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Abstract

We describe the Uintah Computational Framework (UCF), a set of software components and libraries that facilitate the
simulation of partial differential equations on structured adaptive mesh refinement grids using hundreds to thousands of pro-
cessors. The UCF uses a non-traditional approach to achieving parallelism, employing an abstract taskgraph representation to
describe computation and communication. This representation has a number of advantages that affect the performance of the
resulting simulation. We demonstrate performance of the system on a solid mechanics algorithm, two different computational
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fluid-dynamics (CFD) algorithms, as well as coupled CFD/mechanics algorithms. We show performance of the UCF
to 2000 processors.
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1. Introduction

Computational scientists continue to push the
capabilities of current computer hardware to the limits
in order to simulate complex real-world phenom-
ena. These simulations necessitate the use of ever
increasing computational resources. Furthermore, the
software written to model real-world scientific and
engineering problems is typically very complex. Grid
generation, non-linear and linear solvers, visualization
systems, and parallel run-time systems all combine
to provide a very powerful environment for solving
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complex scientific and engineering problems. S
complexities are further compounded when mu
ple simulation codes are combined to simulate
interaction of multiple phenomena.

Frameworks for PDE simulation are common,
cluding systems such as Diffpack[1], Ellpack [2],
Overture[3], POOMA[4], SAMRAI [5], and Sprint 2D
[6]. Each of these frameworks have their own stren
and weaknesses, but each are designed to simpli
process of implementing PDE simulations. They u
ally provide support for grid generation and mana
ment, parallel communication, and simplify comm
operations.

The Uintah Computational Framework (UCF) i
set of software components and libraries that facil
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Table 1
Abbreviations used in this paper

AMR Adaptive Mesh Refinement, using a denser discretization in parts of the domain that require more accuracy
ASCI Accelerated Strategic Computing Initiative, a US Department of Energy supported program that is pursuing large-scale

scientific computation
CCA Common Component Architecture, components designed for high-performance computing
CFD Computational Fluids Dynamics
C-SAFE Center for Simulation of Accidental Fires and Explosions, the project that is utilizing this work
MPI Message Passing Interface, a commonly used mechanism for communication in a distributed-memory parallel machine
MPM Material Point Method, a particle-based method for solid mechanics
PDE Partial Differential Equation
PSE Problem Solving Environment, a tool for easily accessing various tools required to solve a scientific problem
SAMR Structured Adaptive Mesh Refinement, a style of AMR using overlapping structured grids
UCF Uintah Computational Framework, the PDE framework described here

the simulation of partial differential equations (PDEs)
on structured adaptive mesh refinement (SAMR) grids
using hundreds to thousands of processors. The UCF
uses a non-traditional approach to achieving paral-
lelism, employing an abstract taskgraph representation
to describe computation and communication. This
representation has a number of advantages, including
efficient fine-grained coupling of multi-physics com-
ponents, flexible load-balancing mechanisms, and a
separation of application concerns from parallelism
concerns. The taskgraph representation distinguishes
the UCF from other approaches.

The taskgraph concept will be described, along with
a number of the implementation details. We will discuss
the advantages and disadvantages of this methodology,
and will present results from UCF simulations. This
paper contains numerous acronyms that are described
in Table 1for the convenience of the reader.

2. Overview

The system described here involves several connec-
tions between a number of different pieces. In order to
adequately describe how they all interact, we first give
an overview of the individual pieces in this section. The
r ces
fi ons.
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of Accidental Fires and Explosions (C-SAFE)[7,8].
C-SAFE focuses specifically on providing state-of-the-
art, science-based tools for the numerical simulation of
accidental fires and explosions, especially within the
context of handling and storage of highly flammable
materials. The primary objective of C-SAFE is to pro-
vide a software system comprising a problem solving
environment (PSE) in which fundamental chemistry
and engineering physics are fully coupled with non-
linear solvers, optimization, computational steering,
visualization and experimental data verification. The
availability of simulations using this system will help
to better evaluate the risks and safety issues associated
with fires and explosions. Our goal is to integrate and
deliver a system that is validated and documented for
practical application to accidents involving both hydro-
carbon and energetic materials. Efforts of this nature
requires expertise from a wide variety of academic dis-
ciplines. A typical C-SAFE problem is shown inFig. 1.

