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SUMMARY

In this paper we present a tetrahedron-based, h-re®nement-type algorithm for the solution of problems in 3D gas
dynamics using unstructured mesh adaptation. The mesh adaptation algorithm is coupled to a cell-centred,
Riemann problem-based, ®nite volume scheme of the MUSCL type, employing an approximate Riemann solver.
The adaptive scheme is then used to compute the diffraction of shock waves around a box section corner for
subsonic and supersonic post-shock ¯ow. In the subsonic case, preliminary measurements of vortex ®lament
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1. INTRODUCTION

The numerical investigation of phenomena associated with shock wave propagation through the use

of conservative shock-capturing, high-resolution, Riemann problem-based numerical methods for

hyperbolic conservation laws has generated great interest within the ¯uid dynamics community over

recent years.1 A number of high-quality two-dimensional numerical simulations of inviscid ¯ows

have been performed (e.g. References 2 and 3), which in some cases have even indicated the presence

of new regimes in the physics of shock behaviour.4 In order to be able to examine shock-dominated

processes at high spatial resolutions without incurring heavy computational penalties, even in two

dimensions, it is desirable to use some form of mesh adaptation. Adaptive codes make use of the local

¯ow ®eld solution itself to determine where the high spatial mesh resolution is required and then

employ some strategy to increase the grid resolution in those regions. This enables the high spatial

mesh resolution to be concentrated around the important ¯ow features (e.g. shocks, vortices and so

on) rather than being wasted on parts of the computational domain where the ¯ow activity is

relatively unimportant. One increasingly popular approach to mesh adaptation is so-called h-

re®nement, where additional mesh nodes and elements are inserted into the computational domain in

regions where the greater resolution is required and then removed from the mesh when the higher

mesh node density is judged to be redundant. Examples of this approach on structured and

unstructured meshes include References 5±7. It is important to extend this numerical work on shock

behaviour to three dimensions to provide additional insight into the complex ¯ow structures which

shock propagation produces and, where possible, to make comparisons with available experimental
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and theoretical results. For good shock resolution in three dimensions the use of mesh adaptation

methods is made almost mandatory by the prohibitive computational expense of specifying a

uniformly ®ne mesh throughout the ¯ow ®eld.

In this paper we present a new h-re®nement-type algorithm for 3D tetrahedron-based mesh

adaptation, which in part extends ideas contained in References 8 and 9. One direct desirable feature

of the approach is that the degradation in element quality due to the adaptation process remains

bounded. Details of the construction of the adaptation algorithm are given along with performance

®gures and an outline of some useful extensions. The algorithm is coupled to a higher-order extension

of the upwind Godunov scheme of the MUSCL type10 on tetrahedra for the unsteady 3D Euler

equations, employing an approximate Riemann solver of the HLLC type.11 The adaptive solver is

then used to make a preliminary investigation of 3D shock wave diffraction outwards from within a

region with cuboid cross-section through a 2p solid angle. Two shock Mach numbers are examined.

The ®rst, Mach 3, causes supersonic post-shock ¯ow, which results in the formation of a

recompression shock as observed in 2D calculations.3 The second, Mach 1�7, giving subsonic post-

shock ¯ow, shows the the formation of a clear ring vortex structure around the outer edge of the

entrance cavity. The behaviour of these compressible inviscid ring vortices is of signi®cant

theoretical interest12 and preliminary quantitative measurements are made of the vortical Mach

number and velocity.

The paper is organized as follows. In Section 2 we state the computational problem and give a

description of the numerical method employed. Section 3 gives the adaption algorithm, along with

some constructional and performance-related details. In Section 4 we present numerical solutions.

Finally we make some concluding remarks and indicate planned future work.

2. TIME-DEPENDENT GAS DYNAMICS

2.1. Equations

The gas dynamical shock diffraction problem that we wish to study here can in the ®rst instance be

adequately modelled by the inviscid 3D Euler equations. These fall into the general class of

hyperbolic conservation laws of the form

Ut � �F�U ��x � �G�U ��y � �H�U ��z � 0 �1�
for three space dimensions (x, y, z) and with time t. The variable U(x, y, z, t) is the vector of

conserved variables and the vector functions F(U), G(U) and H(U) are the analytic ¯uxes. On account

of the need to admit discontinuous solutions such as shock waves and contact surfaces, it should be

understood that we investigate weak solutions of the integral form of these equations,

@
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� � �
V

Udt�
� �
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�Fi� Gj� Hk� ? dS � 0; �2�

where V represents some ®xed control volume with volume element dt and surface @V with directed

area element dS and where i, j and k are the Cartesian unit base vectors. For the case of the 3D Euler

equations the conserved variables and ¯uxes may be written as
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where r is the density, u, v and w are the Cartesian x, y and z velocity components respectively and E

is the total energy. This is de®ned as

E � 1
2
r�u2 � v2 � w2� � er; �4�

where e is the speci®c internal energy assuming an ideal gas equation of state,

e � e�r; p� � p

�gÿ 1�r ; �5�

and which closes the system.

The initial conditions are set by specifying Rankine±Hugoniot shock data Ushock to the left of a box

section surface of discontinuity at t� 0 and an ambient stationary state U0 elsewhere in the domain.

The details of this are given in Section 4. Below we now describe the numerical scheme.

2.2. Numerical scheme

The numerical method we employ is a second-order-accurate, conservative cell-centred ®nite

volume extension of Godunov's Riemann problem-based scheme,13 using MUSCL-type piecewise

linear reconstructions of the primitive variables within each mesh element.10 The numerical solution

in some element i at time tn is denoted by U n
i and is understood to be an approximation to the exact

element-averaged volume integral of the solution, i.e.

