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SUMMARY

The Material Point Method (MPM) is a computationally effective particle method with mathematical
roots in both particle-in-cell and finite element type methods. The method has proven itself extremely
useful in solving solid mechanics problems involving large deformations and/or fragmentation of
structures, problem domains which are sometimes problematic for finite element type methods.
Recently, the MPM community has focused significant attention on understanding the basic
mathematical error properties of the method.

Complementary to this thrust, in this paper we show how spatial and temporal errors are typically
coupled within the MPM framework. In an attempt to overcome the challenge to analysis that this
coupling poses, we take advantage of MPM’s connection to finite element methods by developing
a “moving-mesh” variant of MPM which allows us to use finite element type error analysis to
demonstrate and understand the spatial and temporal error behaviors of MPM. We then provide
an analysis and demonstration of various spatial and temporal errors in MPM and in simplified
MPM-type simulations.

Our analysis allows us to anticipate the global error behavior in MPM type methods and allows us
to estimate the time-step where spatial and temporal errors are balanced. Larger time-steps result in
solutions dominated by temporal errors and show second-order temporal error convergence. Smaller
time-steps result in solutions dominated by spatial errors, and hence temporal refinement produces
no appreciative change in the solution. Based upon our understanding of MPM from both analysis
and numerical experimentation, we are able to provide to MPM practitioners a collection of guidelines
to be used in the selection of simulation parameters that respect the interplay between spatial (grid)
resolution, number of particles and time step.
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1. INTRODUCTION

The Material Point Method (MPM) [1,2] is a mixed Lagrangian and Eulerian method utilizing a
collection of Lagrangian particles to discretize a material and an Eulerian background mesh on
which to calculate derivatives and solve equations of motion. MPM has proven itself extremely
successful in simulating high-deformation and otherwise complicated engineering problems
such as densification of foam [3], compression of wood [4], sea ice dynamics [5], and energetic
device explosions [6], to name a few.

While these simulations are impressive and have pushed the boundaries of high-deformation
simulation science where other finite element methods often fail, there has been a relative lack
of basic error analysis of the method. For example, time-stepping algorithms within the method
have received little attention. While the centered difference time stepping scheme often used
for advancing velocities and displacements is well explained within the ODE literature, the
complicated interconnection between spatial and temporal errors in MPM makes quantifying
the error behavior more complex. In particular, the motivation of this paper is to reconcile
through analysis and numerical experimentation statements that the time-stepping method
used in MPM is “formally second-order” [5] with the recent and detailed convergence tests
showing “zero-order” temporal convergence [7].

In this paper we give a detailed explanation of both standard MPM and a variant of MPM
to which we refer to as “moving-mesh MPM” and provide an analysis and demonstration of
spatial and temporal errors of the method. Moving-mesh MPM is a fully Lagrangian method
which helps control some of the more complicated sources of errors within MPM – quadrature
and grid crossing errors – thereby allowing us to construct computational experiments which
help ferret out the mathematical and algorithmic choices within MPM which violate the
mathematical assumptions upon which time-stepping algorithms are based. A simplified non-
physical mathematical problem with similar error characteristics to MPM helps us to both
analyze and demonstrate expected error behaviors in MPM type simulations.

We then extend this work to provide intuition and guidelines by which the MPM practitioner
can select time-step sizes which balance space and time errors. In particular, we help the
practitioner understand the trade-offs between increasing spatial resolution through increasing
grid spacing and number of particles and the corresponding impact on temporal errors. In the
case in which explicit time-stepping algorithms are used (as are often the case in the MPM
community and as are analyzed in this paper), the practitioner can also further appreciate the
trade-offs between temporal accuracy and stability as dictated by their time-step choice.

This paper is organized as follows. Section 2 provides a small amount of historical background
to help give context as to where and how MPM fits into the family of particle methods. Previous
results of MPM error analysis and demonstrations are reviewed, focusing on previous analysis
of spatial and temporal error behaviors. Section 3 provides an overview of the MPM method,
beginning with a review of how MPM comes about through a collection of approximations
and assumptions injected into the standard Galerkin approximation process applied to the
equations of motion. With this algorithmic background in place, moving-mesh MPM is then
fully described. Section 4 provides an explanation of the coupling of spatial and temporal
errors within MPM. Section 5 provides three studies of various error behaviors for both a
simplified non-physical problem with MPM type characteristics and a single step standard
and moving-mesh MPM. Section 6 shows a demonstration of the errors analyzed in Section 5,
this time in the full MPM framework. Section 7 provides some guidelines to the practitioner
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on how algorithm parameters affect various errors. And lastly, Section 8 is a summary of our
findings, our conclusions, and future work.

2. BACKGROUND

The Material Point Method (MPM) is a mixed Lagrangian-Eulerian method with moving
particles which store history-dependent variables, and a fixed background grid used for
calculating derivatives and for solving equations of motion. MPM [1, 2] descends from a
long line of Particle-in-Cell (PIC) methods, specifically as a solid mechanics extension to
the “full particle” formulation of PIC called FLIP [8, 9]. More recently, the Generalized
Interpolation Material Point Method (GIMP) [10] was developed as a generalization of MPM
where particles are represented by particle-characteristic functions, of which the Dirac delta
function δ(x−xp) results in the original MPM method. These methods share the same general
framework – namely, that the solution of the equations of motion can be accomplished through
a discretization of the solution domain with a set of particles, projection of particle information
to a background mesh, solving of the equations of motion on the background mesh, and then
by using the mesh solution to both move and update particles’ history dependent variables.

As was previously stated, these algorithms have enabled, from the engineering perspective,
complicated large-deformation simulations where finite element-type methods often fail due to
numerical issues such as mesh-entanglement. While the broad applicability and robustness of
these methods has been used to encourage their adoption within the engineering community,
the final critique consisting of a detailed understanding of the basic error properties of the
method is just starting to form.

As an example of such a critique, recent published work has focused on understanding the
impact of quadrature choices within the MPM framework. It is well acknowledged that within
almost all numerical methods, the accuracy of the method can depend highly on the accuracy of
the numerical quadrature used. Recently, Steffen et al. [11] performed an analysis of the spatial
quadrature errors in MPM, equating the quadrature errors in MPM to integration errors when
using a composite midpoint rule with breaks in continuity of the integrand. This analysis helped
explain why second-order spatial convergence, as one would expect in finite element methods,
is not possible when piecewise-linear basis functions are used for represented field quantities on
the Eulerian mesh within MPM. The simple adaptation to quadratic B-spline basis functions
(also detailed in [12]) allowed the demonstration of second-order spatial convergence of full
MPM simulations. Midpoint integration errors are also second-order and therefore, while
higher-order basis functions may improve the overall error further, spatial convergence rates
will not improve with current integration strategies. For higher than second-order spatial
convergence, more advanced techniques than nodal integration as currently employed would
be required.

The analysis in [11, 12] assumed the use of a fixed background grid – a grid that “resets”
back to the starting position after each time-step. While particles may start in ideal positions
with particle voxel boundaries aligned with grid cell boundaries, any motion will quickly lead
to an arrangement where particles overlap grid cell boundaries. It is this overlap which leads
to the largest quadrature errors. Another option is to use moving-mesh MPM, where the
background mesh moves with the particles and is never reset. The particles will remain at their
ideal positions, eliminating the errors associated with particle voxel and grid cell boundary
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overlap. While this technique may seem contrary to the spirit of MPM, it remains effective
for small deformation problems and completely eliminates grid-crossing errors, allowing for
simpler analysis and demonstration of temporal errors. Moving-mesh MPM has previously
been used to model the biological mechanics of cells [13] and in studying texture evolution in
polychrystalline nickel [14].

Another example within the MPM literature of the trend to analyze the mathematical
algorithmic properties of choices made within the MPM framework is given by the work of
Love and Sulsky [15, 16], in which the selection of time-stepping algorithm employed within
MPM were scrutinized. Love and Sulsky [15,16] analyzed an energy consistent implementation
of MPM, the second of these papers showing an implicit implementation to be unconditionally
stable and energy-momentum consistent. We note that their use of full consistent mass matrices
and implicit time-integration strategies add considerable computational complexity to the
original explicit algorithm, and hence are not often used in practice. Our study will remain
focused on the more ubiquitous second-order scheme used in engineering practice.

A third example within the MPM literature of the aforementioned trend is the work of
Bardenhagen [17] and subsequently Wallstedt and Guilkey [7] in which rigorous tests were
performed comparing various explicit time-stepping algorithms which have appeared in the
literature. Specifically “Update Stress First” (USF), “Update Stress Last” (USL), and centered
difference (CD) methods were compared, with USL and CD showing superiority with respect
to overall error magnitudes. While CD was shown to have the lowest error of the time-stepping
methods in their tests, the method showed no temporal error convergence in the regions of
time-step selection where their simulations were stable.

This paper seeks to use and extend the perspective on spatial errors gained in [11, 12]
to understand the lack of temporal convergence demonstrated in [7]. The inspiration for
connecting the spatial error characteristics with the temporal error characteristics lies outside
the MPM literature. Lawson et al. [18] demonstrate a method of error control in solving
parabolic equations, and is the basis on which we formulate our analysis. In this work, we do
not go as far as attempting to control errors in MPM, but as in the work of Lawson et al., we
model our time-update equation for an ODE of the form v̇ = a as,

vk+1 = vk + (ak + c1h
p)∆t + c2∆tq (1)

where the spatial errors in a are assumed to be O(hp) and the time-stepping method has
temporal errors of O(∆tq). Here, h represents our spatial discretization spacing and ∆t is our
time-step size. Constants c1 and c2 are problem dependent, but once determined can be used to
find the location where spatial and temporal errors are balanced (i.e. where c1h

p∆t = c2∆tq).
The confluence of these perspectives allow us to both appreciate and explain why MPM exhibits
the temporal convergence behavior as reported in the literature, and more importantly, allows
us to provide guidelines to the practitioner concerning the interplay between space and time
errors.