2.2. Common Component Architecture

The Common Component Architecture (CCA) fo-
rum [9,10] was established by a group of researchers
from several Department of Energy national laborato-
ries, and several universities to address the need for
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emainder of the paper will discuss how those pie
t together to achieve large-scale parallel simulati

.1. C-SAFE

In 1997, the University of Utah created an allia
ith the DOE Accelerated Strategic Computing

iative (ASCI) to form the Center for the Simulati
a software component architecture that fulfilled
needs of high-performance computing. The CCA
chitecture aims to provide higher performance, exp
support for multi-dimensional arrays, and explicit s
port for parallelism. Uintah, described below, is a
search vehicle for implementing these ideas and
exercising their efficacy on a complex scientific ap
cation, such as C-SAFE simulations.
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2.3. SCIRun

SCIRun1 is a scientific PSE that allows the in-
teractive construction and steering of large-scale sci-
entific computations[11–13]. A scientific application
is constructed by connecting computational elements
(modules) to form a program (network). This program
may contain several computational elements as well
as several visualization elements, all of which work
together in orchestrating a solution to a scientific prob-
lem. Geometric inputs and computational parameters
may be changed interactively, and the results of these
changes provide immediate feedback to the investiga-
tor. SCIRun is designed to facilitate large-scale scien-
tific computation and visualization on a wide range of
machines from the desktop to large supercomputers.

2.4. Uintah

C-SAFE’s Uintah PSE[14,15] is a massively
parallel, component-based, PSE designed to simulate
large-scale scientific problems, while allowing the
scientist to interactively visualize, steer, and verify
simulation results. Uintah is a derivative of the SCIRun
PSE, and adds support for the more powerful CCA
component model and support for distributed-memory
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tle more than an abstract class on which the caller can
perform method invocations. Componentsprovide a set
of interfaces, which other components canuse. At com-
ponent creation time, the component declares a set of
Provides and Uses ports. An external entity, called a
builder, connects the provides port of one component
to the uses port of another component. For the simu-
lations described here, this connection is provided by
a stand-alone main program. However, in general the
builder can be a script, a graphical user interface, or
even another component.

The CCA is centered around the Scientific Interface
Definition Language (SIDL)[16]. SIDL is the mecha-
nism by which component interfaces are described. A
SIDL compiler generates code for inter-language op-
eration as well as for remote method invocations in
a distributed-memory environment. Although Uintah
contains support for such distributed-memory opera-
tions, the component interactions described here all
occur within a single address space. Operation in a
distributed-memory parallel environment occurs using
MPI calls within individual components.

4. Uintah Computational Framework
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3. Component architecture

Due to space constraints, the overall Uintah ar
tecture will be described only briefly here. Further
tails can be found in[10,14,15], as well as in futur
publications from C-SAFE.

The Uintah Component Architecture is based
the CCA. Since the CCA is an evolving standard,
focused on a subset of the overall standard in ord
focus on C-SAFE simulations. In particular, we crea
a C++ only implementation, and ignored the mu
language features that were still under developme

The primary feature of the architecture is the
model. The port model, is the mechanism by wh
components communicate. In C++, this looks like

1 Pronounced “ski-run.” SCIRun derives its name from the
entific Computing and Imaging (SCI) Institute at the Universit
Utah.
The UCF is implemented in the context of the U
tah PSE. The Uintah PSE architecture is very gen
facilitating a wide range of computational and visu
ization applications. On top of the Uintah architectu
we have designed a set of components and sup
ing libraries that are targeted toward the solution
PDEs on massively parallel architectures (hundred
thousands of processors). This set of components
libraries is collectively called the UCF.

4.1. Overview

The UCF employs a non-traditional approach
achieving parallelism. Instead of explicit MPI ca
placed throughout the program, applications are
in terms of ataskgraph, a construct that describes t
data dependencies between various steps in the
lem.

