
EUROGRAPHICS ’98 / N. Ferreira and M. Göbel
(Guest Editors)

Volume 17, (1998), Number 3

Importance Driven Texture Coordinate Optimization

Peter-Pike J. Sloan, David M. Weinstein, J. Dean Brederson

Department of Computer Science University of Utah
email: {ppsloan,dweinste,jdb}@cs.utah.edu

Abstract
Traditionally, texture coordinates have been generated based solely on the model’s geometry, often even before a
model’s textures have been created. With the arrival of new technologies, such as 3D paint programs, weaknesses
of a static optimization pre-process are becoming apparent. These weaknesses arise from constructing a parame-
terization based solely on the model’s geometry, ignoring the fact that detail is not uniformly spaced throughout
the texture space. In fact, certain regions of the texture are more important than other regions. In this paper we
introduce the notion of the “importance map” and describe how importance values are derived from both intrinsic
properties of the texture and user-guided highlights. Furthermore, we describe how importance maps are used to
drive the texture coordinate optimization. Finally, we show how this optimization process can be integrated into a
3D painting environment, enabling periodic optimization at any stage of texture design.

Additional Keywords and Phrases:texture mapping, tex-
ture map distortion, interaction

1. Introduction

Texture mapping7 has become a popular technique for rep-
resenting intricate detail with relatively simple geometry.
In constructing texture mapped models, the modeler must
define a parameterization of the model. This parameteriza-
tion, often stored as texture coordinates, maps the three-
dimensional model space to a flat, two-dimensional texture
space. Most surfaces must undergo a great deal of distortion
when they are reparameterized into a plane, often resulting
in undesirable artifacts when the model is rendered.

One way to avoid these artifacts is to optimize the pa-
rameterization according to the relative detail in the texture.
An example of this is shown in Figure 1, where a texture
is mapped to a sphere. A standard latitude-longitude param-
eterization of the sphere is used in the left column, while
an optimized parameterization is used in the right column.
Since the detail in the mapped texture is close to the equator
rather than the poles of the sphere, we can improve the ap-
pearance of the mapped texture by predistorting the texture
map to effectively increase the texture resolution in areas of
detail.

Minimizing the metric distortion induced by embedding

three-dimensional models in texture space has been the fo-
cus of previous texture coordinate optimization research
18; 3; 19; 22; 13. While these earlier methods do an excellent job
of addressing the geometric form of the model, they are in-
trinsically limited because they reparameterize as a prepro-
cess. In other words, they apply their minimization opera-
tions before any “paint” has been applied to the surface. As
a result, too much texture space is often devoted to regions
that ultimately contain little or no texture content, while re-
gions destined to contain rich detail are starved for adequate
memory. Allotting insufficient texture space for regions con-
taining large amounts of detail can result in undersampling
artifacts, such as the “jaggies” seen in Figure 1 in the lower
left closeup and the blurring seen in Figure 2b.

What these optimization methods have failed to take into
account is the information distributionwithin the texture it-
self: they assume that all areas of the model will have equal
texture detail. This shortcoming has recently been high-
lighted with the advent of 3D painting programs11; 22; 23. With
these programs, users now have fine control over where they
apply detail on the surface of models, and in practice it
is quite common for textures to have extremely inhomoge-
neous distributions of detail.

For example, in industrial design it is common to use a 3D
paint program to sparsely sketch various details over the sur-
face of a model. Figure 2a shows such an example of a car

c
 The Eurographics Association and Blackwell Publishers 1998. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.



P. Sloanet al./ Importance Driven Texture Coordinate Optimization

Original Texture Map Optimized Texture Map

Down Sampled Original Down Sampled Optimized

Closeup of Original Closeup of Optimized

Figure 1: Example of an unoptimized (left column) and op-
timized texture (right column) mapped onto a sphere.

hood model with a texturing applied. In Figure 2b, we have
a zoomed in view of the headlight from this model, showing
that an insufficient amount of texture space has been allo-
cated to capture the fine detail of the texture locally. Fig-
ure 2d shows the texture map of this model, illustrating how
common texture parameterization techniques fail to redis-
tribute texture space based on detail.