Un
i �

1

Vi

� � �
Vi

U �x; y; z; tn�dt; �6�

where Vi is the volume of element i and is usually regarded as being valued at the element centroid

for cell-centred schemes. Application of the integral conservation law (2) shows that the numerical

solution at the next time level tn�1 may be written as

Un�1
i � Un

i ÿ
Dt

Vk

P3
k�0

AkFk ? nk; �7�

where the sum is over the k faces of element i. The nk are the outward face unit normal vectors and

the Ak are the face areas. The ¯uxes Fk represent the numerical ¯ux function for each element face,

termed the element face ¯uxes, and are determined by the scheme. For the numerical scheme to be

consistent, we require that the discretized solution in the presence of uniform ¯ow reduce to the value

of the analytic ¯ux F(U), which gives the following condition on the numerical ¯uxes:

Fk � Fk�Uj; . . . ;Ui; . . . ;Ul�;
where j and l are positive integers and

Fk�U ; . . . ;U � � F�U �:
In the case of the well-known Godunov scheme13 these element face numerical ¯uxes are

constructed from the solution of the local element Riemann problem (RP) at each element face. The

inter-element RP has local initial data

U �x; 0� � Ul if x < 0;
Ur if x > 0;

�
�8�

where Ul and Ur represent the left and right element data values on either side of a particular face,

where x is a local normal co-ordinate in the frame normal to the face, at time t� 0. We denote the
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solution to this RP by U*(Ul, Ur; x=t). The solution is self-similar in the x=t plane, being constant

along rays through the origin in the local co-ordinate system (Figure 1).

The rotational invariance of the Euler equations leads to the identity

Fk ? nk � Rÿ1H�RU �: �9�
Here R(y, f, c)� (C) ? (f) ? U(y) is the rotation matrix constructed from the Euler angles y, f and

c associated with the given element face normal vector, where

U�y� �

1 0 0 0 0

0 cos y sin y 0 0

0 ÿ sin y cos y 0 0

0 0 0 1 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA;

F�f� �

1 0 0 0 0

0 1 0 0 0

0 0 cosf sinf 0

0 0 ÿ sinf cosf 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA; �10�

C�c� �

1 0 0 0 0

0 cosc sinc 0 0

0 ÿ sinc cosc 0 0

0 0 0 1 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA
and H is the z-direction Euler ¯ux. In fact, the C-matrix is just a rotation about the face normal vector

and so effectively may be dispensed with. It is natural therefore to de®ne the numerical ¯ux, using the

solution of the local inter-element RP in the frame normal to the face, as

Fk ? nk � Rÿ1H�RU��Ul;Ur; 0��; �11�
where now the RP solution is taken along the ray x=t� 0 (see Figure 1). If piecewise constant

element-averaged data are used for the left and right data states Ul and Ur, then this numerical ¯ux

gives the ®rst-order upwind Godunov scheme. To extend the scheme to second-order accuracy, one

approach is to make use of piecewise linear data reconstructions within each element. Schemes of this

type are generically known as MUSCL schemes,10 where now the left and right data states Ul and Ur

Figure 1. Local Riemann problem solution
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represent face-interpolated variable values. The scheme is constructed in three stages. First a central

difference gradient plane is ®tted through the four surrounding tetrahedral neighbour elements for

each primitive ®eld variable (see Figure 2). That is, we ®nd the plane for each primitive variable such

that

U �r�; where U �ri� � Ui: �12�
This gradient plane is then limited to be the maximum possible which does not produce

undershoots or overshoots in the primitive ®eld values when interpolated to the inter-element face

centroid positions. Here we use the simplest possible strategy for doing this, extending to 3D the

scalar central difference limiter described in Reference 14. The limiting amounts to ®nding a scalar a
such that

MinfUig4Uc � adRk ? HU 4maxfUig; �13�
where 04 k4 3 and dRk is the displacement vector from the element centroid to the element

vertices. This displacement vector is used so as to be sure to obtain the most extreme value of each

®eld reconstruction along each element face.

The limited gradient plane, denoted HaU, is then used to compute the face centroid-interpolated

values of each primitive ®eld within each element, which we denote by UÄ ik. That is,

~Un
ik � U n

i � drk ? HaU ; �14�
where now drk is the displacement vector from the element centroid to the centroid of face k. Having

obtained these face-interpolated values within each element, the second step in the scheme's

construction is to perform a non-conservative predictor-type updateÐthe `Hancock step'10Ðon the

data values within each element up to the half-time step level. That is, for each element i we now

compute

U
n�1=2
i � U n

i ÿ
Dt=2

Vk

P3
k�0

Ak
~Fk ?nk; �15�

where the sum is again over the k faces of element i. The FÄ k represent here the analytic ¯ux

Fi�Gj�Hk evaluated on the element i face k-interpolated ®eld values ~Un
ik . We note that this partial

update is non-conservative, because the face-interpolated values used are local to each element and

will in general change across each face.

The ®nal stage in the construction of the numerical ¯ux function is to use the partially updated

element ®eld values U
n�1=2
i to re-evaluate the face-interpolated values using the same limited

solution gradient HaU. That is, we now compute new face-interpolated values

~Un�1=2
ik � U

n�1=2
i � drk ? HaU : �16�

Figure 2. MUSCL scheme piecewise linear data reconstruction
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These new face interpolants are then used as initial data to inter-element RPs across each face in the

mesh. That is, for any two adjacent elements i and j which share a face k, we set Ul � ~U n�1=2
ik and

Ur � ~U n�1=2
jk , then compute the numerical ¯ux for face k using (11). The solution update for each

element is then computed using (7) as described above.

Implicit in this numerical method is the need to solve the RP for the Euler equations at each

element interface at each time step. Rather than solve these inter-element RPs exactly, which is

computationally expensive, a computationally inexpensive approximate Riemann solver is employed.

We use the HLLC approximate solver, which is an improved version of the HLL solver of Harten et

al.15 and is obtained by incorporating the contact surface and shear waves into the wave pattern.11

The solver works by resolving Rankine±Hugoniot shock relations across each wave in the RP

solution, on the assumption that the wave speeds are known. This then gives simple expressions for

the interwave states as functions of the wave speeds.11 The satisfactory performance of the solver

depends on obtaining good estimates of the wave speeds. Here we use estimates obtained from a

primitive variable linearization of the equations.16 The HLLC solver has been extensively tested and

shown to be robust, accurate and computationally inexpensive.11,17

2.3. Choice of a stable time step

The time step is chosen by using a CFL-like condition based on an estimate of the maximum wave

speed and element geometry.