The UCF exposes flexibility in dynamic applic
tion structure by adopting an execution model base
software-based “macro”-dataflow. Computations
expressed as directed acyclic graphs oftasks, each o
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which produces some output and consumes some in-
put (which is in turn the output of some previous task).
These inputs and outputs are specified for each patch
in a Structured AMR grid. Tasks form a UCF data
structure called thetaskgraph, which represents immi-
nent computation. Associated with each task is a C++
method which is used to perform the actual computa-
tion. UCF data structures are compatible with Fortran
arrays, so that the application writer can use Fortran
subroutines to provide numeric kernels on each patch.

Each execution of a taskgraph integrates a single
timestep, or a single non-linear iteration, or some other
coarse algorithm step. Tasks “communicate” with each
other through an entity called theDataWarehouse. The
DataWarehouse is accessed through a simple name-
based dictionary mechanism, and provides each task
with the illusion that all memory is global. If the tasks
correctly describe their data dependencies, then the
data stored in the DataWarehouse will match the data
(variable and region of space) needed by the task. In
other words, the DataWarehouse is an abstraction of a
global single-assignment memory, with automatic data
lifetime management and storage reclamation. Val-
ues stored in the DataWarehouse are typically array-
structured.

Communication is scheduled by a local scheduling
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Consider the taskgraph inFig. 2. Ovals represent
tasks, each of which are a simple array program and
easily treated by traditional compiler array optimiza-
tions. Edges represent named values stored by UCF.
Solid edges have values defined at each material point
(Particle Data) and dashed edges have values defined
at each grid vertex (Grid Data). Variables denoted with
a prime (′) have been updated during the timestep. The
figure shows the slice of the actual Uintah Material
Point Method (MPM)[17] taskgraph concerned with
advancing Newtonian material point motion on a single
patch for a single timestep.

The idea of the dataflow graph as an organizing
structure for execution is well known. The SMARTS
[18] dataflow engine that underlies the POOMA[4]
toolkit shares goals and philosophy with UCF. SISAL
compilers[19] used dataflow concepts at a much finer
granularity to structure code generation and execution.
Dataflow is a simple, natural and efficient way of ex-
posing parallelism and managing computation, and is
an intuitive way of reasoning about parallelism. What
distinguishes implementations of dataflow ideas is that
each caters to a particular higher-level presentation.
SMARTS caters to POOMA’s C++ implementation and
stylistic template-based presentation. The SISAL com-
piler was of course developed to support the SISAL lan-

ation
grid
ary

and

om-
id,
FE
ap-
rtant

ible
ra-

thm
pri-
d to
the
D
by
lgorithm that approximates the true globally opti
ommunication schedule. Because of the flexibilit
ingle-assignment semantics, the UCF is free to ex
asks close to data or move data to minimize fu
ommunication.

The UCF storage abstraction is sufficiently hi
evel that it can be efficiently mapped onto b

essage-passing and shared-memory communic
echanisms. Threads sharing a memory can a

heir input data directly; single-assignment datafl
emantics eliminate the need for any locking of
es. Threads running in disjoint address spaces
unicate by message-passing protocol, and the

s free to optimize such communication by mess
ggregation. Tasks need not be aware of the trans
sed to deliver their inputs and thus UCF has comp
exibility in control and data placement to optim
ommunication both between address spaces or w
single shared-memory node. Latency in reque

ata from the DataWarehouse is not an issue; the
ect data is deposited into the DataWarehouse b
he task is executed.
guage. UCF is implemented to support a present
catering to C++ and Fortran based mixed particle/
algorithms on a structured adaptive mesh. The prim
algorithms of importance to C-SAFE are the MPM,
Eulerian CFD algorithms.

4.2. Taskgraph advantages/disadvantages

This dataflow-based representation of parallel c
putation fits very well with the Structured AMR gr
and with the nature of the computations that C-SA
is performing. In particular, we decided to use this
proach in order to accommodate a number of impo
needs.