In contrast, Figures 2c, 2e show the corresponding tex-
ture close-up and texture parameterization, respectively, us-
ing our importance-driven technique, demonstrating that by
distributing the texture space according to the detail of the
texture, we can increase the fidelity of texture-mapping with-
out increasing the texture memory budget. In this paper we
discuss how we have extended the previous work of texture
map optimization to include a “relative importance” coef-
ficient for each region of the texture. This coefficient com-
bines the information distribution of the texture with a user-
defined importance value.

Section 2 relates our work to previous techniques for tex-
ture mapping. In Section 3 we show how we derive the im-
portance map of a texture, discussing both the automatic
methods used, and the user-driven interface. Section 4 de-
scribes how this importance map, in conjunction with a met-
ric distortion minimization term, drives the texture coordi-
nate optimization process. Finally, in Section 5 we summa-
rize the major contributions of our work, and discuss how

a

b c

d e

Figure 2: A comparison of texture mapping using standard
(b,d) parameterization versus importance driven (c,e) pa-
rameterization. Note the fidelity preserved in a newly painted
detail (the head), when added in a region identified as impor-
tant.

our method can be incorporated into existing texture map-
ping methods.

2. Relation to Previous Work

Much research has examined texture mapping and its re-
lation to modeling. We give a brief overview of these ear-
lier contributions in the three general related areas of texture
coordinate generation/optimization techniques, 3D painting
paradigms, and compressed texture representations.

Two prior papers18; 19 have used a conjugate gradient al-
gorithm to minimize the metric distortion introduced by the
mapping. Maillot19 presented an attractive interactive envi-
ronment for creating an initial parameterization over a sur-
face. Krishnamurthy13 describes how to fit smooth surfaces
to polygon meshes, using a relaxation technique to optimize
the parameterization of the surfaces (and therefore of the tex-
tures). The key distinctions between our method and these
techniques are our use of an importance metric and where,
and how often, we optimize the parameterization.

Ecket al.10 use harmonic mappings to generate a parame-
terization over a polyhedral mesh for fitting a multiresolution
surface to the model. Again, the key distinctions between

c
 The Eurographics Association and Blackwell Publishers 1998.



P. Sloanet al./ Importance Driven Texture Coordinate Optimization

this work and our work are in the lack of an importance no-
tion and in the static nature of the parameterization.

Litwinowicz et al.presented a method for interactively
placing textures on a surface17, via a user interface for speci-
ficing an importance map. A key distinction is the amount
of user interaction required for this method and the fact that
their method assumes the textures have already been created.
Essentially, they are matching corresponding points between
the model and the texture, not optimizing the parametriza-
tion based on the notion of where detail is.

The original 3D painting paper by Hanrahan11 did not ex-
plicitly use textures, but instead used a dense mesh (which
could be later turned into a texture if necessary) to repre-
sent the surface. The mesh subdivision was irregular and
based on detail, but it was never discussed how this could
be mapped to a texture. Agrawala1 also used a dense regu-
lar mesh, but never attempted to generate a parameterization
over the surface. It would be difficult to paint fine details on
this type of surface.

Pedersen22; 23 presented a general 3D painting framework.
He advocates the use of “patchinos,” which are small re-
gions of the surface that have their own local mapping and
can be easily dragged around the surface. He uses the same
techniques as19 to continually minimize the distortion in the
mapping. A shortcoming to this approach is that it only
works on smooth surfaces and fails at discontinuities. This
method also requires a non-standard representation for these
texture patches.

Two earlier papers referred to compressed textures: one
using vector quantization by Beers2, the other by Torborg
which utilized a new architecture25. The work presented here
is complimentary to both of these techniques. The notion of
user-specified importance could not be easily addressed in a
typical compressed representation. Also, tying the parame-
terization of the surface into the compression of the texture
could be useful when looking at how to deal with metric dis-
tortion. Another key distinction is that our representation is
fully supported on current hardware and software rendering
engines.

3. Importance Specification

Our use of importance represents the intrinsic content of tex-
ture space on a local level. The distribution of information in
the texture guides the distribution of texture memory. Ar-
eas of a texture are allocated texture space that is propor-
tional to their importance. Thus, texture memory is budgeted
such that areas of high detail can be reproduced with high
fidelity without requiring a larger texture memory. Impor-
tance is determined for each texel and an importance map is
defined by the scalar field consisting of the importance val-
ues over the domain of texture space. This importance map
is then used to drive the optimization of texture coordinates.

We have implemented two methods for specifying impor-
tance: the first method employs analysis and decomposition
techniques to automatically derive importance from textures,
while the second method is user-specified.

