic brain-MR images
along with the analysis of the method’s behavior. It also provides quantitative
comparisons with a current state-of-the-art classification method. The pro-
posed method sets |At|, for all voxels t, to be about 500, based on the method
explained in Section 5.6.2. The proposed method sets |At|, for all voxels t, to
be about 500, based on the method explained in Section 5.6.2. The compu-
tation at each iteration is O(K|At||T |), and the classification typically takes
about 4 to 8 iterations depending on the noise/bias level. For |At| = 500, it
takes about 45 minutes to process a 181 × 217 × 181 volume on a single
Pentium-IV 2.8GHz processor. The algorithm scales linearly with the number
of processors on a shared-memory, e.g. dual-processor Pentium, machine. The
implementation in this paper relies on the Insight Toolkit [2].

Leemput et al. [32] use the Dice metric [17] to evaluate the classification perfor-
mance of their state-of-the-art approach, based on expectation maximization

(a) (b) (c)

Fig. 1. Qualitative analysis of the proposed algorithm with BrainWeb data [10] with
5% noise and a 40% bias field. (a) A coronal slice of the data. (b) The classification
produced by the proposed method. (c) The ground truth.
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and Gibbs/Markov priors on the segmentation labels. For a direct comparison,
we use the same metric. Let {T̃k}K

k=1 denote the ground-truth classification and
{T ∗

k }K
k=1 denotes the classification obtained from the proposed method. Then,

the Dice metric Dk that quantifies the quality of the classification for class k
is 2|T ∗

k ∩ T̃k|/(|T ∗
k |+ |T̃k|), where the | · | operator gives the cardinality of sets.

6.1 Validation on Simulated MR Images

This section describes the behavior of the proposed approach on simulated
brain-MR images with a known ground truth. We use 1 mm isotropic T1-
weighted images from the BrainWeb simulator [10] with varying amounts of
noise and bias field. Figure 1 shows some data along with the classification
and the ground truth.

We first show results on simulated T1-weighted data without any bias field
and with noise levels varying from 0% to 9% . We use the 2-class prior. The
BrainWeb simulator defines the noise-level percentages with respect to the
mean intensity of the brightest tissue class. Figures 2(a) and 2(b) plot the Dice
metrics for gray matter (Dgray) and white matter (Dwhite) classifications for the
proposed algorithm and compare them with the corresponding values for the
current state-of-the-art [32]. We see that the proposed method is consistently
better for the white matter. For a few noise levels for the gray matter, its
performance level is slightly below the state-of-the-art. We have found that
this is caused by the 2-class prior which biases the results against the gray
matter, as compared to the scaled-atlas prior. With the scaled-atlas prior the
results are consistently better than the state-of-the-art for all noise levels.
Section 6.2 (see Figure 5) describes that both priors perform equally well as
measured by the average of the Dice metric for the white matter and gray
matter, i.e. (Dwhite + Dgray)/2.

0 1 3 5 7 9

0.86

0.88

0.90

0.92

0.94

0.96

Noise Level

W
hi

te
−

M
at

te
r 

D
ic

e 
M

et
ric

 

 

P
L

0 1 3 5 7 9

0.86

0.88

0.90

0.92

0.94

0.96

Noise Level

G
ra

y−
M

at
te

r 
D

ic
e 

M
et

ric

 

 

P
L

0 1 3 5 7 9

0.86

0.88

0.90

0.92

0.94

0.96

Noise Level

A
ve

ra
ge

 D
ic

e 
M

et
ric

 

 

P
L

(a) (b) (c)

Fig. 2. Validation, and comparison with the state-of-the-art [32], on simulated
T1-weighted data without any bias field and varying noise levels. Here, the proposed
method uses the 2-class prior. Dice metrics for (a) white matter: Dwhite, (b) gray
matter: Dgray, and (c) their average: (Dwhite + Dgray)/2. Note: In the graphs, P:
Proposed method, L: Leemput et al.’s state-of-the-art method [32].
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Figure 2(c) shows that for the average Dice metric, the proposed algorithm
performs consistently better than the state-of-the-art at all noise levels for
gray matter and white matter. Furthermore, it exhibits a slower performance
degradation with increasing noise levels than the state-of-the-art method. For
3% noise, which is typical for real MRI [32], the improvement in the average
Dice metric is approximately 1.1%. The performance gain at 9% noise is 3.8%.
The larger gain over the state-of-the-art for large noise levels should prove
useful for classifying noisier fast-acquisition clinical MRI.