While it is desirable to use the wave information from the solution of the local inter-cell RP as a

means to establish a reliable stable time step size, in practice this would involve solution or

approximate solution of the inter-element RPs prior to the predictor step, which would be

computationally expensive. In fact, it is found that a far simpler strategy is suf®cient. This is to use

the solution data directly to obtain an estimate of the speed of the fastest local inter-cell wave. We do

this by de®ning the time step to be

Dt � CCFL �Min
li

Vi�Ui�
� �

; �17�

where li is the minimum edge length of element i and Vij(Ui) is the data-dependent estimate of the

wave speeds for the faces surrounding element i. The constant CCFL is the CFL coef®cient. An

effective choice for Vi is found to be

Vi � ai � �p u2
i � v2

i �;
where ai is the sound speed in element i and ui and vi are the x and y velocities respectively. This

wave speed estimate has some justi®cation in terms of the maximum speed of the characteristics in

the pseudo-one-dimensional RPs. As in general shock waves will be present, we choose a

conservative value for the CFL coef®cient of 0�75 to give a margin for error with the estimation of the

wave speeds. While it is recognized that this procedure for de®ning the time step is problem-

dependent, it has the advantage of being easy to implement and, for the types of problems we are

considering in this paper which involve only relatively weak shocks, suf®ciently robust to produce

good solutions.

2.4. Boundary conditions

For the unsteady shock propagation problems we employ two basic boundary conditions: a

re¯ective condition and a transmissive condition. The boundary conditions are applied by specifying

a layer of ghost cells surrounding the computational mesh. This amounts to attaching to each

boundary face a set of ¯ow variables, which may then be primed with the relevant data states and
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used to construct a numerical boundary ¯ux. For the case of a transmissive condition the data in the

face storage are set equal to the data in the mesh element adjacent to the face. This results in a zero-

wave-strength RP along the boundary.

For the re¯ective boundary condition the density and pressure variables of the ghost cells are

identi®ed as in the transmissive case, but the momentum vectors in the face storage are set equal to

the re¯ection of the momentum vectors in the adjacent mesh element, where the re¯ection is carried

out in the plane of the boundary. That is,

Ughost � Rÿ1�y;f�MR�y;f�Uwall;

where M is the 56 5 matrix with leading diagonal (1, 1, 1,ÿ1, 1) and all other entries zero.

This results in a boundary RP whose contact and shear waves are stationary and lie along the

boundary surface. Since for the construction of the central interpolant it is necessary to also include

some geometrical information, the face boundary data are taken as being valued at the re¯ection in

the plane of the boundary of the centroid of the element adjacent to the wall.

3. MESH ADAPTATION ALGORITHM

3.1. General description

The mesh re®nement algorithm for tetrahedral adaptivity (TETRAD) extends previous work on

unstructured 2D triangular meshes.18 The approach we take is hierarchical in nature6,8,9,18 and is

applicable to meshes constructed from tetrahedron-shaped elements. The basic mesh geometrical

objects of nodes, edges, faces and elements, which together form the computational domain, naturally

map onto the data objects within the adaptation algorithm data structure. These data objects contain

all ¯ow and connectivity information suf®cient to adapt the mesh structure and ¯ow solution, either

by a local mesh re®nement or by a local mesh dere®nement process. The mesh adaptation strategy

assumes that there exists a `good quality' initial unstructured tetrahedral meshing of the

computational domain, which is taken to be the invariant base mesh of the region. The re®nement

process then adds nodes to this base level mesh by edge, face and element subdivision, with each

change in the computational mesh being tracked within the code data structure by the construction of

a data hierarchy. The dere®nement process is the inverse process to re®nement, where nodes, faces,

edges and elements are removed from the mesh by working back up through the local mesh

re®nement hierarchy, recovering with each coarsening of the mesh the previous local mesh structure

prior to its re®nement, until the base mesh level is again encountered. In this approach no further

coarsening of the mesh is possible past the base mesh level.

The process of mesh adaptation described is invoked automatically in response to some

dynamically evolving ¯ow solution criteria, with the regions of mesh re®nement corresponding to

regions of signi®cant ¯ow activity where it is desirable to have increased spatial resolution. How

these criteria are chosen has important consequences for the overall operation of the adaptive solver

and will be discussed below. The complete adaptive solver may be thought of as consisting of three

parts, namely (i) the mesh data structure, (ii) the adaptation algorithm and (iii) the ¯ow integration

algorithm, where diagrammatically these objects are organized as

adaptation ! data structure  integration :

Thus the adaptation and integration operations can be thought of as two distinct processes that are

applied to the central data structure. The former alters the local connectivity in response to local ¯ow

solution features and the latter advances the ¯ow ®eld solution parameters in time, with the

application of adaptation and integration operations being interleaved together in a suitable way by a
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driver module. Below we now give a full account of how the data structure and adaption operation

algorithm are constructed.

3.2. Mesh data structure

The choice of what data structure to use for the adaptive algorithm is a dif®cult one, it being to

some extent in¯uenced by considerations other than those connected purely with the construction of

the adaption algorithm. Examples of these might be machine resource constraints, the type of

integration schemes likely to be employed and the ease of parallelization of the algorithm. The

overhead associated with 3D computation makes it unattractive to support more than a single mesh

connectivity framework, but this clearly must be suf®cient to make the re®nement and dere®nement

operations straightforward to implement. Following other h-re®nement algorithms,6,8,9 we de®ne a

set of data objects or types. These may be implemented in, say, `C' directly in the form of structures

and pointers, though clearly an analogous approach can be taken within the framework of a language

such as Fortran77 as well. We use the following (see Figure 3).

1. An element object. For tetrahedral elements these objects consist of four node objects

corresponding to the vertices of the tetrahedron and six edge objects corresponding to the sides

of the tetrahedron. The element object also contains parent and child pointers (see below).

2. A face object. All the faces of a tetrahedral element are de®ned by three node objects, each one

corresponding to a vertex of the face. The face object also contains a link (pointer) to a single

element object, as only boundary faces are stored.

