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AbstractÐA numerical algorithm is presented for the solution of geometrically challenging two-dimen-
sional river and estuary ¯ows, based on an adaptive triangular tessellation of the ¯ow domains of inter-
est. The governing, shallow water, equations are discretised using a ®nite volume approach embodying
variable step time integrators, to yield a method that is second order accurate in both space and time.
An approximate Riemann solver is used to determine ¯ow directionality in conjunction with an e�ective
means of dealing with wetting and drying at the boundaries.

The approach is capable of handling complex ¯ow domains and yielding solutions for which errors
are controlled automatically by the use of spatial re-gridding and time stepping based on local error
estimates. Its range of applicability is demonstrated through considering several problems involving
super/sub-critical ¯ow, wetting/drying, culminating in the solution of a complete estuary problem. #
1998 Elsevier Science Ltd. All rights reserved

1 . INTRODUCTION

There has been considerable interest, of late, in modelling ¯uid ¯ow in rivers and estuaries,

much of which has been driven by increased public awareness of pollution and environmental
issues in relation to construction projects, coastal defences, the dumping of e�uent into rivers

and the sea, discharges from power stations and the processing industries, ¯ooding and radio-
active waste disposal. The equations which govern the motion of such ¯ows can be solved ana-

lytically for only the very simplest of problemsÐfor ¯ows of practical interest numerical
methods o�er the only viable way forward. The principal challenges the latter presents are two-
fold: the capacity to resolve ¯ow in convoluted topologies coupled with the capability to solve

problems for a wide range of boundary and initial conditions.

In addition, any generally applicable numerical approach should embody the features necess-
ary to: handle both steady and transient ¯ow conditions (smooth or otherwise); describe and in-

corporate complex topography; simulate both sub- and super-critical conditions; accommodate
¯ow around and through structures such as weirs and gates; allow for the wetting/drying of
¯ood planes and river beds; enable in¯ow/out¯ow conditions to be speci®ed at di�erent points

in the domain of interest. More exacting criteria involve: correct embodiment of the underlying
physics; quanti®able accuracy and speed of computation.

A major issue is that of domain decomposition in the context of the topologies encountered

in practise; although there are clearly di�culties associated with adopting a rectangular grid sys-
tem for this purpose it has remained a popular choice, forming the basis of a number of widely
used algorithms [1]. Another approach is to generate a computational grid based on a system of

curvilinear coordinates [2±4]Ðthe governing equations need to be transformed accordingly but
the advantage is better geometric de®nition while retaining ease of discretisation. Molls and

Chaudhry [5], have applied this methodology with apparent success to a number of challenging,
steady-state problems, including transitional ¯ow. However, they fail to disclose the nature of

the computational grids employed, nor do they consider the solution of topologically complex
¯ows when di�culties are likely to arise in regions where the grid becomes highly skewed.

A preferable alternative is to adopt an irregular, unstructured grid system, typical of those
employed in ®nite element analyses. Recent work in the area has yielded some rather impressive
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results using TELEMAC [6,7], the crux of which has been the attainment of accurate descrip-

tions of complex ¯ow domains via triangulation. A key feature of the present work is to retain
this ¯exibility but within a ®nite volume framework which experience dictates is much quicker

to compute. On a di�erent note, Garcia-Navarro, Hubbard and Priestly [8] introduced a novel

®nite volume formulation of the shallow water equations which, it is claimed, is `genuinely' two-

dimensional in the sense that the equations are never transformed to cell face normal directions

in order to obtain ¯uxes. However, the method is rather more complex than the traditional ®nite

volume approach and it remains unclear from their preliminary work whether the extra e�ort

required gives way to improved solutions.

Until quite recently, the tendency has been to employ a non-conservative form of the shallow

water equations to compute hydraulic ¯ow models, a practice that should be avoidedÐwhen a

problem involving rapidly changing transitional ¯ow is encountered sharp fronts and rapid

changes in velocity occur, resulting in these extreme conditions being predicted incorrectly.

However, such features need no longer be a�icted in this manner since considerable e�ort has

been expended of late (inspired by success in the ®eld of aeronautics) in the adoption of shock
capturing methods for the solution of the conservative form of the shallow water equations [9±

15] and [8]. The latter enables a Riemann solver and ¯ux limiter to be used within a ®nite

volume formulation, a combination that o�ers the tantalising prospect of attaining solutions to

complex problems on fully unstructured grids with accurate description and resolution of

extreme conditions such as hydraulic jumps and bores.

The resolution of steep gradients can be improved further by employing mesh adaptionÐthat

is, increasing the mesh density in desired regions of the ¯ow. While this can prove problematic
within ®nite di�erence and ®nite element analyses, ®nite volume methodsÐparticularly those

based on a triangular mesh systemÐlend themselves quite naturally to automatic adaptive

re®nement/de-re®nement procedures [16,17].

There is very little in the open literature concerning the application of these recent advances

to general hydraulic ¯ow problems. The exceptions are Yang and Hsu [13] who report results

for the formation of shocks around a cylinder in a contraction, and Zhao et al. [1] who appear
to have been the ®rst to tackle a problem of practical interestÐthat of a river and ¯ood plane.

In their work a Riemann solver is used to form the ¯uxes on an unstructured, mixed quadrilat-

eral-triangular grid system. The results are extremely encouraging with numerical predictions

and ®eld measurements comparing well for the steady-state problem investigated. The major

drawbacks are that the associated solution times are seen to be rather excessiveÐa consequence

of the CFL limit imposed by the explicit nature of their schemeÐwhile the spatial discretisation

procedure adopted is ®rst order only.