First, the taskgraph helps accommodate flex
multi-physics integration needs. In particular, integ
tion of a particle-based solid mechanics algori
(MPM) with a state-of-the-art CFD code was a
mary C-SAFE goal. However, scientists still wante
be able to execute the CFD algorithm by itself, or
MPM algorithm by itself or even with a different CF
algorithm. The taskgraph facilitates this integration
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allowing each application component (MPM and CFD
in this example) to describe their tasks independently.
The scheduler connects these tasks where data is ex-
changed between the different algorithm phases. In this
fashion, a fine-grained interleaving of these different
algorithms is obtained.

Second, the taskgraph can accommodate a wide
range of unforeseen workloads. In C-SAFE simula-
tions, load imbalances arise from a variety of situa-
tions: with particle-based methods particles may exist
only in small portions of the domain; or ordinary dif-
ferential equation-based reaction solvers may be more
costly in some regions of space than in others. Us-
ing the taskgraph, the UCF can map patches to other
processors to minimize overall load imbalance. Com-
munication is performed automatically, and the system
has the information necessary to predict whether data
motion is likely to pay off. These features would be
more difficult to implement if each scientist were bur-
dened with these complexities when writing simulation
components.

Third, the taskgraph helps manage the complexity of
a mixed threads/MPI programming model. Many mod-
ern supercomputing architectures employ a number of
shared-memory nodes connected together by a fast in-
terconnect. These architectures are often programmed
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most important advantage for a large interdisciplinary
project such as C-SAFE. Since C-SAFE is a research
project, we need to accommodate the fact that most
of the simulation components are still under develop-
ment. The component-based architecture allows pieces
of the system to be implemented in a basic form at first,
and then to evolve as the technologies mature. Most
importantly, the UCF allows the aspects of parallelism
(schedulers, load balancers, parallel I/O, and so forth)
to evolve independently of the simulation components.
This allows the computer science effort to focus on
these problems without waiting for the completion
of the scientific applications or vice versa. Object-
oriented and component-based programming tech-
niques, such as adherence to well-defined interfaces,
encapsulation, and dynamic composition are used to
provide that isolation. On example of the power of the
composition model is the SingleProcessorScheduler.
Many problems can be debugged on a single processor
without the complexities of parallel debuggers. The
SingleProcessorScheduler still provides execution
over multiple patches, so (usually) if a component
is made to work with this scheduler, it will work in
parallel.

However, in addition to these advantages there are
some disadvantages to the approach that we chose.
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tion
with a flat MPI model, ignoring the fact that 2–1
of the nodes actually share a single memory. U
the UCF, tasks can be mapped to threads in ord
achieve multi-threaded execution within a node.
semantics of the DataWarehouse enable true sh
of the data, eliminating explicit communication a
data redundancy between neighboring shared-me
processors. Once again, this would not be possib
simulation scientists were burdened with these a
tional complexities.

Fourth, the taskgraph can accommodate a m
static and dynamic load-balancing mechanisms. In
ticular, we are developing a mechanism that uses
grained dynamic load balance within a shared-mem
node, and a less frequent (every several times
coarse-grained mechanism between address s
Threads execute tasks from a pool of ready tasks, w
asynchronous MPI calls are made to communicate
between nodes.

Fifth, the taskgraph facilitates development of s
ulation components that allow pieces of the simula
to evolve independently. In many respects, this is
.

First, creating an optimal schedule for the taskgr
is known to be an NP-hard problem. However,
have found that using some simple heuristics,
exploiting the regularity in the problem, that we c
obtain respectable performance using straightforw
scalable algorithms. Further refinements in th
algorithms will receive more attention in the n
future. Second, creation of the schedule can be
costly. We take advantage of the fact that the sche
does not need to be recomputed for each executi
does need to be recomputed if the algorithm chan
or if the grid changes. In addition, the schedule m
need to be recomputed periodically to maintain
optimal load balance. Third, the taskgraph requ
a mental shift for parallel application programme
Nevertheless, we found that the programmers w
able to easily take a description of their algorithm
cast that into a set of tasks. The application was
able to run in parallel, even on hundreds of proces
For our applications, this benefit outweighed the
of casting the algorithms in the dataflow execu
model.
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Fig. 1. A typical C-SAFE problem involving hydrocarbon fires and
explosions of energetic materials.