3. OVERVIEW OF MPM

In this section, we will begin with a very short review of the Galerkin discretization of
equations of motion. Next, we will show how MPM can be derived from various approximations
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while solving the Galerkin discretization. Moving-mesh MPM will then be outlined and the
differences between standard and moving-mesh MPM will be highlighted.

3.1. Galerkin Discretization of Equations of Motion

The equation of motion for a continuum in the updated Lagrangian frame is given by:

ρa = ∇ · σ + ρb. (2)

Here, ρ is the material density, a is acceleration, σ is Cauchy stress (assumed to be symmetric
in this paper), and b is the acceleration due to body forces. Next, we write acceleration as a
linear combination of basis functions {φi}, where a(x) =

∑

i aiφi(x). Substituting this into (2)
and taking the inner product of each term with a test function φj leaves us with the Galerkin
weak-form of the equation of motion:

(ρ
∑

i

aiφi, φj) = −(σ,∇φj) + (ρb, φj), (3)

where the notation (a, b) represents the inner product of the functions a and b over our domain
Ω, i.e., (a, b) =

∫

Ω
a · b dΩ. Equation (3) represents a linear system written as the following

matrix equation†:
Ma = f int + fext (4)

where

Mij =

∫

Ω

ρφiφj dΩ, (5)

f int
i = −

∫

Ω

σ · ∇φi dΩ, (6)

and

fext
i =

∫

Ω

ρbφi dΩ. (7)

One method for simplifying (4) such that solving a linear system is no longer required is
to lump the mass matrix M–that is, substitute M with a diagonal matrix M̃. There are a
number of methods to mass lump M [19]; however, we will only consider mass lumping using
the row-sum technique, as it is the most prevalent used method employed in practice within
the MPM community. The row-sum technique is particularly simple: M̃ii = mi =

∑

j Mij .
Once M has been mass lumped, the solution to (4) reduces to:

ai = (f int
i + fext

i )/mi. (8)

If the basis functions maintain a partition of unity within the domain,
∑

i φi(x) = 1 for all
x ∈ Ω, and the diagonal term mi can be calculated directly and efficiently, without generating
all the terms in M, since

mi =
∑

j

Mij =

∫

Ω

ρφi

∑

j

φj dΩ =

∫

Ω

ρφi dΩ. (9)

†When written as a linear system, it is tacitly understood that lower case terms are arrays of values, as in (4).

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1–1
Prepared using nmeauth.cls



6 M. STEFFEN, R.M. KIRBY AND M. BERZINS

Once ai is determined, the rate equations for velocity (v̇ = a) and position (ẋ = v) can be
integrated and updated with standard ODE time-stepping algorithms.

3.2. Standard MPM

The MPM procedure begins by discretizing the problem domain Ω with a set of material
points, or particles. These particles are assigned initial values of position (in the reference or
material frame), displacement, velocity, mass, volume, and deformation gradient, denoted Xp,
up, vp, mp, Vp, and Fp respectively. The subscript index p is used to distinguish particle values
versus an index of i for grid node values. The current position of a particle in the deformed
configuration can easily be calculated as xp = Xp + up, where Xp is the initial position in
the material frame and up is the displacement vector. Alternatively, instead of velocity and
mass, momentum and mass density may be prescribed at the particle location, from which
mp and vp can be calculated. Depending on the simulation, other quantities may be required
at the material points as well, such as temperature. A computational background mesh fully
encompassing the simulated objects is constructed, which for ease of computation is usually
chosen to be a regular Cartesian lattice.

In order to advance from time-level tk to tk+1 (all of the following quantities will be assumed
to be at time-level tk unless otherwise noted), the first step in the MPM computational
algorithm involves projecting (or spreading) data from the material points to the grid. An
initial Galerkin projection of particle momentum allows grid velocity to be calculated:

(ρ
∑

i

viφi, φj) = (ρv, φj). (10)

Solving (10) for all i and j is again equivalent to solving the following linear system:

Mv = p, (11)

where vi is the velocity associated with node i, M is the mass matrix (5), and

pi =

∫

Ω

ρvφi dΩ. (12)

To avoid an expensive linear solve, we again mass lump our matrix M, in which case vi is now
found by solving

vi =
pi

mi
=

∫

Ω
ρvφi dΩ

∫

Ω
ρφi dΩ

. (13)

A defining feature of the MPM algorithm is the use of nodal integration to approximate the
integrals in equations such as (13). Given an initial undeformed particle volume V 0

p and its
current deformation gradient Fp, the current particle volume is calculated as

Vp = det(Fp)V
0
p . (14)

Using this updated volume, (13) is approximated with nodal integration (a quasi-midpoint
rule) where field quantities are assumed to be sampled by particle values as follows:

vi =
pi

mi
≈

∑

p ρpvpφipVp
∑

p ρpφipVp
=

∑

p
mp

Vp

vpφipVp
∑

p
mp

Vp

φipVp
=

∑

p mpvpφip
∑

p mpφip
(15)
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where φip = φi(xp) is the basis function centered at grid node i evaluated at the particle
position xp. We will define mi =

∑

p mpφip as nodal mass, which also represents the
mass-lumped version of what Sulsky and Kaul [20] describe as the consistent mass matrix
Mij =

∑

p φipφjpmp. Next, the internal force term (6) is found by first calculating stress as
a function of the constitutive model and the deformation gradient stored with each particle,
then by multiplying stress by the gradient of φi. Again, nodal integration is used as a means
of approximating the integral in the expression:

f int
i = −

∫

Ω

σ · ∇φi dΩ ≈ −
∑

p

σp · ∇φipVp, (16)

where the stress is a function of the deformation gradient, σp = σ(Fp), and where ∇φip =
∇φi(xp). The external force term (7) is then calculated given any body forces as follows:

fext
i =

∫

Ω

ρbφi dΩ ≈
∑

p

mp

Vp
bpφipVp ≈

∑

p

mpbpφip. (17)

Using nodal mass mi and the internal and external forces from (16) and (17) respectively,
we can now calculate nodal accelerations ai using (8). Grid velocities are then updated with an
appropriate time-stepping scheme. Implicit time stepping schemes exist for MPM [16, 20, 21];
however we choose to use the explicit Euler-Forward time discretization presented within the
original MPM algorithm, which has the following expression for the update of velocity:

vk+1
i = vk

i + ai∆t. (18)

Velocity gradients are then calculated at the particle positions using the updated grid
velocities:

∇vk+1
p =

∑

i

∇φipv
k+1
i . (19)

Lastly, the history-dependent particle quantities are time-advanced. Particle deformation
gradients, velocities, and displacements are updated using calculated velocity gradients, grid
accelerations, and grid velocities:

Fk+1
p = (I + ∇vk+1

p ∆t)Fk
p, (20)

vk+1
p = vk

p +
∑

i

φipai∆t, (21)

and

uk+1
p = uk

p +
∑

i

φipv
k+1
i ∆t. (22)

Equations (15)-(22) outline one time-step of MPM and assume initialization of particle values
at time t0: u0

p, v0
p, F0

p, and V 0
p . If possible, a simple change of initializing particle velocities

a half time step earlier, i.e. v
−1/2
p , and using the same MPM algorithmic procedure outlined

above leads to the following set of staggered central-difference update equations:

v
k+ 1

2

i = v
k− 1

2

i + ai∆t, (23)

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1–1
Prepared using nmeauth.cls



8 M. STEFFEN, R.M. KIRBY AND M. BERZINS

∇v
k+ 1

2

p =
∑

i

∇φipv
k+ 1

2

i , (24)

Fk+1
p = (I + ∇v

k+ 1

2

p ∆t)Fk
p, (25)

v
k+ 1

2

p = v
k− 1

2

p +
∑

i

φipai∆t, (26)

and

uk+1
p = uk

p +
∑

i

φipv
k+ 1

2

i ∆t. (27)

A similar staggered central difference method is used for MPM by Sulsky et al. [5], the benefits
of which are reviewed in detail by Wallstedt and Guilkey [7].

The calculation of σp involves a constitutive model evaluation and is specific for different
material models. The neo-Hookean elastic constitutive model used in this paper is more fully
described in Section 6.1.

Most standard MPM implementations use piecewise-linear basis functions for φi due to their
ease of implementation and small local support. The one-dimensional form of the piecewise-
linear basis function is given by:

φ(x) =

{

1 − |x|/h : |x| < h

0 : otherwise,
(28)

where h is the grid spacing. The basis function associated with grid node i at position xi

is then φi = φ(x − xi). The basis functions in multiple dimensions are separable functions,
constructed using (28) in each dimension. For example, in three-dimensions, we have:

φi(x) = φx
i (x)φy

i (y)φz
i (z). (29)

Recently, the benefits of smoother basis functions have been explored within the MPM
framework. For example, B-splines have been shown to decrease quadrature errors and improve
spatial convergence rates for many MPM problems [11]. A typical one-dimensional quadratic
B-spline can be constructed by convolving piecewise-constant basis functions with themselves:

φ = χ ∗ χ ∗ χ/(|χ|)2, (30)

where χ is the piecewise constant basis function:

χ(x) =

{

1 : |x| < 1
2 l

0 : otherwise,
(31)

and l is the width of χ. A separable three-dimensional B-spline basis function can then be
constructed using (29).