3.1. Automatic Specification

There has been an extensive amount of research in com-
puter vision6 and recent work in computer graphics12 ad-
dressing methods of decomposing images to extract features
and details. We have looked at several common decomposi-
tion techniques including Laplacian pyramids20, wavelets8; 4,
and steerable pyramids12. For our application, we use im-
age decomposition to analyze the texture content, thereby
deriving the importance value for each texel in its context.
Specifically, we sum the absolute values of the coefficients
for the basis functions covering each pixel, where each co-
efficient is scaled by the appropriate scaling function. This
gives a measure of the local information content of texels
indicating characteristics such as detail, contrast, and noise.
An example of an automatically generated importance map
for a texture image is shown in Figure 7b.

3.2. User Specification

Often automatic methods do not faithfully capture the
essence of the texture and user intervention is desired. We
accommodate this by using existing image creation and
manipulation software. The user explicitly tags regions of
higher and lower importance with an “importance brush”
to define an importance map. User-defined importance may
also be combined with automatic importance to leverage the
advantages of both methods. Combining the automatic and
user-specified importance maps is done either as a direct sum
or by modulating the two maps together.

In the 3D painting system incorporating our method, the
user paints on the model from a fixed view, with the paint
reflecting the lighting of the scene. To push the paint into the
texture map, the user has to explicitly “dry” the paint, which
generates or modifies the texture map based on the painting
done and the parameterization of the model. This “drying”
process takes anywhere from a fraction of a second to a few
seconds depending on the available hardware.

There are several places during the painting process where
the user may choose to specify importance. The user can
initially paint importance directly on the model to optimize
the parameterization of the model. Once the user “dries”
the paint into the texture map, the painted data is resampled
according to the parameterization of the model, hence arti-
facts can occur in the drying process. The user can undo the
“dried” paint and modify the importance map to reallocate
detail for regions of the texture. The user may also specify
importance once painting is finished to highlight important
perceptual features. Such an approach would be particularly

c
 The Eurographics Association and Blackwell Publishers 1998.



P. Sloanet al./ Importance Driven Texture Coordinate Optimization

useful in entertainment applications, where the final produc-
tion texture maps may have to be quite small compared to
the development texture maps.

Importance cannot be simply treated as paint by the ap-
plication, however: when data is dried, it undergoes an area
distortion due to the parameterization and the importance
needs to reflect this. Think of a sphere with a standard lati-
tude/longitude parameterization. The regions near the poles
have a higher texture space to object space ratio, effectively
spreading out the importance in the texture. Compensating
for this is fairly straightforward, you simply need to multi-
ply the importance by the object space to texture space dis-
tortion. This map can be easily computed in texture space
using the graphics hardware:

set view matrix to map tex coords to screen

foreach triangle
set color (AreaR-MinR)/(MaxR-MinR)
draw using texture coordinates as vertices

AreaR is the ratio of the areas of the triangle in object
space and texture space, and MinR and MaxR are the min-
imum and maximum values respectively. This transforms
them into [0,1] which is required by OpenGL. When the
frame buffer is read back, this transform needs to be inverted.
If this map is used as the importance map, the optimiza-
tion methods will try and make this ratio constant. Other
geometric aspects could be drawn in a similar fashion–the
error functional in19 for example– however, this method is
the most suited for the optimization techniques here, which
work mostly with areas. An example illustrating a combina-
tion of automatic and user-defined importance is shown in
Figure 7.

4. Texture Coordinate Optimization

Considering the importance map for a texture as a height
field, we have implemented the following new optimization
for texture mapping:regions covering equal volume in the
importance map should be allocated equal area in texture
space.This heuristic maximizes the potential rendering fi-
delity for a fixed texture memory size by ranking the rep-
resentational needs of the texels. The scalar values can be
thought of as representing the spatial frequencies that indi-
vidual texels have in a local neighborhood. Regions that have
high importance want more texture area, and regions with
low importance want less.

While optimizing the use of texture space, we still need
to minimize distortion between texture space and the model
surface. We approach the problem in two phases: first we
warp the texture coordinates via a deformation that opti-
mizes according to the importance map, and second we relax
the texture mesh and add a term to minimize metric distor-
tion.

a

b c

Figure 3: A simple initial grid (a), and the grid distorted (b)
based on a simple importance function (c). The light and
dark areas in (c) specify increased and decreased impor-
tance, respectively. Note that corresponding areas between
grid lines in (b) are larger and smaller relative to their spec-
ified importance in (c).