Figure 3. Mesh objects and data structure
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3. An edge object. This is de®ned by two node objects and corresponds to an edge in the mesh,

with edge parent and child pointers to support re®nement (see below).

4. This corresponds to a vertex in the computational mesh and contains the co-ordinates of the

vertex along with a link list of all the element objects corresponding to tetrahedral elements

surrounding the vertex in the mesh.

The link list of all elements which contain a given node is termed the node's family and is stored in

the form of a list of element pointers in each node object. This represents the fundamental

connectivity supported by the data structure, from which all other mesh connectivities may be

deduced. For example, all the elements which share a given edge may be determined by ®nding the

common elements in the two families of elements surrounding the nodes which de®ne the edge.

Direct support of the node±element connectivity is a natural choice for use with cell vertex-based

integration schemes, though other choices are possible; for example, see Reference 8, where the

edge±element connectivity is explicitly supported.

The connectivity outlined above is suf®cient to completely specify a given mesh, but it does not

contain the connectivity required to construct the adaption hierarchy. For this some additional

information is required, which in the case of elements and edges consists of storing parent and child

addresses. The bisection of a parent edge by the addition of a node to the mesh results in the creation

of two child edges. The situation is similar in the case of the elements, but there are now a number of

possible child elements depending on how the element is dissected by the re®nement process. This

number must also be stored. The tree structure so de®ned is suf®cient to completely specify the

element re®nement history for the purposes of adaption. Unfortunately, in 3D the same is not true of

the edges. The action of element dissection in general will create new edges not derived by the

subdivision of a previously existing parent but coming from the dissection of the element faces. We

therefore use a set of link lists for the edge data structure, one for each level of re®nement in the

mesh. In this way, as extra edges are created at a given level, they may easily be incorporated into the

data structure so as to completely specify the edge adaption hierarchy. Finally, the nodes and faces

are also organized as link lists. For the nodes this is the natural choice of data structure. For the faces

we use a link list rather than the more natural tree structure, as they are only required on the boundary

of the mesh as a means of implementing the integration scheme. This is also the reason for the single

element pointer within each face giving the address of the element with a face adjacent to the

boundary of the domain. To extend the data structure to include numerical parameters such as the

¯ow variables, we use a device from Reference 7, in which each fundamental data object, node, edge,

etc., in addition to the connectivity described above, also contains a void pointer. This is storage for

the address of a data object of unspeci®ed type and may be used as a `catch-all' for any additional

data parameters required by the code. Thus, for a cell-centred scheme where the ¯ow variables are

associated with the mesh elements, the relevant parameters may be collected together and attached to

the element void pointer. For a cell vertex scheme the natural point of attachment would be the node.

Below we now describe the mesh adaptation algorithm.

3.3. Mesh adaption algorithm

The mesh adaption is driven by re®ning and dere®ning element edges.8 Thus, if an edge is re®ned

by the addition of a node along its length, then all the elements which share the (parent) edge under

re®nement must be re®ned. In the case of dere®nement all the elements which share the node being

removed must be dere®ned. Numerical criteria derived from the ¯ow ®eld will mark an edge to either

re®ne, dere®ne or remain unchanged. It is necessary to make sure that the edges targeted for

re®nement or dere®nement pass various conditions prior to their adaption.8 These conditions

effectively decouple the regions of mesh re®nement from those of dere®nement, meaning that, for
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example, an element is not both dere®ned and then re®ned in the same adaption step. We return to

this below.

For reasons of both tetrahedral quality control and algorithmic simplicity, only two types of

element subdivision are allowed. This approach makes the adaption algorithm in some ways

reminiscent of its structured counterparts (e.g. Reference 5). The ®rst type of subdivision, which we

call regular subdivision, is the popular subdivision by eight, with a new node bisecting each edge of

the parent element. This amounts to removing the corners of the parent tetrahedron and then

dissecting the central octahedron by four across a chosen interior diagonal. The choice of which

interior diagonal to dissect is important, with generally the longest one being chosen,6 although other

approaches are possible19 (see Figure 4(a)). The second type of dissection, green subdivision,20

introduces an extra node into the parent tetrahedron, which is subsequently connected to all the parent

vertices and any additional nodes which bisect the parent edges.9 This provides an easy way of

dealing with any pattern of parent edge re®nement and gives a means of removing inconsistently

connected or `hanging' nodes without the introduction of additional edge re®nement (see Figure

4(b)). The ®ve re®nement possibilities (if all the edges are re®ned, then the parent element is

regularly re®ned) give rise to between six and 14 interior child green elements. These elements may

be of poorer quality in terms of aspect ratio and dimensional measures than their regular counterparts,

which leads us to impose the restriction that a green element may not be further re®ned. That is, if a

green element has an edge targeted for re®nement, then the green re®nement of the parent element is

replaced by a set of regularly re®ned child elements. Consequently, green elements always signal a

change between mesh levels (except in the trivial case of a `hole' in a re®ned level) and so act as an

interface between changes in grid resolution. This ensures that the elements of poorer quality should

never occur in regions of strong ¯ow activity through the use of appropriate numerical adaption

¯agging criteria. The regular tetrahedral re®nement analysis of Ong,19 who shows that the

degradation in mesh quality due to the re®nement process remains bounded, is applicable to the

algorithm. This is supported by numerical experiments in Section 3.4.

Figure 4. Mesh element re®nement types
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The sequence of events involved in a complete adaption and integration of the mesh is shown in

Figure 5. At ®rst, mesh elements are ¯agged for adaption. This results in each mesh edge being

targeted either for re®nement, dere®nement or no action. A set of lists of (pointers to) data objects

which need to be adapted is then created. These lists are then passed to the appropriate function,

processed and then passed to the next function. The motivation behind this approach is to make each

step in the adaption sequence as transparent as possible.