If we depart from the idea that each grid node corresponds to a single basis function, we
can discretize our one-dimensional domain of length L with n knots, and construct quadratic
B-spline basis functions from the open knot vector:

[x0, x0, x1, . . . , xi, . . . , xn−2, xn−1, xn−1], (32)
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where xi = x0+i ·h, and the knot spacing h = L/(n−1). For a k-order B-splines (for quadratic
B-splines, k = 3), there will be n + k − 2 basis functions, which are calculated recursively as

φi,k = φi,k−1
x − xi

xi+k−1 − xi
+ φi+1,k−1

xi+k − x

xi+k − xi+1
, (33)

φi,1 =

{

1 : xi ≤ x < xi+1

0 : otherwise.
(34)

This is more akin to high-order finite elements, where the number of degrees of freedom
remain constant within each grid cell. However, unlike high-order finite elements, these B-
spline basis functions maintain the partition of unity property required for the simple mass-
lumping implicit in the MPM algorithm. These B-spline basis functions are also C1 continuous
at grid node boundaries, allowing for reduced quadrature and grid crossing errors [11]. More
details regarding the use of B-spline basis functions within MPM, including boundary condition
choices, are outlined in [12].

3.3. Moving-Mesh MPM

The term “moving-mesh MPM” which we (and others) employ, denotes an MPM method that
is fully Lagrangian, where the mesh “moves” with the particles. However, moving-mesh MPM
is actually implemented by keeping both the mesh and particles stationary in the reference
configuration and keeping track of displacements for the particles and grid nodes. This is
similar to what is done in standard FEM methods with the major difference being that
particle locations essentially define the quadrature point locations. Moving-mesh MPM may
seem contrary to the spirit of MPM, in that typical FEM difficulties such as mesh-entanglement
can occur. However, many of the benefits of standard MPM are still present in moving-mesh
MPM, such as ease of initial discretization of complex geometries using techniques similar to
those used by Brydon et al. in the simulation of foam [3].

To help understand the mathematical and algorithmic differences between standard MPM
and moving-mesh MPM, we start by examining the calculation of mass at grid nodes within
the standard MPM algorithm:

mi =

∫

Ω

ρ(x)φi(x) dΩ (35)

≈
∑

p

ρpφi(xp)Vp (36)

=
∑

p

mp

Vp
φipVp (37)

=
∑

p

mpφip, (38)

where ρp ≡ mp/Vp. If instead of the position of the particles, we keep track of displacements
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10 M. STEFFEN, R.M. KIRBY AND M. BERZINS

u such that x = X + u(X), we can represent this as

mi =

∫

Ω0

ρ(X)Φi(X)J dΩ0 (39)

≈
∑

p

ρpΦi(Xp)det(Fp)V
0
p (40)

=
∑

p

mp

Vp
Φipdet(Fp)V

0
p (41)

=
∑

p

mp

det(Fp)V 0
p

Φipdet(Fp)V
0
p (42)

=
∑

p

mpΦip. (43)

Here, J = det(F) is the Jacobian of the mapping from Ω0 to Ω. Therefore, algorithmically,
mass and velocity projections in moving-mesh MPM are very similar to mass projections in
standard MPM, except that Φi is evaluated in the reference configuration at Xp instead of
the deformed configuration at xp. The first algorithmic difference between moving-mesh MPM
and standard MPM then comes when calculating the deformation gradients Fp. In standard
MPM, deformation gradients are time-integrated as in (20). However, the definition of the
deformation gradient is F = I + ∂u

∂X
and since displacements are maintained on the grid, Fp

can be directly calculated from ui:

Fp = I +
∑

i

∇0Φi(Xp)ui, (44)

where ∇0 denotes the gradient with respect to coordinates in the reference frame and an outer
product is implied. Stress can then be calculated from Fp.

The next departure from standard MPM is the calculation of internal force. Using the
relation between the 1st Piola-Kirkhhoff and Cauchy stress tensors: P = JσF−T , and the
appropriate transformation of test functions (via the deformation gradient), one arrives at the
equivalent force calculation and approximation (16) in the reference frame:

f int
i = −

∫

Ω

σ(x) · ∇φi(x) dΩ = −
∫

Ω0

P(X) · ∇0Φi(X) dΩ0 ≈ −
∑

p

Pp · ∇0ΦipV
0
p . (45)

This internal force calculation differs from standard MPM in that ∇0Φ is evaluated at Xp in
the reference configuration, the 1st Piola-Kirkhhoff stress is used instead of the Cauchy stress,
and the initial undeformed particle volume V 0

p is used instead of the updated volume Vp.
The initialization of moving-mesh MPM is similar to standard MPM, discretizing the

problem domain with a set of material points and assigning those points initial particle values,
including displacements up = u0(Xp), with u0(X) the initial displacement field. Particles
should be equally-spaced and aligned with the grid cell boundaries since the major benefits of
moving-mesh MPM are only obtained when particles are in these “ideal” positions.

Since grid displacements are maintained and used in (44), initialization also requires a
projection of u0 onto the grid. This is accomplished by initializing ui through an approximate
L2 projection of u0 onto {Φi}. Again, the full L2 projection would come from solving the
following equation:

Au = b, (46)
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where Aij = (Φi,Φj) and bi =
∫

Ω0

Φi(X)u0(X) dΩ0. Continuing with the MPM philosophy,
we solve the above equation first by mass lumping A, then by nodal integration. Thus we
obtain

ui =
bi

∑

j Aij
(47)

=

∫

Ω0

Φi(X)u0(X) dΩ0
∫

Ω0

Φi dΩ0
(48)

≈
∑

p ΦipupV
0
p

∑

p ΦipV 0
p

. (49)

A typical moving-mesh MPM algorithm would then proceed as follows: during initialization,
grid displacements are initialized from particle displacements:

ui =

∑

p ΦipupV
0
p

∑

p ΦipV 0
p

. (50)

Then, for each time-step, perform the following operations:

Solve for mass at grid mi =
∑

p

mpΦip (51)

Solve for grid velocity vk
i =

∑

p

mpv
k
pΦip/mi (52)

Solve for external forces fext
i =

∑

p

mpbpΦip (53)

Solve for internal forces f int
i = −

∑

p

Pk
p · ∇0ΦipV

0
p (54)

Solve for grid acceleration ak
i = (f int

i + fext
i )/mi (55)

Time advance grid velocity vk+1
i = vk

i + ak
i ∆t (56)

Time advance grid displacements uk+1
i = uk

i + vk+1
i ∆t (57)

Time advance particle deformation gradient Fk+1
p = I +

∑

i

∇0Φipu
k+1
i (58)

Solve constitutive model Pk+1
p = P(Fk+1

p ) (59)

Time advance particle velocities vk+1
p = vk

p + ∆t
∑

i

ak
i Φip (60)

Time advance particle displacements uk+1
p = uk

p + ∆t
∑

i

vk+1
i Φip. (61)

Another significant difference between standard MPM and moving-mesh MPM is how Fp is
calculated. Standard MPM time integrates F as in (20), where moving-mesh MPM calculates
Fp directly from grid displacements in (58).
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(a) Reference (b) Standard MPM (c) Moving-mesh MPM

Figure 1. Standard MPM versus moving-mesh MPM. In moving-mesh MPM, particles remain at their
ideal positions within grid cells (in the reference configuration). In standard MPM, particles change

locations and cross grid cells leading to larger quadrature errors.

4. INTERPRETING THE COUPLING OF LAGRANGIAN AND EULERIAN
SIMULATIONS

Although the Material Point Method involves numerous discretization and approximation
choices in the simulation of physical and mathematical problems, many of the errors previously
observed in MPM, including grid crossing errors, can be viewed as quadrature errors in
integrating spatial quantities. Specifically, [11] shows how nodal integration in MPM is
essentially a midpoint integration type scheme, where discontinuities in spatial quantities (at
the grid nodes, in particular) are not respected within the integration scheme, as one would
normally do when integrating discontinuous functions with the midpoint rule. This occurs
because particle voxels may not be aligned with grid cells. It is this overhanging of particle
voxels with grid cell boundaries that result in errors greater than what would normally be
expected with the midpoint integration rule.

Quadrature errors are unique in MPM, in that they are fairly low order and time-dependent,
or coupled, in standard Eulerian MPM. In standard MPM, a simulation may be initially
discretized with particle voxels aligned with grid cells; however, as the simulation progresses,
particles move with respect to the grid (or in an alternate view, the grid is reset, which
still causes the particles to be displaced with respect to their original grid positions), and
these particle voxel overlaps with grid cell boundaries begin to develop. Furthermore, this
quadrature error will generate errors in acceleration, and in turn cause errors in velocity and
position, changing again the particle positions with respect to grid cells, and thus influencing
future quadrature errors. This is to say, quadrature errors have a compounding effect in MPM.

One time-stepping algorithm currently employed in MPM to solve the two coupled first-order
ODEs:

v̇(x, t) = a(x, t) (62)

u̇(x, t) = v(x, t). (63)

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1–1
Prepared using nmeauth.cls



DECOUPLING AND BALANCING OF SPACE AND TIME ERRORS IN MPM 13

is the centered difference time integration method:

vk+1/2 = vk−1/2 + ak∆t (64)

uk+1 = uk + vk+1/2∆t. (65)

As has been pointed out in the MPM literature [5], this method is “formally” second-order
in time. However, this formal analysis carries with it assumptions regarding smoothness and
accuracy of a, assumptions which do not hold within the MPM framework. In particular, the
acceleration calculated using the MPM algorithm may have significant quadrature errors in
space and discontinuities in time [22], both of which make second-order temporal convergence
unrealizable to the MPM practitioner. Figure 2 shows a sample of a typical grid acceleration
field a(x) =

∑

i φi(x)ai encountered in standard MPM when piecewise-linear basis functions
are used‡. The jump in acceleration occurs when a particle’s position in space crosses a grid
cell boundary. The calculated acceleration is obviously not smooth in this case, the impact of
which has repercussions on the updated velocity and displacement of the particle.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−1.5

−1

−0.5

0

0.5

1

1.5

Normalized Time

N
or

m
al

iz
ed

 A
cc

el
er

at
io

n

Grid Crossing Event

Jump in Acceleration

Figure 2. Grid acceleration field over time sampled by following the displacement of one particle.
Standard MPM and piecewise-linear basis functions were used. The jump in acceleration occurs when

a particle crosses a grid cell.