4.1. Constructing the Deformation

While there are many techniques to perform this part
of the optimization (from both the morphing/warping
literature14; 27 and thin plate spline techniques15), we chose
a technique similar to a multilevel free-form deformation14.
Using this approach, the deformation is constructed in a
coarse-to-fine manner. We begin by computing prefix sum
tables for each row and column in the importance map. En-
tries in these tables are the sum of the value of the cur-
rent element and all of the preceding elements — a one-
dimensional version of a summed area table9. Isocontours
are then computed separably in each dimension at evenly
spaced contour values.

We want to define the deformation as a linear mapping
from the canonical texture space to the intersection points of
the computed isocontours. However, the isocontours must be
filtered to ensure that the deformation will be one-to-one so
that the texture space will not fold in upon itself. Filtering is
performed on each isocontour until there is no more than a
single pixel deviation between successive rows and columns.
Once the initial isocontours have been generated and filtered,
successively finer levels are computed by sampling between
the filtered isocontours. The intersections of the finest level
of isocontours then define the vertices of the deformed mesh.

c
 The Eurographics Association and Blackwell Publishers 1998.



P. Sloanet al./ Importance Driven Texture Coordinate Optimization

If this mesh is degenerate or folds over, a small value is
added to every pixel in the importance map and the process
is repeated until it converges. Adding this value lifts the en-
tire height field, decreasing the relative changes in volume
and causes the isocontours to straighten out. The tiles of this
mesh should each be allocated equal area in texture space
according to our optimization heuristic. A simple example
of this is in Figure 3, where a simple importance map is de-
fined that has one region of increased importance (the center
of Figure 3c) and one region of decreased importance (the
upper left corner of Figure 3c). The mesh overlayd on Fig-
ure 3c is the grid which is mapped back to a regular grid,
applying this mapping to the grid results in Figure 3b, where
one can see that the “important” region has been streched
out, and the unimportant region has been compressed.

4.2. Applying the Deformation

The deformationζ maps the canonical texture space into the
deformed texture space, while the inverse deformationζ�1

maps the deformed texture space back to the canonical tex-
ture space (see Figure 4). For a polyhedral model, vertices of
the deformed mesh are mapped to the domain of the canon-
ical texture mesh. This mapping is well-defined because the
deformation is guaranteed by construction to be one-to-one.
We triangulate the deformed mesh and use a piecewise lin-
ear mapping between the canonical and deformed texture
spaces. A higher order mapping could easily be used pro-
vided the additional constraints presented in14 were used to
guarantee that the deformation was one-to-one.

3D model

map

ζ

ζ−1

canonical
texture space

deformed
texture space

Figure 4: Figure depicting the relations between model, and
the canonical and deformed texture spaces. Note thatζ and
ζ�1 map texture coordinates in and out of the deformed
space.

4.3. Atlas Based Optimization

We have done some preliminary research into using a spatial
data structure (quad tree in this case) to subdivide the domain
into tiles of equal importance. The goal is to create a quad
tree where the leaf nodes will all be allocated tiles of equal
area in the new domain21. We use the following method:

PQueue.Insert(Root)
numDone=0

while (numDone < numDesired) {
cur = PQueue.pop() // top of Q
if (cur.level > maxLevel) {

cur.retire // is final
} else {

insert children // split
numDone += 3

}
}

PQueue is a priority queue of leaf nodes, sorted based on
the integral of the importance function, which is efficiently
computed using a summed area table9. maxLevel is the deep-
est level the tree is allowed to reach, and numDesired clearly
has to be less than the number of leaves in a full tree.

Any leaf node whose integral is below a preset threshold
is analyzed to see if the data is constant (assuming there is
already data in the texture). If it is, the tile can be stored as
a single texel. We are left with a tiling problem, since all of
the leaf nodes have to be packed into a texture map. We can
store a border explicitly around each tile that is resampled
from the neighbors in the original domain, which will lessen
the artifacts resulting from the change in texture detail be-
tween neighboring tiles that have different texture densities
(with respect to object space). Alternately, the contents of
individual tiles could be blurred based on the texture density
of its neighbors, causing an even more gradual transition if
desired.