The motivation for the present work is to improve upon every facet of the above and produce

an algorithm with a wide range of practical applicability. More speci®cally the method:

. is centred on the conservative form of the shallow water equations;

. employs an ®nite volume formulation, the unstructured computational grid for which is gener-

ated automatically by triangular decomposition of the region of interest; any associated digital
bathymetry data is similarly interpolated automatically;

. uses an approximate Riemann solver to calculate the convective ¯uxes together with an as-

sociated ¯ux limiter which is monotonicity preserving;

. makes use of second order spatial and temporal discretisation;

. embodies the scope for automatic spatial and temporal error control;

. has the ¯exibility to specify general boundary conditions, including the capacity to handle
wetting/drying characteristics.

The ethos which underpins the scheme is described fully in Sections 2 and 3. This is followed

(see Section 4) by a description of how wetting/drying type boundary conditions are assimilated

with application to two demanding one-dimensional test problems for which accurate results

already exist for the purpose of comparison. In Section 5 the complete algorithm is used to

solve a number of two-dimensional problems and comparisons drawn between existing exper-
imental data and corresponding theoretical predictions. Conclusions follow in Section 6.
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2. GOVERNING EQUATIONS AND DOMAIN DECOMPOSITION

Each of the problems considered later is modelled in terms of the two-dimensional shallow
water equations, containing source terms representing frictional stress and momentum change
due to a sloping bed, which when written in conservative form can be expressed as

Ut � Ex �Hy � S�U �, �1�
where subscripts t, x and y denote ®rst derivatives with respect to these parameters, and

U �
� f
fu
fv

�
, E �

fu

fu2 � 1

2
f2

fuv

26664
37775, H �

fv
fuv

fv2 � 1

2
f2

2664
3775, S � 0

gf�Sfx � Sox�
gf�Sfy � Soy�

24 35 �2�

where u, v are the velocities in the x, y directions respectively; f = gh, h is the depth, g is the
acceleration due to gravity, Sox/y and Sfx/y, are the bed slope and friction slope in the x/y direc-
tion, respectively. The latter is found using either the Manning or (equivalent) De Chezy for-
mulae

Sfx � n2u
���������������
u2 � v2
p

�f=g�4=3 � u
���������������
u2 � v2
p

C 2�f=g� , �3�

where n is the Manning n and C the De Chezy C [18].

2.1. Mesh generation

The type of mesh employed is an unstructured triangulation of the solution domain enabling
arbitrary shaped geometries to be accommodated more easily than with a square grid system.
The production of a suitable mesh can be a complex and time consuming a�air were it not for
the many algorithms now available which generate automatically an initial mesh with the
required properties. The property most desired is that the mesh is smooth, that is, that adjacent
triangles do not have greatly di�ering qualities and that none of the triangles have a quality less
than a prescribed value. Consequently, use was made of the GEOMPACK [19] mesh generator.
GEOMPACK allows the mesh to be distributed as required via a function de®ning a weight
between 0 and 1 for any point within the solution domain. The higher the function value the
greater the mesh density. The reader is referred to Ref. [19] for a more detailed discussion of the
consequence of using this function.

The above was interfaced to software requiring only an outline of the full solution domain
and a minimum quality of triangle to be supplied. Although this in itself provides su�cient in-
formation to construct a ®nite volume solution scheme, it was further processed using TRIAD
[20] to create data structures allowing e�cient manipulation of the mesh, in particular adap-
tionÐre®nement/de-re®nementÐthroughout the solution domain.

3 . METHOD OF SOLUTION

Construction of a suitable numerical algorithm for the solution of Equation (1) necessitates a
®rm base upon which to build. The one presented here is centred around SPRINT2D [20±22],
software which utilises triangular domain decomposition and a cell centred ®nite volume formu-
lation, with numerical ¯ux determined by the solution of a local Riemann problem. This method
enables accurate solutions to be found for both smooth and discontinuous ¯ow problems. It
allows ¯exibility of de®nition of problems and boundary conditions by passing control of the
¯ux calculation, initial conditions, source term and boundary speci®cation to external routines
while performing the integration routine within. Thus the most complex of problem speci®cation
can be achievedÐincluding wetting/dryingÐfor ¯ows involving tributaries, weirs, rating curves
etc.

A key feature of SPRINT2D is its ability to quantify the solution error and to control it
as necessary. Error control is complex with balance necessary between those arising from
both temporal and spatial integration. SPRINT2D contains methods that control each inter-
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dependentlyÐwhile the mesh is allowed to re®ne/de-re®ne, the time step is governed by the tem-
poral integration procedure [21]. Full control of this adaption is allowed via external routines
through the setting of error scaling and mesh adaption control parameters.