One way to decouple and alleviate these errors is to employ Lagrangian, or moving-mesh
MPM, as outlined in Section 3.3. As can be seen in Figure 1, particles will remain fixed with
respect to the grid for all time. Since particles do not move with respect to the grid, quadrature
errors, while still present, are not time-dependent. Furthermore, if particles are initially grid-
cell aligned, they will remain so as the simulation progresses, allowing for decreased quadrature
errors since no particle-voxel and grid cell boundary overlap occurs.

‡The actual problem being simulated in Figure 2 is the 1-D elastic bar detailed in Section 6.1 but is only used
as a qualitative motivating example here.
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14 M. STEFFEN, R.M. KIRBY AND M. BERZINS

Moving-mesh MPM is very similar to standard FEM methods and thus suffers from many of
the same problems. In particular, moving-mesh MPM is not well suited for large deformation
problems and can experience mesh entanglement issues. The use of moving-mesh MPM may
seem counter intuitive as large deformation problems are one of the main strengths of MPM,
however our use of moving-mesh MPM will allow for the decoupling of spatial and temporal
errors and aid in analysis and demonstration of these errors in following sections.

5. STUDIES OF SIMPLIFIED DECOUPLED PROBLEMS

The entire MPM algorithm, whether we consider standard MPM or moving mesh MPM as
outlined in Equations (50)-(61), involves many steps and many approximations. Furthermore,
as argued in Section 4, spatial and temporal errors are interconnected and exhibit compounding
behavior, making analysis of full MPM simulations difficult. In this section, we start by
presenting our decoupling strategy which allows us to study and analyze simpler problems
which still demonstrate many of the numerical errors present in a full MPM simulation.
Next, we will study the impact of spatial discontinuities on time-stepping by performing an
analysis and showing demonstrations of the time-stepping jump error, where we look at the
error associated with time-integrating past discontinuities in the velocity field. A study on the
impact of quadrature errors on time-stepping follows. We conclude this section by examining
the balance between spatial and temporal errors.

5.1. Decoupling Strategy

If we consider the MPM algorithm in a reverse order of operations, our final goal is to time-
integrate particle information, including the particle position:

dxp

dt
= v(xp(t)). (66)

MPM most often uses a Forward-Euler, or centered difference scheme to integrate the above
equation, and again, the errors associated with these schemes are well understood [23]. Most
previous analysis, however, assumes some level of continuity of the function v(x). In standard
MPM, the velocity field v is generated as a linear combination of piecewise-linear basis
functions, giving rise to a piecewise-linear velocity field v. The integration of particle position
(or displacement) in standard MPM is akin to performing streamline integration through a
time-dependent piecewise-linear field in which the velocity field v is created from information
on the particles. The errors arising in this situation will be illustrated in Section 5.2 by fixing
a piecewise-linear velocity field v(x), and performing streamline integration through this fixed
velocity field to demonstrate the resulting jump errors.

In standard MPM, the velocity field is also time-integrated using an acceleration field a,
which is also calculated using information from the particles:

dvp

dt
= a(xp(t)) (67)

ap = a(xp) =
∑

i

aiφi(xp) (68)
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ai = fi/mi =
1

mi

∫

Ω

∇φi(x)σ(x) dΩ ≈ 1

mi

∑

p

∇φipσ(xp)Vp. (69)

Previous work [11] analyzed the quadrature errors which come about from the nodal
integration approximation in Equation (69). Our next decoupling strategy which will allow
us to look at the impact of these spatial quadrature errors on time-stepping is to specify
a discontinuous field g(x) (since ∇φi(x)σ(x) is discontinuous when piecewise-linear basis
functions are used) and define acceleration as ae =

∫

Ω
g(x) dΩ. This integral will be

approximated in a similar fashion to the approximations in MPM. The resulting acceleration
will not be the same as the acceleration calculated in (69), however the integration will be
over a similarly discontinuous function, and thus we will see similar error behaviors. To help
avoid confusion, we will refer to ae as “external acceleration”. Employing this strategy will
lead us to global error approximations in position resulting from spatial quadrature errors at
each time step. Analysis and results for this problem follow in Section 5.3.

And finally, in Section 5.4 we will consider all errors in the problem. With better
understanding of both spatial and temporal error behaviors, we will be able to predict and
demonstrate where these spatial and temporal errors are balanced.

5.2. Impact of Spatial Discontinuities on Time-Stepping

Recent work by Tran et al. [22] analyzed errors in an MPM algorithm with respect to a gas
dynamics problem. One feature of their MPM implementation which differs from most other
implementations is a volume normalization step. While most implementations of MPM for
solid mechanics define particle volume at time tk as V k

p = det(Fk
p)V 0

p , the algorithm used in

Tran et al. defines particle volume (in 1-D) as V k
p = h/nk

i , where h is the grid spacing and nk
i

is the number of particles in grid cell i (of which particle p also belongs to). Therefore, much
of their analysis relating to spatial errors is not directly applicable to the variants of MPM
presented here. They do, however, consider temporal errors when integrating past a jump in
continuity of the velocity field. This error is present in the standard MPM algorithm and we
will consider it here.

5.2.1. Simplified Problem Before we proceed with an analysis, we wish to devise a simplified
non-physical problem which exhibits many of the same mathematical approximations and
traits as the full MPM algorithm. The errors in this simplified problem will display similar
characteristics to errors in the full MPM algorithm, but will be easier to analyze and will
provide us insight into expected error behavior in MPM.

The main mathematical features we wish to preserve from the full MPM algorithm is the
evaluation of a piecewise-linear velocity field when time-integrating particle positions, and
the integration of a discontinuous field in the acceleration calculation. In doing so, we will
consider a single particle p, starting at x = 0 at time t = 0. We will fix a piecewise-linear
velocity field v(x) on the domain Ω = [0, 1], as shown in Figure 3(a). This velocity field is not
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16 M. STEFFEN, R.M. KIRBY AND M. BERZINS

time-dependent and is defined by:

v(x) =



















3x + 1 : x ∈ [0, 1/3]

6x : x ∈ [1/3, 2/3]

12x − 4 : x ∈ [2/3, 5/6]

18x − 9 : x ∈ [5/6, 1].

(70)

With a particle initiating at x = 0, the particle position can be determined by solving the
following equation for x(t):

∂x

∂t
= v(x(t)). (71)

Since our velocity field is piecewise-linear, this function can be solved analytically. For a linear
velocity field v(x) = ax + b, the solution to this equation is

x(t) =
b + ax0

aeat0
eat − b

a
. (72)

The solution for x ∈ [0, 1/3], with a = 3, b = 1, t0 = 0, and x0 = 0, is then

x(t) =
1

3
e3t − 1

3
. (73)

This solution is valid only for x ∈ [0, 1/3]. We can find which times these are valid by solving
the inverse equation with x = xcross

1 = 1/3 for tcross
1 :

tcross
1 =

1

a
ln

[

xcross
1 + b/a

b + ax0
aeat0

]

. (74)

Therefore, (73) is valid for t = [0, tcross
1 ]. The second segment, valid for x ∈ [1/3, 2/3], is

calculated in a similar manner, with a = 6, b = 0, t0 = tcross
1 , and x0 = 1/3. The second

crossing time tcross
2 is calculated in a similar manner to (74), with x = xcross

2 = 2/3. The
resulting piecewise-exponential position function x(t) is shown in Figure 3(b).
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Figure 3. Fixed piecewise-linear velocity field and resulting x(t) for our simplified problem.
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We can see the error behavior of this system by performing the following Forward-Euler
time-integration strategy:

xk+1
p = xk

p + v(xk
p)∆t. (75)

The full MPM algorithm exhibits similar jump errors as the above problem due to the
similarities in the piecewise-linear velocity fields.

5.2.2. Analysis Figure 4 demonstrates a situation where a particle p samples a piecewise-
linear velocity field v(x) at time tk. The particle position is then time-integrated to tk+1 using
the standard forward Euler scheme xk+1

p = xk
p + ∆tv(xk

p). In this scenario, a grid crossing has

occurred, i.e., xk
p < xi < xk+1

p . Since the velocity field v(x) has a jump in continuity at xi,
standard ODE error bounds do not necessarily apply.

Figure 4. One-step versus two-step method for crossing a discontinuity in a velocity field.

One method for handling this situation is to perform a two-step time-integration strategy,
where a time step of ∆t1 is determined, which will bring the particle to the discontinuity, then
a second time-step of ∆t2 = ∆t − ∆t1 is taken, reevaluating the velocity field for the second
time step.

The algorithm would then be to calculate xk+1
p = xk

p +∆tv(xk
p) as normal. If a grid crossing

has occurred where xk
p < xk+1

i < xk+1
p , calculate the first time-step ∆t1 = (xi − xk

p)/v(xk
p)

which will advance the particle to the grid node xi. Next, calculate an adjusted two-step
particle position as x̄k+1

p = xi + ∆t2v(xi).