Figure 2 shows that for low noise levels, the performance of the parametric
EM-based algorithm drops dramatically. This is because it systematically as-
signs voxels close to the interface between gray matter and white matter to
the class which happens to have a larger intensity variability [32]. This class
is, inherently, the gray matter class. It turns out that, in such low-noise cases,
partial voluming seems to dictate the MR-tissue intensity model which devi-
ates significantly from the assumed Gaussian [32]. Hence, approaches enforcing
Gaussian intensity PDFs on the classes, such as [32,49], would face a serious
challenge in this case. In contrast, the proposed adaptive modeling strategy,
which is based on nonparametric density estimation, does not suffer from this
drawback. Figure 2 clearly depicts this advantage of the proposed method.

Strictly speaking, all methods trying to classify partial-volume voxels to one
specific class are, in a way, fundamentally flawed. The proposed method, how-
ever, approaches this problem in a relatively more principled manner as com-
pared to the EM-based method [32]. A partial-volume voxel t comprising a
larger contribution from tissue-class k will produce a z(t) lying “closer” to the
feature-space distribution of class k. The results show that the data-driven
nonparametric estimation of all tissue-class PDFs, employing the same Parzen-
window σ for each class, prevents any undesirable biases (unlike [32]) in the
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Fig. 3. Validation, and comparison with the state-of-the-art [32], on simulated
T1-weighted data with 40% bias field and varying noise levels. We compare the
performance by incorporating explicit bias correction and global sampling: same
sample size |At| (see text). Dice metrics for (a) white matter: Dwhite, (b) gray
matter: Dgray, and (c) their average: (Dwhite + Dgray)/2. Note: In the graphs, P:
Proposed method, BC: Bias correction, GS: Global sampling: same sample size |At|,
L: Leemput et al.’s state-of-the-art method [32].
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classification.

Figure 3 shows the validation results with the BrainWeb data having a 40%
bias field with varying noise levels. Even in the absence of an explicit bias-
correction scheme, the method performs quite well on biased BrainWeb MR
data (Figure 2). This is because of the adaptive model of Markov statistics
underlying the method, as explained before in Section 5.4. To confirm the im-
portant role that the local-sampling Parzen-window density estimation strat-
egy plays in enabling the automatic learning of the bias field, we perform two
more experiments. In the first experiment, we use explicit bias correction with
the proposed method (degree-4 polynomial fit [31] to the white matter inten-
sities iteratively). Figure 3 shows that this method performs approximately as
well, but not significantly better than without the bias correction. The second
experiment replaced the local-sampling scheme with a global-sampling scheme
that chooses the random Parzen-window sample (with the same sample size
|At|) uniformly over the image as was done in our previous work [53]. Figure 3
shows that this scheme performs significantly worse at all noise levels in the
absence of bias correction.

To study the sensitivity of the variance parameter σ2
spatial for the local-sampling

Parzen-window Gaussian and the Parzen-window σ multiplicative factor α, we
measure the Dice metrics for the white matter and gray matter over a range of
parameter values. We use the BrainWeb T1 data with 5% noise and a 40% bias
field. Table 1 gives the results confirming that the classification performance

Table 1
The proposed method is fairly robust to changes in the values of the local-sampling
Gaussian variance parameter and the Parzen-window σ multiplicative factor. This
table gives the Dice metrics for the BrainWeb T1 data with 5% noise and a 40%
bias field.

Local-sampling Gaussian standard deviation: σspatial Gray matter White matter

10 0.9033 0.9386

15 0.9079 0.9427

20 0.9082 0.9422

25 0.9043 0.9368

Parzen-window σ multiplicative factor : α Gray matter White matter

1.0 0.7634 0.9105

2.5 0.8988 0.9502

5.0 0.9106 0.9487

7.5 0.9095 0.9451

10.0 0.9079 0.9427

12.5 0.9066 0.9411

15.0 0.9058 0.9402
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Fig. 4. Validation on simulated multimodal (T1 and PD) data with varying noise
levels. Dice metrics for (a) white matter: 0% bias, (b) gray matter: 0% bias, and
(c) their average: 0% bias. Dice metrics for (d) white matter: 40% bias, (e) gray
matter: 40% bias, and (f) their average: 40% bias. Note: In the graphs, P: Proposed
method, T1PD: Using both T1 and PD images.

is fairly robust to changes in the values of these two parameters, as explained
before in Section 5.6.2.

We can extend the proposed method in a straightforward manner to deal with
multimodal data. Multimodal segmentation entails classification using MR im-
ages of multiple modalities, e.g. T1 and PD. It treats the combination of images
as an image of vectors with the associated PDFs in the combined probability
space. Figure 4 shows the classification results for multimodal data using T1
and PD images, both with and without a bias field. The results demonstrate
that incorporating more information in the classification framework, via im-
ages of two modalities T1 and PD, produces consistently better results than
those using T1 images alone.