3.1. Discretisation procedure

A cell centred ®nite volume method is formulated for Equation (1) over a triangular shaped
control volume with the dependent variables of the system represented as piecewise constants.
The association of these variables with particular points enables the use of a high-order interp-
olation schemeÐsee later. Integrating Equation (1) over the ith triangle gives�

Ai

@U

@t
dOÿ

�
Ai

S�U �dO � ÿ
�
Ai

�E�U �x �H�U �y�dO, �4�

where Ai is the area of the triangle and O is the integration variable de®ned on Ai. The area
integrals on the left hand side are approximated by a one-point quadrature rule, the quadrature
point being the centroid of the triangle. Using the divergence theorem, the right hand side of
Equation (4) can be replaced by a line integral around the bounding volume, namely

Ai
@Ui

@ t
� ÿ

�
Gi

ÿ
E�U �nx �H�U �ny

�
ds� AiS�Ui �, �5�

or

Ai
@Ui

@ t
� ÿ

�
Gi

Fn�U �ds� AiS�Ui �, �6�

where Gi is the perimeter of the ith triangle, Fn(U) is the normal ¯ux vector and s is the inte-
gration variable along the perimeter; fnx and Ny are the components of unit normal in the x
and y directions respectively. The line integral is evaluated via a mid-point quadrature rule, that
is, the numerical ¯ux is calculated at the mid-point of each edge, giving

@Ui

@t
� ÿ 1

Ai

�
Fn�U �ik:lik � Fn�U �ij:lij � Fn�U �il:lil

�� S�U �: �7�

Referring to Fig. 1, side ij is common to the triangles associated with Ui and Uj, lij is the
length of side ij and Fn(U)ij the ¯ux in the outward (from the triangle associated with Ui) normal
direction evaluated at the midpoint of this edge; these are de®ned similarly for sides ik and il.

3.2. Normal ¯ux calculation: the Riemann approach

A feature of the shallow water equations, which is very useful when developing an unstruc-
tured ®nite volume scheme, is that they are rotationally invariant enabling problems to be posed
as locally one-dimensional. Evaluation of the normal ¯ux in Equation (7) is made by a series of
solutions local to the lines which make up the triangular mesh. The Riemann problem is de®ned
by the solutions on the left and right of the cell face (or internal and external to the ®nite
volume), and the order of the numerical scheme is determined by the de®nition of these two
data states.

If (x, y) is a local coordinate system centred at the mid-point of the cell face in question, with
x in the normal outward direction and y lying tangentially, the condition for rotational invar-
iance is

TFn�U � � E�TU � � E�U�, �8�
where

T �
1
0
0

0
nx
ÿny

0
ny
nx

24 35: �9�
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The velocities in the x and y directions are u=un=unx + vny and v=ut=-uny + vnx, respect-
ively.

In this local coordinate system the one-dimensional problem is then

Ut � �E�U��x � 0, �10�
which can be viewed as simply a Riemann problemÐan initial value problem with discontinu-
ous initial conditions on either side of the line, that is

U�x,0� �
�
UL x<0
UR xr0

: �11�

The approximate solution to this problem allows the correct ¯ux value, E(U), in
Equation (10), to be computed which is then transformed, via Equation (8), to give the desired
¯ux, Fn(U).

Many Riemann solvers exist for application to the shallow water equationsÐmost having
been derived from versions used in gas dynamicsÐthose of Roe [23] and Osher [24] being
examples which have met with considerable success [25]. Toro [11] identi®es several others
speci®c to the shallow water equation, including an exact solution. In this study each of the
above solvers were examined for both test and practical ¯ow simulations in one- and two-
dimensions. While most proved satisfactoryÐproducing very similar solutionsÐthe solver due
to Roe was consistently more stable, providing solutions under extreme conditions where others
failed.

The normal ¯ux at the face of a control volume can be expressed [9] as

Fn � 1

2

ÿ
FL � FR ÿ jAj�UL ÿUR�

�
, �12�

where FL/R, UL/R are the ¯uxes and the solution vector on the left and right sides of the face re-
spectively, and A is a Jacobian matrix given by

A � @Fn

@U
�

0
�c2 ÿ u2�nx ÿ uvny
ÿuvnx � �c2 ÿ v2�ny

nx
2unx ÿ vny

vny

ny
uny

unx � 2vny

8<:
9=;: �13�

Fig. 1. Construction of UL and UR interpolants. ., Centroid solution values; q, Midpoint of edge; w,
Interpolated solution values.

Prediction of ¯ow in rivers and estuaries 483



Following Roe [23] an equivalent [26] but linear system for the governing equations can be
de®ned using an averaged matrix AÄ with eigenvalues

~l1 � ~unx � ~vny � ~c, ~l2 � ~unx � ~vny, ~l3 � ~unx � ~vny ÿ ~c, �14�
and eigenvectors

~e1 � �1, ~u� ~cnx, ~v� ~cny�T, ~e1 � �0, ÿ ~cny, ~cnx�T, ~e1 � �1, ~uÿ ~cnx, ~vÿ ~cny�T, �15�
where the averages are de®ned as

~u � uR
������
fR

p � uL
������
fL

p������
fR

p � ������
fL

p , ~v � vR
������
fR

p � vL
������
fL

p������
fR

p � ������
fL

p , ~c �
������������������
fL � fR

p
2

, ~f �
������������
fLfR

p
: �16�

where FL/R are the values of F to the left and right sides of the face. The normal ¯ux can then
be written as

Fn � 1

2

�
FL � FR ÿ

X3
k�1

~akj~lkj ~ek
�
, �17�

where the aÄ's are the wave strengths given by

~a1 � 1

2
Df� 1

2
~fDu= ~c, ~a2 � ~fDv, ~a3 � 1

2
Dfÿ 1

2
~fDu= ~c: �18�

Hence the change in state across a wave is the product of the wave strength and the component
of the right eigenvector.

3.3. Spatial integration

For a ®rst order scheme the values of the variables to the left and right of side ij are
ULij
� Ui,URij

� Uj, the solution at the centre of adjacent cells. However, by employing an
upwind weighted linear interpolation function second order accuracy can be achieved, see
Berzins and Ware [22]. While second order schemes in general can exhibit under and over shoots
in regions of steep gradients this method has been shown to allow only physically realistic values
to be computed by means of limiting the gradients in the linear interpolants. It is worth noting
that a careful choice of limiter is required to ensure positivity on irregular triangular meshes
[22].