The difference between the two-step and one-step particle positions, x̄k+1
p − xk+1

p , or the
time-stepping jump error, was calculated in [22]. They showed this difference to be:

x̄n+1
p −xn+1

p = (vn+1
i −vn+1

i−1 )

[

xi − xn
p

xi − xi−1

]

∆t2+

[

an
i−1 +

xn
p − xi−1

xi − xi−1
(an

i − an
i−1)

]

∆t1∆t2. (76)

Here, we continue to expand on the analysis in [22] to help understand the relationship between
decreasing ∆t and the expected behavior of the difference x̄n+1

p − xn+1
p in (76).
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To simplify, the second term (in the square brackets) is merely the projection of grid
acceleration onto the particle at time n: an

p . Therefore, we can rewrite this as:

x̄n+1
p − xn+1

p = (vn+1
i − vn+1

i−1 )

[

xi − xn
p

xi − xi−1

]

∆t2 + an
p∆t1∆t2. (77)

Rearranging the first term gives:

vn+1
i − vn+1

i−1

xi − xi−1
(xi − xn

p )∆t2 ≈ ∂v

∂x
(xi − xn

p )∆t2. (78)

To arrive at this point, we have assumed that the particle has crossed the grid node xi during
a full time step. i.e., xn

p < xi < xn+1
p . Furthermore, we know that xi = xn

p +vp∆t1, where vp is
the projection of grid velocities to the particle position. Therefore, xi − xn

p = vp∆t1. Plugging
this into the above, we see the first term looks like:

∂v

∂x
vp∆t1∆t2. (79)

Thus, we get an error in position of the form:

x̄n+1
p − xn+1

p =

[

∂v

∂x
vp + an

p

]

∆t1∆t2 (80)

Since ∆t2 = ∆t − ∆t1 with ∆t1 < ∆t, we can rewrite these time steps as ∆t1 = α∆t with
0 < α < 1 and ∆t2 = (1 − α)∆t. Thus

∆t1∆t2 = α(1 − α)∆t2. (81)

The term α(1−α) has a maximum of 1/4 at α = 1/2, thus the error in position is bounded by

x̄n+1
p − xn+1

p ≤ 1

4

[

∂v

∂x
vp + an

p

]

∆t2. (82)

Therefore, the time-stepping jump error, or the error between the two-step and one-step
methods, is O(∆t2). The following section will show results demonstrating this second-order
error behavior.

5.2.3. Results The following is a test with a piecewise-linear velocity field (arising from
piecewise-linear basis functions). Given a time-step ∆t, the equation

xi = xp + ∆t1v(xp) (83)

was solved for xp with ∆t1 = ∆t/2. This gives us a starting position, such that the velocity field
will move the particle such that xi is halfway between xn

p and x̄n+1
p . Next, xn+1

p is calculated
in the two-step method, i.e.:

xn+1
p = xn

p + vp∆t1 + vi∆t2 = xi +
∆t

2
vi. (84)

The difference x̄n+1
p −xn+1

p is calculated and plotted in Figure 5. Here, we can see the O(∆t2)
convergence we expect.
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Our estimate for the jump error in Section 5.2.2 was

εjump =
1

4

[

∂v

∂x−

vp + an
p

]

∆t2. (85)

The terms ∂v/∂x, vp, and ap are easily calculated for the simplified problem in Section 5.2.1.
Using an initial time-step (before refinement) of ∆t0 = 0.01, we can measure the jump errors
and compare against our estimates. The jump error is estimated using (85) and calculated as
the difference between performing the time integration strategy in the standard fashion (giving
xp) and performing the time-integration utilizing the two-step strategy to obtain x̄p:

εk
jump = xk

p − x̄k
p. (86)

Figures 6(a) and 6(b) show the calculated jump errors for various time-step selections. Table I
shows the estimated and calculated jump errors for a particular time-step, demonstrating the
error bounds are tight.

Jump Estimated Jump Calculated Jump

1 2.34 × 10−8 1.81 × 10−8

2 9.36 × 10−8 7.60 × 10−8

3 2.81 × 10−7 1.84 × 10−7

Table I. Estimated and calculated values for all three jumps in the simplified problem, showing tight
bounds for the estimated jump error.

5.3. Impact of Spatial Quadrature Errors on Time Stepping

Recent work [11] analyzed quadrature errors in the MPM framework but did not extend to
take into account the feedback that occurs between spatial and temporal errors as a simulation
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Figure 6. Measured jump errors for simplified problem.

progresses. In this section we will introduce a modification to our simplified problem which
will exhibit similar quadrature errors as found in standard MPM. We will follow this with an
analysis and demonstration of these errors.

5.3.1. Simplified Problem We will use the same prescribed velocity field v as developed in
Section 5.2.1, however, we will also define an external acceleration ae(t), defined by integrating
a given function g(x) over the domain Ω. The function g(x), shown in Figure 7, is not time-
dependent and is defined as:

g(x) =



















−J : x ∈ [0, 1/3]

0 : x ∈ [1/3, 2/3]

J : x ∈ [2/3, 5/6]

3J/2 : x ∈ [5/6, 1].

(87)

The function g(x) was chosen such that
∫

Ω
g(x) dx = 0. However, similar to the nodal

integration in MPM, we will approximate this integral with midpoint quadrature over the
particle domain Ωp = [xp − ∆x/2, xp + ∆x/2], i.e., acceleration is approximated as

ae(t) =

∫

Ω

g(x) dx ≈
∫

Ω−Ωp(t)

g(x) dx + g(xp)∆x. (88)

Again, the inclusion of ae is not meant to be physical, but to include a forcing term
which exhibits quadrature errors similar to those which occur when calculating acceleration in
MPM. This is accomplished since the integrands in the calculation of our simplified external
acceleration ae and the full MPM acceleration (69) (when piecewise-linear basis functions are
used) are both discontinuous.

If the calculation of ae(t) can be carried out exactly, external acceleration should be zero for
all time and the behavior of the particle should be the same as in Figure 3(b). Any error in
integration will result in non-zero external accelerations. The errors in integration result from
errors in the above midpoint approximation. The particle position xp changes with time, and
thus this error is time-dependent, hence ae(t) is time-dependent, even though g(x) is not.
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Figure 7. Function g(x) used in calculating external acceleration for a simplified problem.

Finally, we can see the behavior of this system by performing the following Forward-Euler
time-integration strategy

ak
e =

∫

Ω−Ωp

g(x) dx + g(xk
p)∆x (89)

vk+1
e = vk

e + ak
e∆t (90)

vk+1 = v(xk
p) + vk+1

e (91)

xk+1
p = xk

p + vk+1∆t. (92)

The MPM algorithm exhibits similar behavior as seen in this simplified problem due to
quadrature errors in calculating internal forces (16). This complicated interplay between spatial
and temporal errors is one reason why analysis of MPM is not straightforward.

5.3.2. Analysis Analysis of quadrature errors in the MPM framework [11] calculated errors
in internal force when evenly spaced particles sample a material with constant stress:

Ef =

∫

Ω

σ(x) · ∇φi dΩ −
∑

p

σp · ∇φipVp = σ ·
[

∫

Ω

∇φi dΩ − ∆x
∑

p

∇φip

]

, (93)

where ∆x is the particle spacing, or volume. Here, ∇φi is either piecewise-constant or piecewise-
linear depending on if piecewise-linear or quadratic B-spline basis functions are used. The
bracketed term is equivalent to the error in integrating a piecewise-constant or piecewise-
linear function using a composite midpoint rule. This error should be zero if particle voxels
align with breaks in continuity of the integrand; however, in general this is not the case with
MPM. Figure 8 shows an example of a particle spanning breaks in continuity.

The maximum internal force error from Equation (93) when using piecewise-linear basis
functions is due to integrating over breaks in continuity of the piecewise-constant function
∇φ, as can be seen in Figure 8(a). This error looks like Ejump = C1[[φ

′(0)]]∆x, where [[·]]
denotes the jump condition, and C1 is a constant depending on the integrand. For the case of
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(a) Piecewise-constant integrand

(b) Piecewise-linear integrand

Figure 8. Examples of particles spanning breaks in continuity. Here (a) shows a piecewise-constant
integrand, which occurs when integrating ∇φ with piecewise-linear basis functions, where (b) shows

a piecewise-linear integrand, arising from integrating ∇φ with quadratic B-spline basis functions.

piecewise-linear basis functions, C1 = 1/2. Evaluating the entire integral in (93), taking into
account each continuity jump, the upper bound on the total force error Ef (denoted as Etotal)
is

Ef ≤ Etotal = 2σ
∆x

h
. (94)

Performing the same analysis when using quadratic B-splines leads to a jump error of the
form Ejump = C2[[φ

′′[0]]]∆x2. For our quadratic B-splines, C2 when integrating ∇φ is 1/8.
This leads to an upper bound on the total force error Ef of

Ef ≤ Etotal = σ
∆x2

h2
. (95)

This leads to an acceleration error for piecewise-linear on each time-step that looks like

ε = Cαγ(t), (96)

where C is a constant, α is ∆x/h, or the inverse of the number of particles per cell, and γ(t)
is a function between −1 and 1, specifying how much of the maximum quadrature error is
added. The time-update equation is then

vk+1 = vk + (ak + Cαγ(tk))∆t (97)

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1–1
Prepared using nmeauth.cls



DECOUPLING AND BALANCING OF SPACE AND TIME ERRORS IN MPM 23

xk+1 = xk + vk+1∆t (98)

= xk + vk∆t + ak∆t2 + Cαγ(tk)∆t2 (99)

where the term Cαγ(t)∆t2 is the error term. Continuing, assuming another error in acceleration
on the next time-step, we get the following:

vk+2 = vk+1 + (ak+1 + Cαγ(tk+1))∆t (100)

= vk + ak∆t + Cαγ(tk)∆t + ak+1∆t + Cαγ(tk+1)∆t. (101)

Now, let us assume γ(t) is the worst possible case for all t, that is |γ(t)| = 1. Then

vk+2 = vk + ak∆t + ak+1∆t + 2Cα∆t (102)

xk+2 = xk+1 + vk+2∆t (103)

= xk + vk∆t + ak∆t2 + Cα∆t2 + vk∆t + ak∆t2 + ak+1∆t2 + 2Cα∆t2 (104)