Fig. 2. An example UCF taskgraph.

Fig. 3. UCF simulation components.

Fig. 4. A simple computational domain and a four-patch decompo-
sition of that domain.

For C-SAFE, the advantages far outweighed the dis-
advantages. We note that for a typical purely structured-
grid computation, the taskgraph may be overkill. For a
purely unstructured-grid computation, the granularity
would be too small and data dependencies would be
more complex. The Structured AMR grids employed
by C-SAFE seem to have just the right granularity for
this approach to be successful.

Fig. 5. Communication of ghost nodes in a simple four-patch do-
main.
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4.3. Components involved

Fig. 3 shows the main components involved in a
typical C-SAFE simulation. The SimulationController
is the component in charge of the simulation. It will
manage restart files if necessary, and control the inte-
gration through time. First, it reads the specification of
the problem from an XML input file. After setting up
the initial grid, it passes the description to the simula-
tion component. The simulation component can be a
number of different things, including one of the two
different CFD algorithms, the MPM algorithm, or a
coupled MPM–CFD algorithm. The simulation com-
ponents define a set of tasks to the scheduler. In ad-
dition, the DataArchiver component describes a set of
output tasks to the scheduler. These tasks will save a
specified set of variables to disk. Once all tasks are
known to the scheduler, the load-balancer component
uses the configuration of the machine (including pro-
cessor counts, communication topologies, etc.) to as-
sign tasks to processing resources. The scheduler uses
MPI to communicate the data to the right processor
at the right time and then executes callbacks into the
simulation or DataArchiver components to perform the
actual work. This process continues until the taskgraph
is fully executed. The execution process is repeated to
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• Node: An entity at the corners of each of the cells.
A variable centered at the nodes in the simulation
would have a value corresponding to each of the O’s
in Fig. 4.

• Face: The faces join two cells. The UCF represents
values onX, Y, andZ faces separately.

• Ghost cell: Cells (or nodes) that are associated with
a neighboring patch, but are copied locally to fulfill
data dependencies from outside of the patch.

4.5. Variable types

UCF simulations are performed using a strict
“owner computes” strategy. This means that each topo-
logical entity (a node, cell or face) belongs to exactly
one patch. There are several variable types that repre-
sent data associated with these entities. AnNCVariable
(node-centered variable) contains values at eachNode
in the domain. Similarly, CCVariables contain values
for each cell, and XFCVariables, YFCVariables and
ZFCVariables are face-centered values for the faces
corresponding to theX, Y andZ axes. A single vari-
able class represents all of the values for a single patch
(possibly with ghost cells) and is accessed as a three-
dimensional array. Each of these variable types are C++
template classes, therefore a node/cell/face-centered
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integrate further timesteps.
Each of these components run concurrently on

processor. The components communicate with
counterparts on other processors using MPI. How
the scheduler is typically the only component that n
to communicate with other processors.

4.4. Definitions

ConsiderFig. 4. We define several terms which
use in discussing Structured AMR grids:

• Patch: A contiguous rectangular region of ind
space and a corresponding region of simulated p
ical space. The domain on the right ofFig. 4 is the
same as the domain on the left, except that is
been decomposed into four patches.

• Cell: A single coordinate in the integer index spa
also corresponding to the smallest unit in simula
physical space. A variable centered at the cel
the simulation would have a value correspondin
each of the X’s inFig. 4.
value can be any arbitrary type. Typically values
a double-precision number representing pressure,
perature, or some other scalar throughout the field
values may also be a more complex entity, such
vector representing velocity or a tensor represen
a stress. Variables can be passed to Fortran num
kernels without copying. PerPatch variables store
(templated) value with each patch in the domain.
duction variables are used to compute a global s
min, max, or other operations over the entire doma

In addition to the topological-based variables
scribed above, there is one additional variable t
ParticleVariable. This variable contains values ass
ated with each particle in the domain. A special pa
cle variable contains the position of the particle. O
particle variables are defined by the simulations,
in the case of the MPM algorithm include quantit
like temperature, acceleration, stress and so forth
the purposes of the discussions below, particles ca
considered a fancy type of cell-centered variable, s
each particle is associated with a single cell. It is im
tant however, to point out that explicit lists of partic
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within a cell are not maintained. We have found it more
efficient to determine particle/cell associations as they
are needed instead of paying the high cost of maintain-
ing lists of particles for each cell.