Accordingly, the limited values on the left and right of face ij (see Fig. 1) are given by

ULij
� Ui �

ÿ
U L

ij ÿUi

�
F
ÿ
rlij
�
, �19�

URij
� Uj �

ÿ
U R

ij ÿUj

�
F
ÿ
rrij
�
, �20�

Here F is a suitable limiter, such as the modi®ed Van Leer [22] one, where

F�R� � R� jRj
1�max�1,jRj� , �21�

rlij and rrij are internal and external upwind bias ratios of gradients

rlij �
U C

ij ÿUi

U L
ij ÿUi

, rrij �
U C

ij ÿUj

U R
ij ÿUj

: �22�

while U L
ij and U R

ij are internal and external linear upwind values, given by

U L
ij � Ui � dij,i

Ui ÿUlk

di,lk
, U R

ij � Uj � dij,j
Uj ÿUrs

dj,rs
: �23�

The linear centred value at the cell interface, denoted by U C
ij , is constructed from the six `sur-

rounding' triangles and is, for edge ij, either an interpolation between Uijc and Uks or between
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Uijc and Ulr, depending on which pair encompass the midpoint. This can be seen from Fig. 2 in
which case the interpolation is between Uijc and Uks. The term di,ij denotes the distance between

points, for example di,ij �
������������������������������������������������
�xi ÿ xij �2 � � yi ÿ yij �2

q
, while the values Ulk and Urs are intermedi-

ate, linearly interpolated, quantities which can be most clearly seen by examining Fig. 1. For
certain meshes the three centroid values may be collinear in which case the immediate upwind
centroid value is used.

3.4. Time integration

Equation (7) may be rewritten as a system of ordinary di�erential equations

@Ui

@ t
� GN,i�t,U�t��, �24�

where U(t) = U1(t),..., UN(t), and integrated numerically to give an approximation, V(t), to the
vector of exact solution values, U(t). The di�erence between these two vectors is the global time
integration error due to the numerical integration method applied. SPRINT2D contains a num-
ber of time integration modulesÐboth explicit and implicit. The Theta method used here has
automatic local error control, which when applied with local mesh re®nement/de-re®nement (see
Section 3.5) enables a balance between spatial and temporal errors to be found, allowing opti-
mum accuracy [21]. The solution at time tn+1=tn+k, where k is the time step, is written as

V�tn�1� � V�tn� � �1ÿ y�k _V�tn� � ykGN

ÿ
tn�1, V�tN�1�

�
, �25�

in which V(tn) and _V(tn) is the numerical solution and its time derivative at time level n, respect-
ively. The value of y lies in the range y $ [0.5,1.0] and can be set automatically within the soft-
wareÐa more common practise is to pre-set y explicitly at a value of 0.55. The size of the time
step k is chosen to satisfy a local error control, as described in the next subsection, which may
re¯ect a measure of spatial error.

The equation set can be solved within SPRINT2D by either a Newton±Krylov technique or
functional iterationÐsee Berzins [21,22] for details. Functional iteration gives

V m�1�tn�1� � V�tn� � �1ÿ y�k _V�tn� � ykGN

ÿ
tn�1, V �m��tn�1�

�
: �26�

Fig. 2. Construction of UC and UR interpolant. ., Centroid solution values; q, Midpoint of edge; w,
Interpolated solution values.
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where m= 0,1,..., is generally less than 3, and use is made of a second order predictor or one
based on the forward Euler method

V �0��tn�1� � V�tn� � kGN

ÿ
tn, V�tn�

�
: �27�

The condition for functional iteration to converge with a rate of convergence, rc, is that

kykJk<rc where J � @GN

@u
: �28�

Berzins [21] shows that a CFL type stability condition is satis®ed automatically if functional
iteration converges su�ciently fast.

With the Newton±Krylov approach Equations (25) are solved for a correction, DV, to the sol-
ution. So for the (m+ 1)th iteration of the modi®ed Newton method

�Iÿ kyJ �DV � r
ÿ
tmn�1

�
, �29�

where

r
ÿ
tmn�1

� � ÿVÿtmn�1�� V
ÿ
tn
�� �1ÿ y�k _V�tn� ÿ ykGn

ÿ
tn�1, V

ÿ
tmn�1

��
,DV � �Vÿtm�1n�1

�ÿ V
ÿ
tmn�1

��
:

�30�
The solution of the system of Equations (26) or Equations (29) constitutes the major compu-

tational task. Numerical tests with both methods con®rmed the results of Berzins and Furzeland
[27] that functional iteration can be as much as four times faster than multidimensional
Newton±Krylov methods for convection dominated problems of the type considered here.
3.4.1. Stability and time error control. E�cient time integration requires that the spatial and

temporal errors are roughly the same order of magnitude. The need for spatial error estimates
unpolluted by temporal error, requires that the spatial error is the larger of the two. Although
one way of achieving this might be to use the approach of Berzins [21] which controls the local
time error ln�1(tn+1) to be a fraction of the growth in the spatial discretisation error over a
time-step a standard local error approach was adopted in the present work, given by

kln�1�tn�1�k<TOL, �31�
where ln�1(tn+1) is the local time incurred on the time step to tn+1. TOL is a user-supplied toler-
ance and the time step limited both by imposing an explicit maximum step size and that func-
tional iteration converges su�ciently fast.