= xk + 2vk∆t + 2ak∆t2 + 3Cα∆t2. (105)

If we continue our time steps inductively, we get the following after N steps:

vN = v0 +
N

∑

i=1

ai∆t + NCα∆t (106)

xN = x0 +

N
∑

j=1

vj∆t (107)

= x0 + Nv0∆t +

N
∑

j=1

[

(

j
∑

i=1

ai∆t) + jCα∆t

]

∆t (108)

= x0 + Tv0 +

N
∑

j=1

j
∑

i=1

ai∆t2 +

N
∑

j=1

jCα∆t2 (109)

= x0 + Tv0 +
N

∑

i=1

(N − i + 1)ai∆t2 +
N(N + 1)

2
Cα∆t2 (110)

= x0 + Tv0 +

N
∑

i=1

(N − i + 1)ai∆t2 +
1

2
TCα∆t +

1

2
T 2Cα, (111)

where T is the final time T = t0 +N∆t. The global quadrature errors with piecewise-constant
g(x) is then

Eq =
1

2
TCα∆t +

1

2
T 2Cα. (112)

When piecewise-quadratic basis functions are used, such as B-splines or GIMP functions, the
analysis is similar, leading to global quadrature errors of the form

Eq =
1

2
TCα2∆t +

1

2
T 2Cα2. (113)
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Our simplified problem with piecewise-linear f will exhibit similar error behavior as the
analysis above for MPM with piecewise-linear basis functions. The following section will show
a demonstration of these errors in the simplified problem.

5.3.3. Results In Section 5.3, the global error for our simplified problem at final time
T = t0 + N∆t, including the effect of quadrature errors, is given by:

xN = x0 + Tv0 +
N

∑

i=1

(N − i + 1)ai∆t2 +
1

2
TC∆x∆t +

1

2
T 2C∆x. (114)

The first three terms represent the standard Forward-Euler time-stepping method, and the
last two terms represent the estimate of quadrature errors on the global position error:

ε =
1

2
TC∆x∆t +

1

2
T 2C∆x. (115)

From this estimate, we would expect global errors to decrease with decreasing time-step ∆t,
but to be limited by the last term, which has no dependence on time-step. We also expect
global errors to increase quadratically with final time T and to decrease with decreasing particle
spacing ∆x as seen in Figure 9.
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Figure 9. Global errors for two values of ∆x and numerous values of ∆t plotted on the same axes.

While the error estimate in (115) shows the error growing quadratically as the final time
T increases, and while the simplified problem was designed to demonstrate this behavior and
the results in Figure 9 exhibit this unbounded error, it is worth noting that the global error
in many simulations oscillate around the true solution.

5.4. Balancing Space and Time Errors

Until now, we have focused on analysis of errors in simplified problems which demonstrate
similar error behaviors as full MPM. Through a better understanding of these component
errors, and through numerical demonstrations, we can gain insight concerning the spatial
and temporal convergence properties of the method. In this section we will eliminate the
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compounding of errors in MPM by focusing on single time-step, local truncation errors in the
full MPM framework. Using models for the expected behavior of spatial and temporal errors,
we will be able to estimate the balancing point (a particular time-step ∆t) where these two
errors are equal.

5.4.1. Moving-Mesh MPM The velocity update equation in Equation (64) is a
straightforward second-order discretization of v̇ = a. This can be seen by performing Taylor
series expansions of v about time tk:

vk+1/2 =vk + v̇k(∆t/2) +
1

2
v̈k(∆t/2)2 +

1

6

...
v k(∆t/2)3 + O(∆t)4 (116)

vk−1/2 =vk − v̇k(∆t/2) +
1

2
v̈k(∆t/2)2 − 1

6

...
v k(∆t/2)3 + O(∆t)4. (117)

Subtracting (117) from (116) yields:

vk+1/2 − vk−1/2 = ∆tv̇k +
1

24
∆t3

...
v k + · · · . (118)

Rearranging terms elucidates to us how this discretization is second-order in time, assuming
a is sufficiently smooth:

ak = v̇k =
vk+1/2 − vk−1/2

∆t
+ O(∆t2). (119)

And lastly, if we measure local truncation errors, we would expect to see third-order behavior:

vk+1/2 = vk−1/2 + ∆tak + O(∆t3). (120)

Again, these are standard ODE theory results and assume a is known and sufficiently
smooth [23]. However, as was shown above, significant spatial errors can exist in MPM. In
fact, assuming second-order spatial errors, acceleration will take the form

ak = ãk + c1h
2, (121)

where ã is our calculated acceleration and c1 is a constant not dependent on h. Substituting
(121) into (120) gives us our MPM time-update equation for the centered difference velocity
update scheme:

vk+1/2 = vk−1/2 + ∆t(ãk + c1h
2) + c2∆t3. (122)

Here, the term c1h
2∆t represents the spatial contribution to the local truncation error. The

term c2∆t3 is the temporal contribution to the local truncation error. Thus, we would expect
a transition point between spatial and temporal errors dominating when

c1h
2 = c2∆t2 (123)

which occurs when

∆t = Ch, (124)

with C =
√

c1/c2.
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5.4.2. Standard MPM When using standard MPM with piecewise-linear basis functions, we
expect first-order spatial errors. Therefore, instead of (121), acceleration will now be:

ak = ãk + c1h, (125)

where ã is the calculated acceleration. Substituting (125) into (120) gives us our MPM time-
update equation for the centered difference velocity update scheme within the standard MPM
framework:

vk+1/2 = vk−1/2 + ∆t(ãk + c1h) + c2∆t3. (126)

This differs from (122) in that the spatial error term is first-order, rather than second-order.
We would now expect the transition point between spatial and temporal errors dominating at

c1h = c2∆t2, (127)

which occurs when
∆t = C

√
h, (128)

with C =
√

c1/c2.
Quadratic B-spline basis functions, however, still exhibit second-order spatial errors for

this problem, even with standard MPM. Therefore, instead of (128), the transition point for
standard MPM with B-spline basis functions should still occur when ∆t = Ch, as in (124).

Demonstrations of these transition, or balancing points will be shown in Section 6.4 for both
moving-mesh and standard MPM.

6. RESULTS FOR FULL MPM SIMULATIONS

In Section 5, we studied, analyzed, and demonstrated various errors on simplified and decoupled
problems. These problems were chosen due to their relative ease of analysis and because
they exhibit similar errors to those that exist in a full MPM simulation. In this section, we
demonstrate that these same errors exist in a full MPM simulation and have similar behaviors.

6.1. One-D Periodic Bar

To allow for quantitative measurements of errors, a one-dimensional transient problem with an
analytic solution will be used to perform numerical tests. We will use the same one-dimensional
periodic bar we have used in previous MPM tests [12]. The problem we are considering has an
assumed analytical displacement on the domain [0, 1], and resultant deformation gradient of:

u(X, t) = A sin(2πX) cos(Cπt), (129)

F (X, t) = 1 + 2Aπ cos(2πX) cos(Cπt), (130)

where X is the material position in the reference configuration, A is the maximum deformation
percentage, and C =

√

E/ρ0 is the wave speed. The bar is subjected to a body force of

b(X, t) = C2π2u(X, t)(2F (X, t)−2 + 1). (131)

The functions u and F are included in (131) only to simplify notation. The constitutive model
is a simple 1-D neo-Hookean model, assuming zero Poisson’s ratio:

σ =
E

2

(

F − 1

F

)

. (132)
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This constitutive model, when combined with the body force given by (131) will lead to the
analytical displacement solution in (129). We take advantage of the equivalence between the
1st Piola-Kirkhhoff and Cauchy stresses in 1-D in the implementation of this test problem.

Figure 10 is a demonstration of what an MPM simulation is expected to produce for the
above 1-D periodic bar at various times. The points represent particle positions, and the
updated particle volumes V k

p are depicted as the width of the surrounding white boxes.

(a) t = 0.000

(b) t = 0.0025, 1/8 period of oscillation of displacement

(c) t = 0.005, 1/4 period of oscillation of displacement

Figure 10. Diagrams of MPM solution for the 1-D periodic bar at different times with the parameters
E = 104, ρ0 = 1, and A = 0.1. The points represent particle positions, and the white boxes show the

particle volumes, or widths in 1-D.

6.2. Impact of Spatial Discontinuities on Time Stepping

In an attempt to reduce spatial quadrature errors to a point where the jump error from Section
5.2 can be seen, the 1-D periodic bar was solved using 64 grid cells and 100 particles-per-cell.
The parameters used were A = 0.05 (five percent maximum displacement), E = 104, ρ0 = 1.0,
and a time-step which corresponds to a CFL of 0.1. The problem was solved with a periodic
MPM using standard piecewise-linear basis functions.

Standard one-step Forward-Euler time-stepping was used to update particle positions xk+1
p ,

but on each step, the two-step method for handling grid crossings (outlined in Section 5.2.2)
was used to calculate the two-step particle position x̄k+1

p . The single-step jump error was then

calculated as εk
jump = xk

p − x̄k
p. These jump errors were then accumulated to obtain the global

jump error Ek
jump =

∑

k εk
jump.

Figure 11 shows the result of this simulation. Both the global displacement error and the
global jump error were plotted over time. As can be seen in the figure, the global jump error
is a relatively small percentage of the overall error, even with 100 particles-per-cell.