To construct the list of edges and elements to be re®ned, each element adjacent to an edge targeted

for re®nement must be examined. If the element is green, then its parent element is placed on the list

of elements whose child elements are to be dere®ned (since we exclude green re®nement and

therefore must replace the green elements by regular ones). This also involves placing any parent

edges not already ¯agged for re®nement on the edge re®nement list, since for regular re®nement all

parent edges are re®ned. Furthermore, a search must be made for any green elements one level or

more coarser in the mesh that lie adjacent to the green elements being replaced. To see the reason for

this, consider Figure 6. The re®nement of edge `a' implies that the green tetrahedron T1 must be

processed. Since further re®nement is ruled out, T1 and its sibling tetrahedra must be replaced by a

regular set. This in turn requires the re®nement of edge `b', with the same argument now applying to

tetrahedron T2 and so on. It is straightforward to code this process as a local recursive search, which is

limited in extent by the local mesh re®nement depth and not a cause of signi®cant computational

overhead.

Completion of this stage gives us the full set of edges and elements to be re®ned, along with the

part of the element dere®nement list associated with the green tetrahedra adjacent to re®ning edges.

To obtain the rest of the edges to be dere®ned, some care is required. In order to construct the edge

Figure 5. Mesh adaption sequence

Figure 6. Re®nement of adjacent green elements
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and element dere®nement list, a number of tests must be performed which effectively decouple the

regions of re®nement from those of dere®nement, by restricting the number of edges targeted for

dere®nement. As in Biswas and Strawn's approach,8 we impose the following restrictions on node

removal.

1. Both child edges of the parent edge dissected by the node must be ¯agged to dere®ne.

2. No child element of the family of parent elements which connect to the node may itself be

re®ned.

3. No edge in the connecting child element group may be ¯agged for re®nement.

4. A node may not be removed if it is the vertex of any of the family of connecting parent

elements.

The ®rst three constraints bias the adaption algorithm towards re®nement rather than dere®nement,

which is sensible on the grounds of solution accuracy. The fourth constraint takes care of the (unusual

but possible) event of a node being completely surrounded by green re®ned parent elements and

satisfying the ®rst three dere®nement constraints.

Following the above tests, the complete set of edges and elements to be dere®ned is available for

processing. Faces on the domain boundary requiring dere®nement are determined at the outset from

the element dere®nement list, while those requiring re®nement are determined after the adaption of

the mesh elements, edges and nodes is complete.

The dif®culty of coding of the algorithm is greatly reduced by the use of a numbering convention

for the nodes within each element, the edges within a re®ned parent element and so on. Fixed

matrices may then be used as look-up tables to provide all the local connectivity information required

for the reconstruction of the data structure during adaption. Below we now give some performance

results for the algorithm.

3.4. Algorithm scaling behaviour

An important characteristic of any adaptive algorithm is its scaling behaviour in response to

increases in the number of elements being processed (either re®ned or dere®ned). The ideal scaling

behaviour would be a direct linear relationship between the number of elements being processed and

the CPU time required. Below we give the results of two scaling tests performed on the algorithm.

Test 1: repeated re®nement of one tetrahedral element. This is a basic test of the scaling behaviour

of the re®nement algorithm. A single tetrahedron is repeatedly re®ned in a regular manner, which

results in from 80 to 87 tetrahedra being generated in 201�2 CPU seconds on a SGI 150 MHz R4400

processor. This gives a generation rate of approximately 10,500 tetrahedra each CPU second. Looked

at graphically (Figure 7), plotting log8 of the CPU time against log8 of the number of tetrahedra, Ntet,

shows that these timings scale as 81�04. Deviation from linear behaviour is shown in Figure 7 with

`test 1' representing the timing data versus the linear baseline `linear 1'. The test demonstrates that

the fundamental re®nement process has close to O(N) scaling behaviour and is not signi®cantly

affected by the mesh depth at which the re®nement takes place. A more realistic scaling test of this is

provided below.

Test 2: discontinuity re®nement=dere®nement test. This second test is more complex but also more

typical of a realistic shock-dominated problem. Here a sheet linear discontinuity is propagated

normally on a 3D test mesh and used to drive the adaption algorithm. This results in a cuboid region

of mesh re®nement which remains centred around the discontinuity at constant mesh depth, with the

mesh dere®ning completely after the discontinuity has passed. This gives a complete test of the

re®nement and dere®nement algorithm along with a realistic assessment of the algorithm's scaling
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behaviour. Again log8�Ntet� versus log8�time� is plotted, with maximum mesh depths of between one

and four being employed around the discontinuity. The results are shown in Figure 7, with timings

scaling as 81�14 for the unoptimized algorithm (`test 2' data as against the linear behaviour `linear 2'

in Figure 7). For a four-level 50,000-element mesh each complete re®nement=dere®nement cycle,

involving the complete dere®nement and then reconstruction of the mesh around the discontinuity,

takes 11 CPU seconds. This compares consistently with the re®nement timing results. The algorithm

scaling has drifted slightly away from the optimal linear behaviour, but given that no attempt has

been made yet to optimize the code, these results are quite encouraging.

3.5. Mesh quality behaviour

The issue of mesh quality degradation under the action of an adaptive algorithm is an important

one and has been the subject of much recent work (e.g. References 19 and 21). A useful measure of

mesh quality is the parameter a de®ned by22

a � �average element edge length�3
element volume

:

For a tetrahedron made up of edges of equal length, this quality measure gives a value of 8�48. For

the tetrahedra which result from a ®ve-way dissection of a cube with equal sides, we obtain a

maximum of a� 10�55. Using a mesh constructed from this type of dissection, numerical

experiments in the linear advection of a cuboid discontinuity verify that with one level of re®nement

the quality of the worst regular re®ned element has a� 14�08 and that of the worst green re®ned

element has a� 53�4. Subsequent re®nements cause no further degradation in the element quality as

judged by this measure. Although the quality of the worst-case green tetrahedron is approximately 3�7
times worse than that of its poorest regular counterpart, such tetrahedra occur only at the interfaces

between different levels in the mesh and so should not be a cause of signi®cant solution degradation.