4.6. A around B

Tasks describe data requirements in terms of their
computations on node, cell and face-centered quan-
tities. A task that computes a cell-centered quantity
from the values on surrounding nodes would establish
a requirement for one layer of nodes around the cells
within a patch. This is termed “nodes around cells” in
UCF terminology. As shown inFig. 5, a layer ofghost
nodes would be copied from neighboring patches on
the top and right edges of the lower-left patch. In a
four-processor simulation this copy would involve MPI
messages from each of the other three processors. It is
important to note the asymmetry in this process; data
is often not required from all 26 (in 3D) neighbors to
satisfy a computation. Symmetry comes when a subse-
quent step uses “cells around nodes” to satisfy another
data dependency.

In this fashion, each task in the algorithm specifies
a set of data requirements. Similarly, each task speci-
fies a set of data which it will compute, but in this case
n com-
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stantiate graph vertices for the task/patch combinations
which are assigned to the processor, and will instantiate
graph edges which connect to or from those vertices. Fi-
nally, it will create vertices that connect to those edges.
In this fashion, the detailed taskgraph contains the ver-
tices for tasks owned by this processor and for those
tasks on other processors with which it will communi-
cate. The detailed taskgraph uses a very compact rep-
resentation since the number of detailed tasks can be
significant. However, there are O(1) detailed tasks on
each processor for scalable simulations.

After instantiating the detailed tasks, the UCF
scheduler performs a set of analysis functions on the
resulting taskgraph. It ensures that the application pro-
grammers have used every variable that it computes,
and that they do not expect variables that are never pro-
duced. It also ensures that the types of variables match
between the computes and requires, including the type
of the underlying templated data. Finally, the scheduler
analyzes the lifetimes of each variable used throughout
the execution of the taskgraph. Variables that hold in-
termediate quantities are scheduled for deletion when
no more tasks require them.

The compilation process proceeds simultaneously
on each processor without communication between
processors.
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utes and requires” lists for each task are collecte
reate the full taskgraph.

A task could specify that it requires data from the
ire computational domain. However, for typical sc
ble algorithms, the tasks ask for only one (or poss
) layer of data outside of the patch.

.7. Compilation

Using the data dependencies described above
CF scheduler compiles a coarse-representation

askgraph. This representation contains all of the
ependency information, but contains only a single

ex (graph bubble) for each task. The full taskgraph
ontain a vertex for each patch/task combination. H
ver, this full representation is not fully instantiated
ach processor.

First, a topological sort is performed on the coa
askgraph. The scheduler then creates adetailed task-
raph for the subregion of the total graph which cov
he neighborhood of a particular processor. It will
4.8. I/O and checkpointing

Data output is scheduled using the taskgraph
like any other computation. Constraints specified
the task allow the load-balancing components to d
those tasks (and the associated data) to the proce
where data I/O should occur. In typical simulatio
each processor writes data independently for
portions of the dataset which it owns. This requ
no additional parallel communication for output tas
However, in some cases this may not be ideal.
UCF can also accommodate situations where disk
physically attached to only a portion of the nodes
a parallel filesystem where I/O is more efficient w
performed by only a fraction of the total nodes.

Checkpointing is obtained by using these ou
tasks to save all of the data in the DataWarehouse
end of the timestep. Data lifetime analysis ensures
only the data required by subsequent iterations
be saved. If the simulation components have been
rectly written to store all of their data in the DataWa
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house, restart is a trivial process. During restart, the
components process the XML specification of the prob-
lem that was saved with the datasets, and then the UCF
creates input tasks that load the DataWarehouse from
the checkpoint files. If necessary, data redistribution is
performed automatically during the first execution of
the taskgraph. In a similar fashion, changing the num-
ber of processors is possible. The current implementa-
tion does not redistribute data among the patches when
the number of processors are changed. Patch redistri-
bution is a useful component even beyond changing the
processor count, and will be implemented in the future.