6.3. Impact of Spatial Quadrature Errors on Time Stepping

The 1-D periodic bar was simulated again, this time with a more realistic choice for the numbers
of particles-per-cell. Figure 12 shows an example of the acceleration ap =

∑

i aiφi(xp) felt by a
typical particle p for both piecewise-linear and B-spline basis functions when the domain was
discretized with four particles-per-cell. The particle acceleration ap is clearly discontinuous for
piecewise-linear basis functions and continuous for B-spline basis functions. Close inspection
shows that ai is only C0 continuous for quadratic B-spline basis functions. This behavior is
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Figure 11. Displacement error and cumulative jump error (calculated as the sum of the difference
between single step and two-step time integration) for a single typical particle in a simulation with 64

grid cells and 100 particles-per-cell.

mainly due to the quadrature errors generated as particles cross grid nodes. This jump in
acceleration is unaffected by time-step selection.
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Figure 12. Acceleration felt by a particle for both piecewise-linear and B-spline basis functions in
standard MPM. Discontinuities in accelerations occur at grid crossings with piecewise-linear basis
functions. With B-spline basis functions, acceleration remains continuous when particles cross grid

nodes.

Spatial convergence studies were then performed on the 1-D bar with various numbers of
particles-per-cell, and the RMS displacement error was calculated after one full period of
oscillation. When the number of particles-per-cell is held constant, standard MPM initially
converges at as O(h2), as would be expected in standard finite elements with piecewise-
linear basis functions, but soon reaches a point where quadrature error starts to dominate,
and convergence is lost. Increasing the number of particles-per-cell lowers the point at which
quadrature errors start to dominate. Figure 13(a) shows these results.
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Figure 13(b) shows the results of increasing the number of particles-per-cell at the same
rate as the number of grid cells. In this case, the number of particles-per-cell was set to one-
quarter the number of grid cells. This ever increasing number of particles-per-cell results in a
seemingly consistent first-order method. This, however, may be prohibitive in practice since
the total number of particles is increasing quadratically with the number of grid cells. In other
words, the total number of particles in the simulation is O(N2), where N is the number of
grid cells.
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Figure 13. Displacement error with various numbers of particles using standard MPM with piecewise-
linear basis functions. Figure (a) shows standard convergence plots with the number of particles-per-
cell held constant in each convergence test. Figure (b) shows a convergence test where the number
of particles-per-cell is increased along with the number of grid cells. In this case, the number of
particles-per-cell was set to one-fourth the number of grid cells, resulting in a total of N2/4 particles.

6.4. Balancing Space and Time Errors

Temporal convergence studies thus far have not demonstrated second order convergence as
we would expect [7, 17]. The assumption has been that spatial errors are dominating in the
regimes being tested. One limitation on previous studies has been stability of the solution,
requiring the CFL number to be less than unity. Global errors have been reported at given
times T , which include the accumulation of errors up to that point. If a simulation fails due
to stability reasons, the global error can not be measured and no information can be gained.

To help further understand the convergence properties of the scheme, we focus our attention
on errors after one time-step–a measure of the local truncation errors. Since overall stability
of the simulation is not required when looking at a single time-step, we are free to operate in
regimes we could not previously test.

The term c1h
2 in (121) assumes a second-order spatial error when calculating acceleration.

Analysis and demonstrations of second order spatial errors in MPM arising from the numerical
quadrature scheme has been previously shown [11]. To understand the constant associated with
this term, we measure the L2 error of the calculated acceleration on the grid:

ε2
a =

∫

Ω

(ã(x) − a(x))2 dx, (133)
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where a is the true acceleration field from our manufactured solution and ã is the calculated
field:

ã(x) =
∑

i

aiφi(x). (134)

Figure 14 shows the spatial convergence of these acceleration errors with both piecewise-linear
and quadratic B-spline basis functions at a time corresponding to approximately 1/10 the
period of oscillation (specifically at time t = 0.2122 · C). This time was chosen such that
particles will have non-zero displacements and velocities.
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Figure 14. Spatial convergence of grid acceleration L2 errors at time t = 0.2122 · C, with moving-
mesh MPM, four particles-per-cell (PPC), and periodic boundary conditions for the 1D axis aligned

problem.

Again, assuming the acceleration error takes the form εa = c1h
2, and since the data in Figure

14 is clearly second order, we can choose one point to calculate the value of c1 for our test case.
For example, the acceleration error at 1024 grid cells with piecewise-linear basis functions is
calculated to be 1.7895× 10−2. Thus, the constant c1 (since our domain is of length L = 1) is

c1 =
εa

h2
= 1.8764 × 104. (135)

Next, to measure the constant c2, we measured the L2 errors in grid velocity after a
single time-step. The data in Figure 15 shows third-order temporal convergence for the local
truncation error as expected from (122). Knowing that the local velocity truncation error
takes the form εv = c2∆t3, we can choose one point to calculate the value of c2 for our test
case. With piecewise-linear basis functions, the velocity error corresponding to a time-step of
∆t = 1.0 × 10−4 is 1.1277 × 10−5. This leads to a value for c2 of

c2 =
εv

∆t3
= 1.1277 × 107. (136)
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Figure 15. Temporal convergence of local truncation errors in grid velocity with moving-mesh MPM,
220 grid cells, four particles per cell (PPC), and periodic boundary conditions for the 1D axis aligned

problem.

Running a single time-step with 2048 grid cells, (h = 4.88 × 10−4), we would expect the
transition to occur from (124) at ∆t = 1.9917×10−5. Figure 16 shows this experiment and the
transition occurs precisely where we expect. Using the same techniques above with the data
in Figures 14 and 15, we calculate the transition to occur at ∆t = 2.3908× 10−5 with B-spline
basis functions. These transition points are very similar, which should not be surprising since
the errors for piecewise-linear and quadratic B-splines are comparable.

6.4.1. Standard MPM Figure 17 shows the spatial convergence of acceleration errors with
standard MPM. Here, piecewise-linear basis functions initially exhibit second-order spatial
convergence with smaller numbers of grid cells when approximation, or mass-lumping errors
are dominating. However, the asymptotic O(h) quadrature errors eventually dominate when
enough grid cells are used. Quadratic B-spline basis functions still exhibit the expected second-
order spatial convergence with standard MPM.

Since the acceleration error for piecewise-linear basis functions now takes the form εa = c1h
in the asymptotic region, and since the data in Figure 17 demonstrates that behavior, we can
choose one point to calculate the value of c1 for our test case. For the four particle-per-cell
case, the acceleration error at 1024 grid cells is calculated to be 5.9119× 10−2. Therefore, the
constant c1 is

c1 =
εa

h
= 6.0538 × 101. (137)

Next, we again measure the constant c2 using the errors in grid velocity after a single time-
step. The data in Figure 18 shows strong third-order local truncation error convergence with
larger ∆t, as expected from (126). With smaller ∆t, a convergence plateau is reached, where
the larger spatial errors in standard MPM are starting to dominate. Since the local velocity
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Figure 16. Temporal convergence for local truncation errors in grid velocity with moving-mesh MPM,
2048 grid cells, four particles-per-cell (PPC), and periodic boundary conditions for the 1D axis aligned

problem.
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Figure 17. Spatial convergence of grid acceleration L2 errors with standard MPM and periodic
boundary conditions for the 1D axis aligned problem. Piecewise-linear basis functions with various
numbers of particles-per-cell (PPC), and quadratic B-spline basis functions with four PPC are shown.

truncation error takes the form εv = c2∆t3 in the convergent region, we choose one point to
calculate the value of c2. The velocity error corresponding to a time-step of ∆t = 1.0 × 10−4
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is εv = 1.1278 × 10−5. This gives a value for c2 of

c2 =
εv

∆t3
= 1.1278 × 107. (138)
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Figure 18. Temporal convergence of local truncation errors in grid velocity with standard MPM, 220

grid cells, four particles per cell (PPC), and periodic boundary conditions for the 1D axis aligned
problem.

Using the calculated constants c1 and c2 for a reasonable grid resolution of 2048 grid cells,
our expected transition point between spatial and temporal errors dominating (128) when
piecewise-linear basis functions are used (128) is at ∆t = 5.1196 × 10−5. Figure 19 shows
the results of this test. The transition point between spatial and temporal errors dominating
occurs precisely at our estimate. Using a similar procedure as above, the data from Figures 17
and 18, along with (124), the transition point for standard MPM using quadratic B-splines is
calculated as ∆t = 2.6507 × 10−5.

7. GUIDELINES

As with most numerical methods, there are numerous errors in MPM of which the practitioner
must be aware. These errors include the interpolation errors, mass lumping errors, quadrature
errors, standard time integration errors, and time integration jump errors. There are also a
number of parameters that a practitioner must chose when discretizing a problem with MPM,
and many of these parameter choices directly affect the above errors. These parameters include
the choice of basis function φi, the grid resolution h, the particle widths ∆x, and the time-step
∆t.

The interpolation error can be thought of as the finite element type error - the error
associated with what function space V our set of basis functions {φi} spans. This error is
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Figure 19. Temporal convergence for local truncation errors in grid velocity with standard MPM, 2048
grid cells, four particles-per-cell (PPC), and periodic boundary conditions for the 1D axis aligned

problem.

well understood in the context of finite element methods and received little treatment in this
paper. Generally, this error is O(hk) where h is some measure of grid spacing, and k is some
measure of the order of the basis functions. Thus, both the choice of basis functions and the
grid spacing affect this error. However, even with the simplest piecewise-linear basis functions,
this error is O(h2). Increasing the order of basis functions will decrease this error, however the
spatial error in MPM is already limited to O(h2) due to other approximations. Therefore the
interpolation error is rarely the limiting factor.

The mass lumping error is also well understood in the context of finite element frameworks
[19]. The type of mass lumping employed in MPM is generally considered to provide a O(h2)
approximation to the complete (unlumped) mass matrix and is therefore rarely the limiting
error in our simulations. It is important to note that mass lumping can provide positive benefits
with respect to stabilization and monotonicity of the MPM method – things not explored in
this work.