3.6. Adaption control mechanism

The Euler ¯ow solver is combined with the adaptive algorithm by ¯agging regions of the mesh

with (low) high density gradients for (de)re®nement, with the calculation of local ¯ow gradients

Figure 7. Algorithm scalability behaviour
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being performed across element faces. Where the face normal density gradient falls below or exceeds

a chosen tolerance, the edges on the face are ¯agged to (de)re®ne. In addition, a `safety layer' of

re®nement ¯agging is employed to ensure the full capture of solution discontinuities, which is the

principal concern for this application. Likewise, a maximum mesh re®nement depth is also speci®ed.

It would also be possible to use a local solution error indicator as a means of controlling the mesh

adaptation (e.g. Reference 18). Coupling the adaption algorithm to the solution integrator is managed

in a similarly straightforward manner. The CFL stability constraint on the integration time step (see

below) ensures that shock waves cannot cross more than a ®xed percentage (with the upper bound

given by the CFL number) of a given computational cell in any one integration step. This, combined

with the use of the ¯agging safety layer, means that a number of integrations may be performed

before the shock is in danger of escaping the re®ned mesh region and adaption must occur. An

estimate is provided by the minimum depth of re®ned cells ahead of the discontinuity (never less than

two with the safety layer) divided by the CFL number (which we set at 0�75). Shock propagation

experiments have indicated that in practice this estimate is quite conservative and that more steps

may be taken in between mesh adaptions without signi®cant degradation of the shock pro®le.

Whenever mesh (de)re®nement occurs, there is an issue of solution (de)construction within the new

local mesh structure. Currently we use a simple piecewise constant averaging approach which ensures

conservation, although a conservative limited piecewise linear approach similar to the structured case

could be used (e.g. Reference 17).

3.7. Extension to include directional re®nement

Before continuing, it is worth mentioning brie¯y two extensions to the adaption algorithm which

may be made without great dif®culty. The ®rst is the incorporation of some form of directional

re®nement. Directional re®nement is important to resolve well certain ¯ow features such as boundary

layers in viscous problems.23 The morphology of the mesh adaptation scheme we have outlined

above can be easily extended to include a directional re®nement capability, simply by de®ning a

second type of regular re®nement based upon a directional dissection of the parent tetrahedra (see

Figure 8).

Repeated application of this re®nement pattern would result in the required aspect ratio increases

in these special ¯ow regions and would ®t consistently with the green element removal of hanging

nodes.

3.8. Support for hierarchical time re®nement

The second extension to the adaption scheme we wish to outline is the support for the use of

hierarchical integration methods. Here explicit use would be made of the mesh hierarchy as a means

of obtaining computational gains within the ¯ow integration. The essential observation is that the

green elements signal a change between levels of re®nement in the mesh and therefore may be used

in a more general role as interface elements. This would make straightforward the application of, for

example, hierarchical time re®nement for explicit cell-centred schemes, similar to that carried out for

Figure 8. Regular directional re®nement of elements
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structures meshes,5,7 except based around cellular rather than patch re®nement. Speci®cally, the

green elements could be used in the role of dummy cells,17 not explicitly solved for by the integration

method, but primed with ¯ow data from an underlying coarse mesh solution via interpolation and

acting as a boundary cell for the adjoining ®ne mesh level. This would make possible time-accurate

advancement of the solution on a mesh-level basis, with each mesh leaf element being integrated with

a locally determined time step size a number of times suf®cient to keep it in step with its

neighbouring elements. For structured hierarchical meshes this approach results in signi®cant

computational savings, but for the unstructured case the potential gains are less clear. Recently Batten

et al.24 reported computational gains approaching a factor of two using a two- dimensional bisection-

based adaptation algorithm and hierarchical time re®nement. While the approach outlined above has

not yet been implemented, it is expected that making use of the green tetrahedral elements in this way

will make the construction of the time re®nement algorithm quite straightforward and without

signi®cantly higher overheads than the purely spatially adaptive code.

4. NUMERICAL RESULTS

The numerical simulations studied consist of shock wave diffraction around the 3D right-angled

corner formed between two cuboid mesh regions, in the 3D analogue of the 2D case studied in

Reference 3. The initial mesh is generated by hexagonal cell subdivision into 5184 tetrahedral

elements, with the ®rst cuboid domain having dimensions 0�26 0�26 0�15. Rankine±Hugoniot

shock data initializes the computation, with the ®rst cuboid domain being set to the post-shock data

state and the discontinuity lying on the x� 0�2 plane, at the interface between the two cuboid regions.

The surface of the initial adapted mesh is shown in Figure 9, with the re®ned mesh region

Figure 9. Initial adapted mesh
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concentrated over the position of the initial shock plane. A CFL number of 0�75 was used throughout

these calculations. The ambient state ahead of the shock has density 1�3 kg mÿ3 and pressure

100,000 Pa, giving an adiabatic sound speed of 328�16 m sÿ1. We show here results from

computations with initial shock speeds of Mach 3 and 1�7, producing post-shock ¯ows which are

supersonic and subsonic respectively.

Taking the Mach 3 case ®rst, Figure 10 show the surface of the computational mesh for the Mach 3

calculation at output time, with `o' marking the origin. This mesh is typical of these calculations, with

the regions of mesh re®nement clearly marking the position of the active ¯ow ®eld. Here we have

speci®ed a maximum of three re®ned levels. The shock has diffracted outwards through the square

box section, with re¯ective boundary conditions in the y� 0 and z� 0 planes effectively dividing the

computational problem by four. In Figures 11 and 12 we show 35 contours of density through the

Mach 3 solution along the cutplane z� 0�2 (the plane `bb' in Figure 10) at two different times. In

Figure 11 we show the solution at a time of 0�235 ms using two levels of re®nement in the mesh. In

Figure 12 the output time is 0�143 ms, with this time three levels of mesh re®nement being used.