This technique does not suffer from the anisotropic distor-
tion that can occur in the warping technique. Figure 5 shows
a simple billboard texture that has been optimized by both
techniques and down sampled to stress the artifacts. The up-
per right shows the deformation technique, with a zoomed-
in view of some of the thin lines below. These were severely
stretched because of the strong important regions below and
to its upper right. The upper left shows the results using an
atlas. There are some clear artifacts from the change in spa-
tial resolution, but not the smearing that is present using the
deformation method. The bottom of the figure shows the tex-
ture atlas and the quad tree (the leaf nodes are identified by
the black triangles.)

Pushing existing geometry through the atlas transforma-
tion is much more involved than using the deformation tech-
nique, since polygons cannot cross over between two tiles.
There are several possible solutions to this problem. One is
to just clip the geometry at the tile boundaries, but this could
drastically increase the geometric complexity of the model.
Another technique would be to cause either the tile bound-
aries to conform to the geometry, or the geometry to conform
to the tile boundaries. In our simple example, we created the
geometry from the quad tree itself.

This method creates a discontinuous set of local sub-
domains, meaning that mip-mapping cannot be used for tex-
ture filtering. However, traditional mip-mapping tends to do

c
 The Eurographics Association and Blackwell Publishers 1998.



P. Sloanet al./ Importance Driven Texture Coordinate Optimization

Tile Based Optimization Deformation Based Optimization

Tile Boundary Artifact Anisotropic Distortion

Resampled Atlas Quad Tree

Figure 5: Figure showing a texture atlas, and highlighting
the artifacts from the different methods.

a poor job where there is any parametric distortion, which
almost always occurs with a global parameterization26.
Anisotropic texture filtering techniques25, or more clever
evaluation of mip-maps5, would be beneficial for both of
these methods. An interesting application for this method
is for creating texture maps for the Nintendo 64 game plat-
form. That particular platform has a limited, 4 kilobyte, tex-
ture cache which must be explicitly maintained by the user.
Textured primitives can only be drawn if there corresponding
texture regions is already in the cache. This is an excellent
application for this technique.

4.4. Relaxation

The relaxation phase of the optimization operates on the em-
bedding of the model into the deformed texture space in or-
der to minimize distortion. To accomplish this, we induce
forces on each vertex of the deformed mesh. These forces
are similar to those presented by Krishnamurthy et al. in13,
but our method maintains relative importance and minimizes
metric distortion.

There are two forces for each vertex of every triangle, one
which maintains importance and another which minimizes
distortion. Magnitudes are determined based on the differ-
ence between the desired area (the relative amount of the

importance map covered) and the actual area of the trian-
gle in the deformed mesh. The force vectors at each vertex
are orthogonal to its opposite edge, directed away from that
edge to “grow” the triangle or towards that edge to “shrink”
the triangle. There are also force vectors at every vertex that
minimize metric distortion inherent to the embedding of the
model in texture space. The distortion force maintains simi-
larity for corresponding triangles of the deformed mesh and
the model mesh. By nudging vertices, the distortion force
works to preserve the aspect ratios of corresponding trian-
gles. For each vertex in the mesh, the two resultant force vec-
tors are computed with the magnitudes clamped in order to
prohibit the mesh from folding over upon itself. Finally, the
importance and distortion forces are alpha-blended accord-
ing to a user- specified weighting parameter. This relaxation
process is iterated until the system converges for a specified
tolerance. Figure 6 shows before and after images of a repa-
rameterized space. This solution is fairly inelegant, and often
this phase isn’t even necessary. A more robust integration of
the different metrics is needed.

Figure 6: The warped mesh used to construct Figure 5 with
the deformation technique. Notice the distortion around the
center of the texture.

4.5. Application to Parametric Surfaces

If the model is a B-spline or Bezier surface, the deforma-
tion mesh can be used to reparameterize the surface, as in24.
This reparameterization is only used for determining texture
coordinates over the surface. The relaxation can be done di-
rectly on the deformation mesh, and metric distortion can
be explicitly computed and optimized using this mesh as
well. Thus, our method can be applied to both polyhedral
and parametric models.

5. Conclusion and Future Directions

We have introduced the idea of an importance map, and
shown how such a metric can be used to better drive the
optimization of texture coordinates. By accounting for the

c
 The Eurographics Association and Blackwell Publishers 1998.