The above approach is necessary because the problem of establishing a stable step size limit
analytically, for time integration of the system of partial di�erential equations given by
Equation (1), is non-trivial in the case of an unstructured mesh system. This is easily demon-
strated by considering the following model advection equation

Ut � aUx � bUy � 0, �32�
which when discretised in a ®nite volume sense leads to a system of ordinary di�erential
equations, see Berzins [22]

Gi

ÿ
tn,V�tn�

� � ÿ ~ai Vi�tn� � Si
N

ÿ
V�tn�

�
, �33�

where Si
N

ÿ
V�tn�

� �Pj 6�i cijVj�tn�, cijr0, thus making Si
N

ÿ
V�tn�

�
a positive function for positive

values of V(tn). The coe�cient aÄi plays a key role in the stability analysis, Berzins and Ware
[22], in that the stability condition for ¯ow alone is

1ÿ yk m ~air0, �34�
where m is the number of functional iterations. The coe�cient aÄi is de®ned by considering the
discretised form of Equation (32) which, for a triangular control volume, is

dui
dt
� ÿ 1

Ai

ÿ
aulikDy0,1 ÿ burikDx0,1 � aulijDy1,2 ÿ bulijDx1,2 � aurilDy2,0 ÿ bulilDx2,0

�
, �35�
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where, subscripts to the Dx and Dy terms indicate the vertices of the triangle, which are num-

bered in an anti-clockwise sense, such that

Dx0,1 � Dx1,2 � Dx2,0 � Dy0,1 � Dy1,2 � Dy2,0 � 0: �36�
Consequently, the right side of Equation (35) may be rewritten as,

ÿ 1

Ai

ÿ
a
ÿ
ulik ÿ uril

�
Dy0,1 � a�ulij ÿ uril�Dy1,2 ÿ b�ulij ÿ uril�Dx1,2 ÿ b�ulil ÿ urik�Dx2,0

�
: �37�

Consider each term of the form (ulij ÿ uril) independently; following the analysis in Berzins and

Ware [22], their Equation (42) shows that the coe�cient of uij in this term, denoted by zij,lk,il,

may be de®ned as

zij,lk,il � 1� F�Sij � dij,i
di,lk
ÿ F�Ril�

Ril
gil, �38�

where gilR1. De®ning other coe�cients of z.,.,. in the same way gives

~ai � 1

Ai

�
a zik,lj,ilDy0,1 � a zij,lk,ilDy1,2 ÿ b zij,lk,ikDx1,2 ÿ bzil,kj,ikDx2,0

� �39�

The above expression can be bounded by noting from Equation (21) that F(.) $ [0,2] and

hence

zij,lk,il R zmax � 1� 2dmax, �40�
where dmax is the maximum value of the ratio of distances, such as dij,i/di,lk in Equation (38).

Hence using Equations (33) and (35)

~aiR
ÿ1
Ai

zmax

�ÿ aDy2,0 � bDx0,1

�
, �41�

where ÿDy2,0r0. Now if Li is the length of the longest edge of triangle i, a su�cient condition

for positivity is

zmaxk
Li

Ai
�a� b�R 1

ym
: �42�

The result is a CFL type stability condition which depends on the term Li/Ai, which is also

used as a measure of the quality of a triangle. Although only one possible alignment to the

characteristic directions has been considered a similar result is obtained for other alignments.

It is the di�culty of evaluating Equation (42) that leads one to adopt the approach of impos-

ing stability through requiring the fast convergence of functional iterationÐsee also Berzins

[21]. For the model problem, Equation (32), the condition for convergence via functional iter-

ation in this case, with matrix norm6.61, is (ignoring the dependence of aÄ and cij on the sol-

ution) from Equation (33), approximately

ky
�
j ~aij �

X
j6�i
jcijj

�
� lrc, �43�

for 0 < l < 1. This expression may be substituted in Equation (34) to give

1ÿ yk mjaij � 1ÿ �lrc ÿ ky
X
j 6�i
jcijj�m,

� 1� ky
X
j 6�i
jcijjmÿ lrcm: �45�

Hence for a rate of convergence of functional iteration, rc, that is su�ciently small, condition

(34) holds.
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3.5. Error measurement and adaptation

At each time step, tn+1, for each triangular area, a local error estimate of the temporal
growth in the spatial error is calculated from the di�erence between the solution found at tn+1

with a ®rst order spatial interpolation and that for a second order spatial interpolation scheme
for each partial di�erential equation in the system. The precise form of the error estimate used
and its justi®cation can be found in Berzins [21,22]. In order to obtain a measurement suitable

for use as a re®nement indicator an average scaled error (serr) measurement is found for all of
the partial di�erential equations using prescribed absolute and relative tolerances

serr �
Xnpde
i�1

erri
atoli � area� rtoli � ui

, �45�

where err is the local error estimate, npde is the number of partial di�erential equations and atol
and rtol are the absolute and relative tolerances, respectively.

This form of scaled error provides a ¯exible way of specifying the re®nementÐby adjusting

atol and rtol for each partial di�erential equation the error measurement may be weighted
toward any one equation.

The re®nement indicator obtained from this scaled error

ceiling
ÿ
log4�serr� � 1

�
, �46�

yields an integer value indicating the number of times the triangle should be re®ned (if positive)

or de-re®ned (if negative).

Re®nement is performed by regular subdivision of existing triangles. Each triangle identi®ed

for re®nement is divided into four by joining together the centre points of each of its edges, see
Fig. 3. In this way the smoothness of the original mesh is preserved as the aspect ratio of the

new triangles will not be larger than that of the original. In the case when the adjacent triangle
is not re®ned then a `hanging node' would be present were it not for the use of temporary
`green triangles' which surround any area of re®nement and are removed at the earliest opportu-

nity.