These results indicate that to measurable accuracy at these mesh resolutions at least, the two solutions

appear to be self-similar. Some structure in the solution is clear, e.g. the recompression shock surface

expected from the 2D calculations,3 with the z� 0�2 plane cutting along and across the shock surface,

which forms a band around the x� 0�2 square section entrance. A region of low-density and pressure-

separated ¯ow exists `behind' the corner, with Figures 13 and 14 showing contour plots through the

pressure ®eld in the planes z� 0�2 and z� 0�1 respectively. In the case of the two-level calculation

the initial mesh consisted of 26,929 elements and the ®nal mesh 98,684 elements. For the three-level

calculation the initial mesh contained 91,322 elements and the ®nal mesh 267,323 elements at output

Figure 10. Mach 3 solution adapted mesh
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Figure 11. Mach 3 density contours in z� 0�2 plane with two levels of re®nement

Figure 12. Mach 3 density contours in z� 0�2 plane with three levels of re®nement
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Figure 13. Mach 3 pressure contours in z� 0�2 plane with three levels of re®nement

Figure 14. Mach 3 pressure contours in z� 0�1 plane with three levels of re®nement
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time. The rate of increase in numbers of elements in the adapted mesh was approximately linear

throughout the calculation. These ®gures should be compared with those of the equivalent `®xed

mesh' (i.e. everywhere ®ne) of 331,776 elements for the two-level case and 2,654,208 for the three-

level case. For the three-level calculation the adaptivity is resulting in a computational speed-up of

about a factor of 12�5. Code pro®ling shows that the overheads associated with the mesh adaptation

algorithms are of the order of 15 per cent, with the majority of this currently coming from the edge

¯agging process, though it is believed that this can be improved upon. Memory management

overheads are of the order of 1 per cent.

Looking now at the Mach 1�7 case, Figures 15 and 16 show cutplanes through the density ®eld at

z� 0�2 and z� 0�1 respectively, on a mesh with three levels of mesh adaption, taken at a time of

0�248 ms. Figures 17 and 18 show the corresponding pressure ®elds. All the plots are with 35 levels

of contouring. The subsonic post-shock ¯ow causes a strong vortex ®lament to form in the region

behind the box section entrance. This can be seen more clearly by the arrow velocity plots for these

cutplanes (Figures 19 and 20), obtained from a two-mesh-level calculation at a later time of

0�528 ms. The z� 0�2 cutplanes show the lengthways cutting of the ®lament tube, terminating in the

oval crossways intersection of the tube with the cutplane in the region of the corner point (0�2, 0�2,

0�2) (see Figure 15 for density and Figure 17 for pressure). This is where the vortex ®lament rounds

the corner of the box section in¯ow, effectively turning into the plane of the plot. Measurements of

the centre of the vortex section taken from the arrow plots in Figure 19 and 20 give the (x, y) co-

ordinates of the ®lament as (0�239, 0�247) in the z� 0�2 cutplane and (0�224, 0�249) in the z� 0�1
cutplane at t� 0�528 ms. On the plane of symmetry at z� 0 the vortex centre is placed at (0�225,

0�245). The error in these measurements is dif®cult to determine, but we estimate it as being of the

order of � 0�005 m. These measurements suggest that the ®lament is advancing faster in the corner

than in the region approaching the symmetry plane. The authors believe that recent experimental

Figure 15. Mach 1�7 density contours in z� 0�2 plane
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Figure 16. Mach 1�7 density contours in z� 0�1 plane

Figure 17. Mach 1�7 pressure contours in z� 0�2 plane
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Figure 18. Mach 1�7 pressure contours in z� 0�1 plane

Figure 19. Mach 1�7 velocity vectors in z� 0�2 plane
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results by Takayama's group in Japan have con®rmed that the vortex does deform out of the plane of

the ring at later times.25 Careful examination of Figures 15 and 17 shows what appears to be some

additional structure in the ®lament density and pressure sections in the z� 0�2 plane just adjacent to

and below the in¯ow corner, at the point where the ®lament curves strongly into the plane. One tentative

explanation for this would be a slight kinking in the ®lament tube in the region of the corner prior to the

main tube curvature, which causes a relatively sudden increase in the cross-section of the ®lament

intersected by the z� 0�2 cutplane. Detailed resolution of the structure within the corner would be an

objectiveoffurtherstudy.Measurementof thewall shockpositioninthez� 0symmetryplanegivesawall

shock Mach number of 1�15, close to results obtained in two-dimensional calculations.3 An estimation of

the speed of propagation of the ring vortex may be made by comparing the positions of the centre of

rotation on the arrow plots at two different times in a given cutplane. Along the z� 0 symmetry plane the

rotation centre has moved 0�012 m in 0�28 ms, giving an outward ring velocity of about 43 m sÿ1 in the

region of the symmetry plane (this is just under half of a previous estimate based on the position of the

vortex centre taken at a single time26). A more ambitious measurement is to try to estimate the vortical

circulation G and vortical Mach number MG�G=2pa1 of the ring. The principal dif®culty here is

obtaining a reliable measurement of the ®lament radius. Once this has been determined, then a second-

order-accurate interpolant of H6V may be constructed (this is actually available as part of the

integration algorithm) and the circulation G may be found. As a preliminary attempt for the Mach 1�7
vortex, taking a1 to be the post-shock sound speed and assuming a ®lament radius of between 0�01 and

0�02 m, we obtain MG; in the ®lament to be approximately 0�75. Moore's relation12 between ring

velocity and vortical Mach number,

U � G
4pR

ln
8R

a
ÿ 1

4
ÿ 5

12
M 2

G � O��MG�4�
� �

;

Figure 20. Mach 1�7 velocity vectors in z� 0�1 plane
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based on an idealized ring vortex structure, predicts a ring velocity of approximately 20±45 m sÿ1 for

this MG and ®lament radius, where we assume a ring radius of 0�2 m. Given the preliminary nature of

these measurements as well as the box section geometry, at this stage one can only really conclude

that these computational and theoretical results appear to be broadly consistent and indicate a

direction for future studies.

The computations were carried out on an SGI eight-processor Power Challenge machine with

256 MB physical memory, with the three-mesh-level calculations taking approximately 900 CPU

minutes on a single R4400 processor.