6.2 Validation on Real MR Images

The section shows validation results with real expert-classified MR images. We
obtained this data set from the IBSR website [1]. The data set comprises T1-
weighted brain-MR images for 18 subjects. Figure 5 shows an example from
the data set. We observe that the data has lower contrast and possesses certain
acquisition-related artifacts that makes the classification task more challenging
than that for the BrainWeb dataset. Figure 5 also shows an example of a
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(a) (b) (c)

Fig. 5. Qualitative analysis of the proposed algorithm with IBSR data [1]. The
voxel size for this image is 0.9375×0.9375×1(coronal) (a) An axial slice of the data.
(b) The classification produced by the proposed method. (c) The expert-classified
ground truth.

classification generated by the proposed method and compares it to the ground
truth.

Figure 6 compares the performance of the proposed method using the two
different atlas-based priors. Figure 6(a) shows that the 2-class prior, relative
to the scaled-atlas prior, biases the classification more in favor of the white
matter. With the 2-class prior, which gives equal weight to all three brain-
tissue types, the Dice metric for the white matter is better than that for the
gray matter because of lower inherent variability of the intensities in the white
matter. The scaled-atlas prior imposes a stronger constraint which tends to
shift this bias, as seen in Figure 6(b). Empirical evidence confirms that as the
parameter v varies from 0.0 to 1.0, the bias shifts away from white matter
towards gray matter. Nevertheless, with the average Dice metric, Figure 6(c)
shows that both priors perform equally well.

For the proposed algorithm using the 2-class prior, Table 2 gives the mean, me-
dian, and the standard deviation for the Dice metrics over the entire dataset.
The proposed method yields a higher mean (by a couple of percent) and lower
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Fig. 6. Validation, of the proposed method with two different atlas-based priors,
on IBSR data. Dice metrics for (a) white matter: Dwhite, (b) gray matter: Dgray,
and (c) their average: (Dwhite +Dgray)/2. Note: In the graphs, Prior1: 2-class prior,
Prior2: scaled-atlas prior.
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Table 2
Mean, median, and standard deviation for the gray matter and white matter tissue
classes in the IBSR data set using the proposed method with the 2-class prior.

Statistical measure White matter Gray matter

Mean 0.8868 0.8074

Median 0.8913 0.8009

Standard deviation 0.0179 0.0426

standard deviation for the Dice metrics over both white matter and gray mat-
ter classes, as compared to the results reported by Ruf et al. [49] for Leemput et
al.’s state-of-the-art method [32] as well as their own method.

7 Discussion and Conclusions

This paper presents a novel method for unsupervised brain-MRI tissue clas-
sification by adaptively learning the image-neighborhood statistics via data-
driven nonparametric density estimation. It also describes the essential theo-
retical aspects underpinning adaptive, nonparametric Markov modeling, and
the theory behind the consistency of such a model. The proposed method
relies on the information content of input data for tuning several important
parameters, and therefore can operate on a moderately wide range of images
without parameter retuning. Moreover, the proposed method does not rely
on training for class intensities or neighborhood configurations, but adapts to
the data given by an initial configuration that is generated from an atlas of
labels. The adaptive image model enables the method to implicitly account for
the bias field and perform reasonably well on biased MR-data without requir-
ing explicit bias correction. By incorporating the information content in the
neighborhoods in the classification process and imposing a weak smoothness
constraint on the Markov statistics, the proposed method eliminates the need
for explicit smoothness constraints on the class-label image.

The results in the paper empirically confirm that the piecewise stationary-
ergodic Markov model conforms well to brain-MR images. It shows that it
is possible to learn these models via nonparametric density estimation in the
high-dimensional spaces of MR-image neighborhoods. These results also sug-
gest that the statistical structure in these spaces capture important tissue
properties in brain-MR images. The mathematical and engineering compo-
nents in this paper are appropriate for any kind of densely-sampled medical
data, including vector-valued images (e.g. multimodal MR data) and images
with higher-dimensional domains (e.g. a sequence of volumetric MR images
over time).
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The proposed method does face some limitations. For instance, results from
previous work [4] on density estimation of image neighborhoods show that
the this strategy fails for image features that do not occur with sufficient fre-
quency. The proposed method might be further improved via some modeling
and engineering advances. For instance, the use of single isotropic Parzen-
window kernels is the simplest of such schemes. Parzen-window density esti-
mation could improve, given sufficiently-large amounts of data, by choosing
kernels adaptively to accommodate the signal or noise [56,5]. The Markov
neighborhood in the current algorithm comprises only nearest neighbors. Us-
ing larger neighborhoods might also improve the results. However, this will
entail significantly longer computation times, driven by the increased compu-
tation of distances in the higher-dimensional spaces and the larger number of
samples needed to establish reliable statistics in those spaces. Improving the
computational scheme, e.g. via parallelization or improved methods of density
approximation [62], is an important area of future work.
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