4.9. Legacy MPI compatibility

To accommodate software packages that were not
written using the UCF execution model, we allow tasks
to be specially flagged as “using MPI”. These tasks will
be gang-scheduled on all processors simultaneously,
and will be associated with all of the patches assigned
to each processor. In this fashion, UCF applications
can use available MPI libraries, such as PETSc[20]
and hypre[21].

4.10. Execution
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resources are cleaned up when the sends actually com-
plete.

The mixed MPI/thread execution is somewhat
different. First, non-blocking MPIIrecvs are posted
for all of the tasks assigned to the processor. Then
each thread will concurrently call MPIWaitsome
and will block for internal data dependencies (i.e.
from other tasks) until the data dependencies for any
task are complete. That task is executed and data that
it produces is sent out. The thread then goes back
and tries to complete a next task. This implements
a completely asynchronous scheduling algorithm.
Preliminary results for this scheduler indicate that a
performance improvement of approximately 2× is
obtainable. However, thread-safety issues in vendor
MPI implementations have slowed this effort.

It can be seen that dramatically different communi-
cation styles can be employed by simply changing out
the scheduler component. The application components
are completely insulated from these variations. This
is a very important aspect that allows the Computer
Science teams to focus on the best way to utilize the
communication software and hardware on the machine
without requiring sweeping changes in the application.
Each scheduler implementation consists of less than
1000 lines of code, so it is relatively easy to write one
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On a single processor, execution of the taskgra
simple. The tasks are simply executed in the topo
cally sorted order. This is valuable for debugging, s
multi-patch problems can be tested and debugge
a single processor. In most cases, if the multi-p
problem passes the taskgraph analysis and exe
correctly on a single processor, then it will execute
rectly in parallel.

In a multi-processor machine the execution pro
is more complex. In an MPI-only implementation, th
are a number of ways to utilize MPI functionality
overlap communication and I/O. We describe one
that is currently implemented in the UCF.

We process each detailed task in a topologic
sorted order. For each task, the scheduler posts
blocking receives (using MPIIrecv) for each of th
data dependencies. Subsequently we call MPIWaitall
to wait for the data to be sent from neighboring p
cessors. After all data has arrived, we execute the
When the task is finished, we call MPIIsend to initi-
ate data transfer to any dependent tasks. Periodic
to MPI Waitsome for these posted sends ensure
that will take advantage of the properties of the c
munication hardware available on a machine. Of
the only difficult part is getting the correct informati
from the vendor in order to determine the best stra
for communicating data.

4.11. Load balancing

The load balancer component is responsible fo
signing each detailed task to one processor.

To date, we have implemented only simple st
load-balancing mechanisms. However, the UCF
designed to allow very sophisticated load-balance a
ysis algorithms. In particular, a cost model associ
with each task will allow an optimization process to
termine the optimal assignment of tasks to proces
resources. Cost models associated with the comm
cation architecture of the underlying machine are
available. One interesting aspect of the load-bala
problem is that integrated performance analysis in
UCF [22] will (in the future) allow the cost mode
to be corrected at run-time to provide the most
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curate cost information possible to the optimization
process.

The mixed thread/MPI scheduler described above
implements a dynamic load-balancing mechanism (i.e.
a work queue) within a shared-memory node, and uses
a static load-balancing mechanism between nodes. We
feel that this is a powerful combination that we will
pursue further.

Careful readers will pick up on the fact that the
creation of detailed tasks require knowledge of proces-
sor assignment. However, sophisticated load-balance
components may require this detailed information
before they can optimize the task/processor assign-
ments. We use a two-phase approach where tasks are
assigned arbitrarily, then an optimization is performed
and the final assignments are made to the tasks.
Subsequent load-balance iterations use the previous
approximation as a starting point for the optimization
process.