5. CONCLUSIONS AND FURTHER WORK

The results above demonstrate the operation of the mesh adaptation algorithm and solver on a

complex time-dependent problem. While they are not yet of suf®cient resolution to enable very

accurate quantitative measurements to be made on the data, some analysis has been attempted which

points the way towards a more detailed numerical study of shock diffraction phenomena. The role of

mesh adaptation in the resolution of the small-scale structure in the ¯ow is crucial and the

computational speed-up and reduction in overheads associated with the use of these algorithms have

been shown to be substantial. In the future it is planned to incorporate the directional re®nement

capability described above into the code and also to develop robust error estimators to control the

mesh adaptation. In addition, a parallel version of the present adaption algorithm is currently under

development.27

ACKNOWLEDGEMENTS

This work was sponsored by the Pervasive Technology Department at Shell Research Ltd., Thornton

Research Centre, U.K. In addition, the ®rst author would like to thank Professor Sam Falle, Dr. Justin

Ware and Dr. Paul Batten for some useful discussions and Dr. Paul Selwood for performing the mesh

quality experiments.

REFERENCES

1. P. L. Roe, `Characteristic based schemes for the Euler equations', Ann. Rev. Fluid Mech., 18, 337±365 (1986).
2. H. M. Glaz, P. Colella, I. I. Glass and R. L. Deschambault, `A detailed numerical, graphical and experimental study of

oblique shock wave re¯ections', UTIAS Rep. 285, University of Toronto, 1986.
3. R. Hillier, `Computation of shock wave diffraction at a ninety degree convex edge', Shock Waves, 1, 89±98 (1991).
4. P. Colella and L. F. Henderson, `The Von Neumann paradox for the diffraction of weak shock waves', J. Fluid Mech., 71,

213 (1990).
5. M. J. Berger and P. Colella, `Local adaptive mesh re®nement for shock hydro-dynamics', J. Comput. Phys., 82, 64±84

(1989).
6. R. Lohner and J. D. Baum, `Adaptive h-re®nement on 3D unstructured grids for transient problems', Int. j. numer. methods

¯uids, 14, 1407±1419 (1992).
7. J. Ware, `The adaptive solutions of time-dependent partial differential equations in two-dimensions', Ph.D. Thesis,

University of Leeds, 1993.
8. R. Biswas and R. C. Strawn, `A new procedure for dynamic adaption of 3-D unstructured grids', Appl. Numer. Math., 13,

437±452 (1994).
9. Y. Kallinderis, V. Parthasarathy and J. Wu, `A new Euler scheme and adaptive re®nement=coarsening algorithm for

tetrahedral grids', AIAA Paper 92-0446, 1992.
10. B. van Leer, `On the relationship between upwind difference schemes', SIAM J. Sci. Stat. Comput., 5, (1984).
11. E. F. Toro, M. Spruce and W. Speares, `The restoration of the contact surface in the HLL-Riemann solver', Shock Waves,

4, 25±34 (1994).
12. D. W. Moore, `The effects of compressibility on the speed of propagation of a vortex ring', Proc. R. Soc. Lond. A, 397, 87±

97 (1987).

3D UNSTRUCTURED MESH ADAPTATION ALGORITHM 103

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 81±104 (1997)



13. S. K. Godunov, `A ®nite difference method for the numerical computation of discontinuous solutions of the equations of
¯uid dynamics', Mat. Sb., 47, 357±393 (1959).

14. P. Batten and D. M. Causon, `Positively conservative high resolution convection schemes for unstructured elements', Int. j.
numer. methods eng., submitted.

15. A. Harten, P. D. Lax and B. van Leer, `On upstream differencing and Godunov type schemes for hyperbolic conservation
laws', SIAM Rev., 25, 36±61 (1983).

16. E. F. Toro, `A linearized Riemann solver for the time-dependent Euler equations of gas dynamics', Proc. R. Soc. Lond. A,
434, 683±693 (1991).

17. W. Speares and E. F. Toro, `A high resolution algorithm for shock dominated problems with adaptive mesh re®nement',
ZFW J. Flight Sci., 19, 267±281 (1995).

18. M. Berzins, J. Ware and J. Lawson, `Spatial and temporal error control in the adaptive solution of systems of conservation
laws', in Advances in Computational Methods for PDEs, IMACS PDE VII, IMACS, 1992.

19. M. E. G. Ong, `Uniform re®nement of tetrahedron', SIAM J. Sci. Comput., 15, 5 (1994).
20. R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations: User's Guide 7.0, SIAM,

Philadelphia, PA, 1994.
21. A. Liu and B. Joe, `Quality local re®nement of tetrahedral meshes based on 8-subtetrahedron subdivision', Preprint,

University of Alberta, 1994.
22. N. Weatherill, personal communication, 1994.
23. R. Biswas and R. C. Strawn, `Mesh quality control for multiply-re®ned tetrahedral grids', Appl. Numer. Math., in press.
24. P. Batten, C. Lambert, E. F. Toro, R. Saunders and D. M. Causon, `A temporal re®nement algorithm for unstructured mesh

methods', Proc. ICFD Conf., Oxford, April 1995.
25. H. Babinsky, personal communication, 1995.
26. W. Speares and M. Berzins, `A fast 3D unstructured mesh adaption algorithm with time dependent upwind Euler shock

diffraction calculations', Proc. 6th Int. Symp. on CFD, Lake Tahoe, NV, 1995, Vol. 3, p. 1181.
27. D. Hodgson, P. K. Jimak, P. Selwood and M. Berzins, `Scalable parallel generation of partitioned unstructured meshes',

Proc. CFD '95 Conf., Pasadena, CA, 1995.
28. A. Harten, `High resolution schemes for hyperbolic conservation laws', J. Comput. Phys., 78, 437±458 (1983).
29. Strang, `On the construction and comparison of difference schemes', SIAM J. Numer. Anal., 5, 506±517 (1968).
30. B. van Leer, `Towards the ultimate conservative difference scheme V', J. Comput. Phys., 32, 101±136 (1979).

104 W. SPEARES AND M. BERZINS

INT. J. NUMER. METH. FLUIDS, VOL 25: 81±104 (1997) # 1997 by John Wiley & Sons, Ltd.