In order to avoid re®nement/de-re®nement occurring too often, two controls are introduced
into the adaptivity algorithm. The ®rst is a restriction on de-re®nement to one level at a time
and this only after the triangle has been ¯agged to de-re®ne twice. The second control is a layer

of extra re®nement which is placed around each re®ned triangle. This layer is normally ®xed at
2 triangle widths but may be varied for each problem. Further details of the algorithm can be
found in Ware [20]. This method of subdivision of triangles allows a tree structure of coarse to

®ne triangles to be constructed and makes for simple de-re®nement.

Fig. 3. Schematic of adaption technique.
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4. BOUNDARY CONDITIONS

The idea of using a Riemann solver to calculate the ¯ux at the face of a cell can be adopted
in the description of boundary conditions in that a condition which relates, at most, one of the
¯ow variables to the local ¯ow ®eld can be dealt with in this wayÐtypical examples are that of
unit in¯ow or a rating curve (a relationship between the discharge and water depth)Ðand when
combined with equations obtained from characteristics theory give su�cient information for the
boundary ¯ux to be calculated.

Characteristics theory tells us that the Riemann invariants of the one-dimensional shallow
water equations are

Rÿ � u� 2c, R� � uÿ 2c, �47�
and de®ne the relationships

d

dt
�uÿ 2c� � 0 on

dx

dt
� uÿ c,;

d

dt
�u� 2c� � 0 on

dx

dt
� u� c, �48�

such that u22c is constant along u2c, respectively; c is the local wave speed given by c=
����
f

p
;

R+ represents the state to the left, Rÿ that to the right. At a boundary the right side is outside
the domain, that is, the Rÿ relationship is replaced by the boundary condition itself. The R+ re-
lationship can be written as

uL � 2cL � u* � 2c*, �49�
in which the subscripts L and * indicate the left and solution variables, respectively. This can be
combined with the boundary condition to obtain a solution for u* and c*. In general, the normal
¯ux may then be calculated at the boundary face, namely

Fn�U*� �

f*un

f*unu* �
1

2
f*

2nx

f*unv* �
1

2
f*

2ny

2666664

3777775, �50�

where un=u*nx+v*ny.

4.1. In¯ow, out¯ow and solid boundaries

Upstream in¯ow boundary conditions are implemented in the form of a unit discharge or dis-
charge per unit length. At any given time the following discharge condition holds

q � h*u*, �51�
which when combined with the relationship c=

�����
hg

p
and Equation (50) gives

2c3* ÿ �uL � 2cL�c2* � qg � 0, �52�
which can be solved iteratively for c*, and the normal boundary ¯ux calculated via
Equation (51).

In the case of a speci®ed depth boundary condition, c*=
��������
gh*

p
, where h* is known. From UL,

the normal and tangential velocity components at the face of a control volume are

uLn
� uLnx � vLny, uLt � ÿuLny � vLnx: �53�

From which un follows directly from Equation (50),

un � uLn� 2cL ÿ 2c*: �54�
The transverse velocity is passively advected [11], so ut=uLt

. Transforming back to the
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Cartesian system using

u* � unnx ÿ utny, v* � unny � utnx, �55�
enables the normal ¯ux to be calculated.

A useful downstream boundary condition is a free out-fallÐan outlet boundary which
imposes no in¯uence on the ¯uid in the domainÐwhere depths are maintained and waves travel
through without re¯ection. This type of boundary is speci®ed by ®xing the boundary ¯ux using
the internal ¯ow conditionsÐsimply U*=UL with the normal ¯ux calculated from
Equation (50).

At stationary solid boundary walls the no slip condition is assumed to hold, that is normal
and tangential velocity components are zero there. Consequently, from Equation (49) c*=cL
giving the normal ¯ux at a solid wall as simply

Fn�U*� �

0

1

2
f2

*nx

1

2
f2

*ny

266664
377775: �56�

4.2. Wetting and drying

In practical two-dimensional river and coastal ¯ows, boundaries exist at which the water
depth approaches zero i.e. wetting/drying occurs. Clearly, an inadequate treatment of this
boundary condition will a�ect the accuracy of the solution.

The exact solution to a dry bed problem can be obtained by examining the Riemann invar-
iants present, in much the same way as the the approach described above, for the initial con-
ditions: fL, uL=0 on the left and no ¯uid (fR=uR=0) to the right. The exact solution to this
sub-critical Riemann problem [11] is simply

f �
�
1

3

ÿ
uL � 2

������
fL

p ��2

, u � 1

3

ÿ
uL � 2

������
fL

p �
: �57�

Unfortunately this exact, and other approximate, Riemann solutions produce unrealistically
high velocities when the depth of ¯ow is very small. In the past, two not dissimilar approaches
have been used in an attempt to alleviate this problem. The ®rst examines the solution depth in
a cell (or at a node in ®nite di�erence schemes) and removes from the computation any cell
whose depth is less that some prescribed value [2]. The second approach is to reformulate the
problem when the depths are small only removing them from the calculation when they are very
small [1,28]. The reformulation is usually one of removal of the inertial terms or to make the
¯ow friction dominated. The second approach, being more sophisticated, would be expected to
produce more accurate solutions. The increase in accuracy is, however, di�cult to quantify and
no comparative work has yet been published.

In this work a scheme based on the second approach is used; it is similar to that of Zhao et
al. [1], and involves monitoring solution variables at both cell centres and faces. The implemen-
tation di�ers however, by not excluding cells from the solution update but rather using a modi-
®ed ¯ux to achieve the same result.