P. Sloanet al./ Importance Driven Texture Coordinate Optimization

inhomogeneous content of the texture, we are able to rescale
the parameterization, partitioning greater space for regions
of greater importance. In addition, we have shown how to
generate automatic importance maps from the intrinsic con-
tent of a texture, as well as how to incorporate or even over-
ride that map with user-guided importance values.

Clearly, not all textures can benefit from these techniques.
Textures need to have spatially localized detail. This is often
the case in industrial design, where users are simply paint-
ing local details on objects (it was seeing how a commercial
3D painting system was used in ID that motivated this re-
search. The user was painting detail lines and headlights on
a car, around 90% of the texture space was wasted.), and we
believe this could also be the case for some entertainment
applications. Textures that have uniform spatial frequencies
(brick, sand, etc.) receive no benefit from these methods.

There are several interesting areas of future research.
More work needs to be done integrating the more conven-
tional metric distortion terms into the optimization process.
Ultimately, we would like to further integrate these meth-
ods with a 3D painting environment. Such a coupling would
more clearly illuminate one of the strengths of our method,
namely the ability to optimize the texture parameterization
at any of three primary stages of the modeling/painting cy-
cle. The first method is purely as a preprocess, in which the
user could paint either on the surface of the model or in
the space of the texture where they want more or less de-
tail. The second method is as a postprocess. The user could
paint on larger or multi-resolution texture maps, and then
optimize when the textures were rescaled to a more practi-
cal size. This method would be useful in entertainment ap-
plications or when the user has to work with machines that
have limited texture memory. The final method is to periodi-
cally perform the optimization as the user creates the texture
map. This process could be based on brush history, texture
characteristics, explicit requests by the user, or any combi-
nation thereof. This tight level of integration would give the
user more freedom when designing textures for models, and
would be a convenient way to work around the metric dis-
tortion problem.

We are also currently extending the tiled optimization
technique to work with 3D textures used in volume render-
ing. In the context of volume rendering it is also desireable
to have the tiling be a multi-resolution one, allowing the user
to dynamically control the detail based on regions of inter-
est. Dynamically evaluating the level of detail of the texture
over space could also be applied to rendering surfaces, and
fits in nicely with some of the recent Talisman papers from
Microsoft16.

6. Acknowledgments

This work was supported in part by the National Science
Foundation. The authors would like to thank Chris Johnson,

Peter Shirley, and Brian Smits for their helpful comments
and suggestions. We would also like to thank Marty Cole at
Parametric Technology for the figure of the car hood, Dave
Debry (aka Grue) at PDI for his likeness, and Todd Green for
critical system life support. Furthermore, we appreciate ac-
cess to facilities that are part of the NSF STC for Computer
Graphics and Scientific Visualization.

References

1. AGRAWALA , M., BEERS, A. C., AND LEVOY, M. 3D paint-
ing on scanned surfaces. In1995 Symposium on Interactive
3D Graphics(Apr. 1995), P. Hanrahan and J. Winget, Eds.,
pp. 145–150.

2. BEERS, A. C., AGRAWALA , M., AND CHADDHA , N. Ren-
dering from compressed textures. InSIGGRAPH 96 Confer-
ence Proceedings(Aug. 1996), H. Rushmeier, Ed., pp. 373–
378.

3. BENNIS, C., VÉZIEN, J.-M., IGLÉSIAS, G., AND GAGA-
LOWICZ, A. Piecewise surface flattening for non-distorted
texture mapping. InSIGGRAPH 91 Conference Proceedings
(July 1991), T. W. Sederberg, Ed., pp. 237–246.

4. BERMAN, D. F., BARTELL, J. T.,AND SALESIN, D. H. Mul-
tiresolution painting and compositing. InSIGGRAPH 94 Con-
ference Proceedings(July 1994), A. Glassner, Ed., pp. 85–90.

5. BLEAK , J. N., GRANGE, R. L., AND GARDINER, H. D.
Overcoming the limitations of todays image generators.
http://www.es.com/Products/Sim/harmony/documents.html.

6. BURT, P., AND ADELSON, E. H. A multiresolution spline
with application to image mosaics.ACM Transactions on
Graphics 2(1983), 217–236.

7. CATMULL , E. E. A Subdivision Algorithm for Computer Dis-
play of Curved Surfaces. PhD thesis, Dept. of CS, U. of Utah,
Dec. 1974.