4.12. Adding a new component

Adding a new simulation to the system consists of
writing a new simulation component. The other com-
ponents in the system (schedulers, load-balancers, sim-
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conventions, Fortran arrays are accessed inX-axis
major form, and C/C++ arrays inZ-axis major form.

• Modify the code to execute each step of the algorithm
on a single patch. Typically this requires reconsider-
ation of how boundary conditions are applied to the
domain.

• Optionally, modify the parameter setting mecha-
nisms in the code to use the UCF XML description.

If the code is already parallel with a patch-wise
decomposition, one may be able to utilize the gang-
scheduled task description described in Section4.9
for portions of the code without restructuring the code
completely.

4.13. Applications and results

The system described here has been used to im-
plement a variety of simulations. Two different CFD
algorithms, one MPM (solid mechanics) algorithm,
and two different coupled CFD–MPM algorithms have
been implemented to date. Each of these simulations
run quite well in parallel.Fig. 6shows the scalability of

is a
ces-
The

w data
own
2000,

rs on
lation controller, DataArchiver, etc.) do not need to
odified when a new simulation component is in
uced into the system.

The UCF has a structure that is quite different fr
typical parallel application, and the applications

ented here have all been developed specificall
he UCF. One of them, Arches, existed prior to
CF and has been modified to work with this mo
owever, one may wish to take an existing PDE so
nd create a UCF component to take advantage o
arallel infrastructure. The complexity of adapting
xisting code can vary, depending on the modul
f the code and the specifics of the algorithm. Spe
teps required to port an existing PDE solver m
nclude:

Replace the high-level structure (typically the m
program) with the UCF mechanism for describ
the taskgraph.
Add adapters from the UCF task callbacks to
PerPatch steps on each algorithm. We have me
nisms for passing UCF variables into both For
and C/C++ arrays without copying. Due to langu
Fig. 6. Parallel performance of a typical C-SAFE problem. This
16 million particle MPM computation, running on up to 2000 pro
sors of the Los Alamos National Laboratory Nirvana machine.
straight line represents ideal performance, while the boxes sho
points of performance actually obtained. There is a slight slowd
as the computation spans more than one 128 processor Origin
but continues on linearly to the maximum number of processo
the machine.
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the MPM application up to 2000 processors of the ASCI
Nirvana machine at Los Alamos National Laboratory.
Nirvana is a cluster of 16 SGI Origin 2000 ccNUMA
machines, each consisting of 128 MIPS R10K proces-
sors running at 250 MHz. The machines are connected
with a 6.4 Gigabit GSN (Gigabyte System Network).

The 125 of the 128 processors on each node were
utilized for the simulation, leaving three to attend to
operating system and communication issues. Super-
linear speedups in low processor counts are the result
of higher cache efficiencies due to the constant-size
problem. As a result, we show the linear speedup line
Fig. 7. Visualization of two different simulations from C-SAFE. On th
stress propagation through a block of granular material. Each of thes
processors.
e left is a simulation of a heptane fire. On the right is a simulation of
e simulations were performed using the UCF and were executed on 1000
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from the highest performance per processor, at eight
processors for this problem. It should be noted that
the problem shown is relatively small, with timesteps
completing in much less than 1 s for the large processor
configurations. Typical computations contain 100 s
of millions of particles or more, resulting in even
better parallel efficiency in practice. One of the CFD
components (Arches) has similar scaling properties to
MPM; the others we have not yet had the opportunity
to push to large numbers of processors.Fig. 7 shows
results from 1000 processor simulations using the
Arches CFD component and the MPM component.

We have also demonstrated parallel performance on
960 processors of Lawrence Livermore National Lab-
oratory’s Frost, consisting of 1088 Power three proces-
sors running at 375 MHz.

4.14. Future work

The past few years of this project have focused on
developing a flexible framework in which to accom-
plish scalable parallel simulations. Now that we have
the basic infrastructure in place, there are a number of
research projects worthy of pursuit, including: devel-
opment of feedback-based load-balancing components
that utilize task performance information collected at
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