Following Zhao et al. the (limited) ¯ow variables at each cell face are monitored and that
face is classed as being either a dry land boundary or a wet boundary. Similarly, ¯ow variables in
the cell are monitored with each cell denoted as being wet, dry or partially dry. Depending on
the combination of wet/dry/partial cells and cell-faces, a choice of ¯ux calculation for each cell
face is made and as limiter functions are used to calculate the cell face ¯ux, limited face values
are used to determine the face state. The method proceeds as follows:

. A tolerance depth, htol1, is chosen and the cell-face nominated a land boundary if the left
depth hL<htol1 and the right depth hR<htol1 or both the left and right cells are dry.

P. A. Sleigh et al.490



. A cell is deemed dry if the depth is less than htol1 and all cell-faces are land boundaries.

. A cell is deemed partially dry if the depth of ¯uid is greater that htol1 but less than a higher
valued tolerance htol2, or when the depth is less than htol1 but one of the cell-faces is not a
land boundary. For a partially dry cell the momentum ¯uxes are set to zero and only the mass
¯ux considered.

. If the depth in a cell is greater than htol2 then the cell is wet and the complete set of ¯uxes
are calculated via the Riemann solver.

The above wetting/drying procedure was tested thoroughly via controlled numerical exper-
iments, employing a one-dimensional version of the algorithm, before applying it to two-dimen-
sional ¯ow problems, see below. The ®rst problem considered is that of a dam-break onto a dry
bed having an exact solution, the second ¯ow on a sloping beach driven by an oscillating sea-
ward depth variation.
4.2.1. Dam-break induced ¯ow onto a dry bed. The initial conditions for the dry bed dam-

break problem are fL=1, UL=0 and fR=UR=0, the exact solution to which can be found
elsewhere, Toro [11]. The values of htol1 and htol2 are 0.0005 and 0.005 respectively, the cell
width is 1/160 and the time-step governed via Equation (31), described earlier.

Figure 4 shows analytical and numerical solutions of water surface and velocity pro®les after
0.04 and 0.1 sec have elapsed which can be seen to agree very well. The major discrepancy
occurs, as expected, at the moving foot of the wave where the dry-bed condition is applied.
However, the e�ect is local, di�erences are small height wise and the wave appears to be travel-
ling at the correct speed.
4.2.2. Sea-ward driven ¯ow onto a dry sloping beach. Although no exact solution exists for a

dry bed problem with non-zero bed slope, recent numerical results [29] provide excellent ma-
terial for comparison purposes. The problem, originally speci®ed by Watson and Peregrine [30],
was investigated by Pennington and Berzins [29] via a simple coordinate transformation from

Fig. 4. The dry-bed dam-break problem: height (left) and discharge (right). Comparison of numerical
and exact solution at two instants of time.
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which they derived a homogeneous set of equations that could be solved numerically with rela-
tive ease. Taking z = (x+ 1)/(xs+1), where xs(t) is the position of the moving shoreline, the
one-dimensional shallow water equations can be written as

�1� xs� @h
@t
ÿ z

dxs

dt

@h

@z
� @ �uh�

@z
� 0, �58�

�1� xs� @u
@t
ÿ z

dxs

dt

@u

@z
� @

@z

�
1

2
u2 � h

�
� ÿ�1� xs�, �59�

with boundary conditions h(1,t) = 0, u(1,t) = dxs/dt.
The transformation has the e�ect of con®ning the numerical solution to a ®xed domain,

z $ [ÿ1,1], with a constant boundary condition at the dry bed boundary, thus the problem of a
moving dry-bed is removed. The initial conditions are those of a ¯at water surface with a non-
dimensional depth of 1 at the upstream end decreasing as x increases to the value zero where it
meets the bed of slope ÿ1 at the point x= 0, see Fig. 5. The ¯ow is driven by imposing a sinu-
soidal change in the depth at x =ÿ 1 given by f(t) = 0.6((2pt/0.475)ÿ sin(2pt/0.525))Ðsee
Fig. 6. This function oscillates greatly causing sharp fronts to appear in the ¯ow which travel
toward the sloping bed.

Results of the water surface heights at three successive times are shown in Fig. 7. The sharp
wave fronts which develop are seen to agree well with the corresponding solution of Pennington
and Berzins [29]. Most interestingly, although very slightly retarded, the height and position of
the front travelling on the sloping bed is in close agreement.

5. TWO-DIMENSIONAL FLOW PROBLEMS AND RESULTS

In order to demonstrate the ¯exibility of the algorithm outlined above three two-dimensional
¯ow problems are considered, that of: a dam-break in a rectangular domain; a dam-break in a

Fig. 5. Sloping dry-bed test problem: initial conditions.

Fig. 6. Upstream surface oscillation used to drive the sloping bed problem illustrated in Fig. 5.
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slowly diverging/converging channel together with comparisons with experimental measure-
ments; ¯ow in a natural estuary driven by both tidal changes and river in¯ow.

5.1. Standard dam-break problem

A commonly cited problem in hydraulic ¯ow simulations is that of a two-dimensional dam-
break, see for example Zhao et al. [1], Alcrudo et al. [9,26], Glaister [31] and Katapodes [32].
This type of ¯ow will reveal any weakness in relation as to how well a particular strategy deals
with combined sub- and super-critical ¯ow. The ¯ow domain, detailed in Fig. 8, is 200 m square
and contains a wall with an o�set gap of 75 m across its centre. The initial conditions are zero
¯ow with higher depth to the left than to the right of the wall, and is equivalent to a partial
dam failure. The resultant ¯ow is two-dimensional, highly non-linear and possibly trans-critical.
All boundaries are treated as solid non-slip walls.