8. CHUI , C. K., Ed. Wavelets: A Tutorial in Theory and Appli-
cations. Academic Press, 1992.

9. CROW, F. C. Summed-area tables for texture mapping. In
SIGGRAPH 84 Conference Proceedings(July 1984), H. Chris-
tiansen, Ed., pp. 207–212.

10. ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNS-
BERY, M., AND STUETZLE, W. Multiresolution analysis of
arbitrary meshes. InSIGGRAPH 95 Conference Proceedings
(Aug. 1995), R. Cook, Ed., pp. 173–182.

11. HANRAHAN , P., AND HAEBERLI, P. E. Direct WYSIWYG
painting and texturing on 3D shapes. InSIGGRAPH 90 Con-
ference Proceedings(Aug. 1990), F. Baskett, Ed., pp. 215–
223.

12. HEEGER, D. J.,AND BERGEN, J. R. Pyramid-Based texture
analysis/synthesis. InSIGGRAPH 95 Conference Proceedings
(Aug. 1995), R. Cook, Ed., pp. 229–238.

13. KRISHNAMURTHY, V., AND LEVOY, M. Fitting smooth sur-
faces to dense polygon meshes. InSIGGRAPH 96 Conference
Proceedings(Aug. 1996), H. Rushmeier, Ed., pp. 313–324.

c
 The Eurographics Association and Blackwell Publishers 1998.



P. Sloanet al./ Importance Driven Texture Coordinate Optimization

14. LEE, S., CHWA, K., SHIN, S. Y., AND WOLBERG, G.
Image metamorphosis using snakes and free-form deforma-
tions. InSIGGRAPH 95 Conference Proceedings(Aug. 1995),
R. Cook, Ed., pp. 439–448.

15. LEE, S.-Y., CHWA, K.-Y., HAHN, J.,AND SHIN, S.-Y. Im-
age morphing using deformation techniques.Journal of Visu-
alization and Computer Animation 6, 3 (1995).

16. LENGYEL, J.,AND SNYDER, J. Rendering with coherent lay-
ers. InSIGGRAPH 97 Conference Proceedings(Aug. 1997),
T. Whitted, Ed., pp. 233–242.

17. LITWINOWICZ, P.,AND MILLER, G. Efficient techniques for
interactive texture placement. InSIGGRAPH 94 Conference
Proceedings(July 1994), A. Glassner, Ed., pp. 119–122.

18. MA, S. D.,AND L IN, H. Optimal texture mapping. InEu-
rographics ’88(Sept. 1988), D. A. Duce and P. Jancene, Eds.,
North-Holland, pp. 421–428.

19. MAILLOT , J., YAHIA , H., AND VERROUST, A. Interactive
texture mapping. InSIGGRAPH 93 Conference Proceedings
(Aug. 1993), J. T. Kajiya, Ed., pp. 27–34.

20. OGDEN, J. M., ADELSON, E., BERGEN, J., AND BURT, P.
Pyramid-based computer graphics.RCA Engineer 30(1985),
4–15.

21. PEDERSEN, H. K. Displacement mapping using flow
fields. InSIGGRAPH 94 Conference Proceedings(July 1994),
A. Glassner, Ed., pp. 279–286.

22. PEDERSEN, H. K. Decorating implicit surfaces. InSIG-
GRAPH 95 Conference Proceedings(Aug. 1995), R. Cook,
Ed., pp. 291–300.

23. PEDERSEN, H. K. A framework for interactive texturing on
curved surfaces. InSIGGRAPH 96 Conference Proceedings
(Aug. 1996), H. Rushmeier, Ed., pp. 295–302.

24. SHIRMAN , L., AND KAMEN, Y. Fast and accurate texture
placement.IEEE Computer Graphics and Applications 17, 1
(Jan. 1997), 60–66.

25. TORBORG, J.,AND KAJIYA , J. T. Talisman: Commodity re-
altime 3d graphics for the pc. InSIGGRAPH 96 Conference
Proceedings(Aug. 1996), H. Rushmeier, Ed., pp. 353–363.

26. WILLIAMS , L. Pyramidal parametrics. InSIGGRAPH 83
Conference Proceedings(July 1983), P. Tanner, Ed., pp. 1–11.

27. WOLBERG, G., AND BOULT, T. E. Separable image warp-
ing with spatial lookup tables. InSIGGRAPH 89 Conference
Proceedings(July 1989), J. Lane, Ed., pp. 369–378.

c
 The Eurographics Association and Blackwell Publishers 1998.