Temporal errors also exist in MPM. The standard time-stepping errors are affected by the
choice of time-step ∆t. In Section 5.2, we focused heavily on the time-stepping jump error
– also a function of ∆t, but the smoothness of which is also a function of the basis function
choice. Smoother basis functions will change the order of this jump error since smoother basis
functions result in smoother velocity fields that particles travel through.

In Section 5.3 we examined the impact of spatial quadrature errors on time-stepping. Here,
the global displacement errors were a function of αk, where α = ∆x/h, and k is again a
measure relating to the smoothness of the basis functions. Increasing the smoothness of the
basis functions from piecewise-linear to piecewise-quadratic (as is the case with the quadratic
B-splines used in this paper) increases k from 1 to 2, and since α is typically much less than 1,
this significantly reduces the overall effect of quadrature errors on the final global displacement
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error. The choice of ∆t does not affect these quadrature errors.
One interesting result is when quadrature errors are dominating (as is often the case

when using piecewise-linear basis functions), the global displacement error looks like αk. If
the number of particles-per-cell remains constant, α also remains constant, and the global
displacement error will not be reduced as grid resolution is increased. To have a consistent
method, α must be reduced as grid resolution is increased, meaning the number of particles
per cell must increase as the number of grid cells is increased. A demonstration of this is shown
in Section 6.3.

The local truncation error results in Section 6.4 suggest that the time-step, ∆t, where spatial
and temporal errors are balanced is much higher than the stability limit when the explicit
centered difference time stepping scheme is used on this type of problem. This explains why
previous researchers [7] were not able to demonstrate the second-order temporal convergence
expected from the method in full MPM simulations. Therefore, with a proper implementation
of the centered difference time-stepping scheme, time-stepping errors will have generally
converged to remaining spatial errors by the stability limit, and thus running with a time-step
significantly lower than the stability limit has no effect on reducing temporal errors further.

To demonstrate the effects of following these guidelines while solving an engineering problem,
the 1-D periodic bar from section 6.1 was simulated with two different sets of parameters. In
a naive attempt at reducing errors, the problem was simulated with piecewise-linear basis
functions, 128 grid cells, four particles-per-cell, and a relatively small time-step corresponding
to a CFL of 0.1. A second simulation used more expensive quadratic B-spline basis functions,
64 grid cells, the same four particles-per-cell, and a larger time-step corresponding to a CFL
of 0.9. The RMS error of particle positions and corresponding run-times are shown in Table II.
Here, we see that a selection of parameters based upon the guidelines provided above results
in a much lower error with significantly less computational effort.

RMS Error Run-Time (seconds)

Simulation 1 2.21 × 10−2 9.62
Simulation 2 8.39 × 10−5 0.50

Table II. RMS error and run-time for two simulations of a 1D periodic bar. The second simulation
more closely follows the guidelines in this section, resulting in lower error and lower run-time.

8. SUMMARY AND CONCLUSIONS

In this paper we performed three studies on various errors present in the Material Point
Method. These studies, which included analysis and demonstrations, were performed on
simplified problems which exhibit similar error characteristics to the full MPM framework.
We also demonstrated these errors in a full MPM simulation. In the process, we have outlined
and demonstrated the moving-mesh MPM algorithm–a fully Lagrangian method which helps
control some of the complexities of MPM error analysis, mainly quadrature and grid crossing
errors.
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The first major error in consideration was the time-stepping jump error, and how spatial
discontinuities impact these time-stepping errors. We showed that this jump error is second-
order with respect to time-step size, and was not a large contributor to the overall global
errors. The second study focused on the impact of spatial quadrature errors on time-stepping.
Building on previous work by the authors, we were able to develop an estimate for global
errors arising from the compounding effects of the quadrature errors. And lastly, using a
model for the error behavior in the method, we were able to estimate a time-step inflection
point where spatial and temporal errors are balanced. Time-steps larger than the inflection
point result in solutions dominated by temporal errors, while smaller time steps lead to spatial
error dominated solutions.

These studies allowed us to formulate guidelines for the practitioner when implementing a
similar variant of MPM as used in this paper. The two main guidelines are that the use of
smoother basis functions (such as quadratic b-splines) greatly reduce the quadrature errors and
therefore reduce global errors in the method, and that time-steps near the stability limit are
sufficient in most cases since time-steps near the stability limit already lead to solutions which
are dominated by spatial errors. This helps more fully explain results showing zero-order global
temporal convergence demonstrated by previous researchers [7]. Further guidelines were given,
helping the practitioner understand which algorithm parameters can be expected to affect the
various errors in the method.

Previous analysis has shown that the nodal integration and the implicit mass lumping in
MPM currently restrict the method to second-order in space [11]. To further reduce errors in
the method, more advanced error control techniques beyond simple grid refinement may be
required. Therefore, a detailed understanding of the balance of space and time errors in the
method is key in driving these types of improvements.

9. ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy through the Center for the
Simulation of Accidental Fires and Explosions (C-SAFE), under grant W-7405-ENG-48. In
addition, the authors would like to acknowledge helpful discussions with members of the Utah
MPM Group – in particular Drs. Jim Guilkey, Phil Wallstedt, and Rebecca Brannon.

REFERENCES

1. D. Sulsky, Z. Chen, and H. L. Schreyer. A particle method for history-dependent materials. Computer
Methods in Applied Mechanics and Engineering, 118:179–196, 1994.

2. D. Sulsky, S. Zhou, and H. L. Schreyer. Application of a particle-in-cell method to solid mechanics.
Computer Physics Communications, 87:236–252, 1995.

3. A. D. Brydon, S. G. Bardenhagen, E. A. Miller, and G. T. Seidler. Simulation of the densification of real
open-celled foam microstructures. Journal of the Mechanics and Physics of Solids, 53:2638–2660, 2005.

4. J. A. Nairn. Numerical simulations of transverse compression and densification in wood. Wood and Fiber
Science, 38(4):576–591, 2006.

5. D. Sulsky, H. Schreyer, K. Peterson, R. Kwok, and M. Coon. Using the material point method to model
sea ice dynamics. Journal of Geophysical Research, 112, 2007.

6. J. E. Guilkey, T. B. Harman, and B. Banerjee. An Eulerian-Lagrangian approach for simulating explosions
of energetic devices. Computers and Structures, 85(11-14):660–674, 2007.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1–1
Prepared using nmeauth.cls



DECOUPLING AND BALANCING OF SPACE AND TIME ERRORS IN MPM 37

7. P. C. Wallstedt and J. E. Guilkey. An evaluation of explicit time integration schemes for use with the
generalized interpolation material point method. Journal of Computational Physics, 227(22):9628–9642,
2008.

8. J. U. Brackbill and H. M. Ruppel. FLIP: a method for adaptively zoned, particle-in-cell calculations of
fluid flows in two dimensions. Journal of Computational Physics, 65:314–343, 1986.

9. J. U. Brackbill, D. B. Kothe, and H. M. Ruppel. FLIP: a low-dissipation, particle-in-cell method for fluid
flow. Computer Physics Communications, 48:25–38, 1988.

10. S. G. Bardenhagen and E. M. Kober. The generalized interpolation material point method. Computer
Modeling in Engineering and Science, 5(6):477–495, 2004.

11. M. Steffen, R. M. Kirby, and M. Berzins. Analysis and reduction of quadrature errors in the material
point method (MPM). International Journal for Numerical Methods in Engineering, 76(6):922–948, 2008.
DOI: 10.1002/nme.2360.

12. M. Steffen, P. C. Wallstedt, J. E. Guilkey, R. M. Kirby, and M. Berzins. Examination and analysis of
implementation choices within the material point method (MPM). Computer Modeling in Engineering &
Sciences, 32(2):107–127, 2008.

13. J. E. Guilkey, J. B. Hoying, and J. A. Weiss. Computational modeling of multicellular constructs with
the material point method. Journal of Biomechanics, 39(11):2074–2086, 2006.

14. Liangzhe Zhang. Dynamic description of texture evolution in polycrystalline nickel under mechanical
loading with elastic and plastic deformation via Monte Carlo and Material Point Method simulation.
PhD thesis, Colorado School of Mines, 2008.

15. E. Love and D. L. Sulsky. An energy-consistent material-point method for dynamic finite deformation
plasticity. International Journal for Numerical Methods in Engineering, 65(10):1608–1638, 2006.

16. E. Love and D. L. Sulsky. An unconditionally stable, energy-momentum consistent implementation of the
material-point method. Computer Methods in Applied Mechanics and Engineering, 195(33-36):3903–3925,
2006.

17. S. Bardenhagen. Energy conservation error in the material point method for solid mechanics. Journal of
Computational Physics, 180:383–403, 2002.

18. J. Lawson, M. Berzins, and P.M. Dew. Balancing space and time errors in the method of lines for parabolic
equations. Siam Journal on Scientific and Statistical Computing, 12(3):573–594, 1991.

19. T. J. R. Hughes. The finite element method: linear static and dynamic finite element analysis. Prentice-
Hall, 1987.

20. D. Sulsky and A. Kaul. Implicit dynamics in the material-point method. Computer Methods in Applied
Mechanics and Engineering, 193(12-14):1137–1170, 2004.

21. J. E. Guilkey and J. A. Weiss. Implicit time integration for the material point method: Quantitative and
algorithmic comparisons with the finite element method. International Journal for Numerical Methods
in Engineering, 57(9):1323–1338, 2003.

22. L. T. Tran, J. Kim, and M. Berzins. Solving Time-Dependent PDEs using the Material Point Method,
A Case Study from Gas Dynamics. International Journal for Numerical Methods in Fluids, 2009. DOI:
10.1002/nme.2360.

23. E. Hairer, S.P. Nrsett, and G. Wanner. Solving Ordinary Differential Equations I. Springer, 1993.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1–1
Prepared using nmeauth.cls