Two scenarios are considered: the ®rst with initial conditions of zero ¯ow and depths of 1.0 m
to the left and 0.2 m to the right of the dividing wall; the second with the same condition to the
left but with a dry bed to the right.

Solutions to the ®rst scenario are shown in Figs 9 and 11 at four instants in time. In Fig. 9
the left and right images represent the mesh con®guration and velocity vectors, respectively.
Figure 11 shows a 3-dimensional representation of the water surface at the same four instants in
time as those in Fig. 9. It is useful to examine all three mesh, vector and surface plots together.

The collapsing vertical wall of water moves in the form of two wave fronts to the left and
right. To the right the wave moving into the shallow region has a ¯at pro®le (in plan) at 4 sec.

Fig. 7. Comparison of depths of ¯ow, z onto a sloping dry-bed, at three di�erent times.
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It is at this initial stage where traditional methods have failed to capture the conditions well and
it should be noted how the current method has ensured that no under or over shoots are present
and that the gradient across the steep fronts and the horizontal region is sharp. The right front
curvature as well as the height and surface gradient increase with time. On the vector plots two
vortices are seen to form on either side of the breach. These appear on the surface plots as
indents which deepen in time, contributing to the highly undulating surface shape at 28 sec. The
mesh can be seen adapting itself to satisfy the error control requirements as the solution evolves
in time. The adaption tolerances were set as in Table 1, the signi®cance of these tolerances being
that only the absolute errors are taken into account for adaption, and weight is given toward
the momentum equations. The solution which began on a coarse grid (level 0) of 400 triangles,
evolves in time with re®nement up to level 2 (the equivalent of a full mesh of 6400 triangles).
The gradation of the mesh from coarse to ®ne is shown particularly clearly at 12 sec, see Fig. 9.
The maximum mesh density was restricted to two levels of re®nement to ensure clarity of pre-
sented meshes. More re®ned regions would have been created had this restriction not been im-
plemented.

Solutions to the second scenario are shown in Figs 10 and 11. The same adaption tolerances
were used with wetting and drying tolerances of htol1 = 0.00001, htol2 = 0.00002, respectively.
Again, the similar phenomena of the mesh adapting over the steep surface gradient as the water
¯ows to the right is seen. Two important di�erences are apparent: the shape of the front
remains ¯atter and the ¯ow more unidirectional than the non-dry bed case; no steep surface gra-

Table 1. Adaption tolerances for two-dimensional dam-break

Equation Atol Rtol

continuity 0.1 0.0
x-momentum 0.0001 0.0
y-momentum 0.0001 0.0

Fig. 8. Flow domain of standard two-dimensional dam-break test problem.
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Fig. 9. Two-dimensional dam-break problemÐleft 1.0 m, right 0.2 m; mesh (left) and velocity vectors
(right) at four instants in timeÐfrom the top t= 4, 12, 20 and 28 sec.
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Fig. 10. Two-dimensional dam-break problemÐleft 1.0 m, right 0.0 m; mesh (left) and velocity vectors
(right) at four instants in timeÐfrom the top t= 4, 12, 20 and 28 sec.
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Fig. 11. Two-dimensional dam-break problemÐwet (left) and dry (right) at four instants in timeÐfrom
the top t= 4, 12, 20 and 28 sec.
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dient occurs at the tip of the front moving onto the dry-region. The front also moves faster hav-
ing reached the right hand side of the domain at 28 sec. The absence of a steep front and faster
movement for this dry case are both consistent with the solution of a one-dimensional dam-
break problem [11]. Adaption has extended further into the upstream region. This, although dif-
®cult to see on the surface plots, is because the surface has been drawn down further by the
increased speed of the out-¯owing water.

Although direct comparison with other published solutions is not possible, the general shape
of the surfaces appear similar. The two ¯ows demonstrate how the method handles steep gradi-
ents and trans-criticality well without special treatment of troublesome terms.

5.2. The Bellos dam-break problem

Bellos et al. [33] detail several simulations of an instantly failing dam and the subsequent ¯ow
on to a dry downstream bed. These tests were performed in a channel 20 m long by 1.4 m wide
at the upstream and downstream ends with a smooth non-symmetric contraction to 0.6 m wide
at a position 8.5 m along the length. The channel geometry is shown in Fig. 12.

The experimental series consisted of setting di�erent upstream depths and slopes of channel.
A plate simulating a dam separates the upstream and downstream regions, this was removed
quickly to approximate an instantly failing dam. The experimental measurements consist of
depth histories along the centreline of the channel for each test. The depths in the upstream
(wet) region were recorded using wire resistance type depth gauges while those downstream of
the dam, which were dry initially, were recorded using pressure transducers. Data at ®ve pos-
itions were collected in the mid-width position at the following distances from the upstream
end: 0.0 m, 4.5 m, 8.5 m, 13.5 and at 18.5 m (see Fig. 12). A more detailed description of the ex-
perimental arrangements and series of tests can be found in Bellos et al. [33].
In the numerical simulation the walls of the channel and the upstream end are solid, no slip,

boundaries. At the downstream end for a dry bed a free out-fall is appliedÐsee Section 4.1. For
situations with a set depth downstream it is not clear from the experimental description what
condition actually prevailed. For this reason the depth history measurements at 18.5 m have
been used to provide speci®ed depth boundary condition for the numerical simulations.

The ®rst problem considered is that for an upstream depth of 0.3 m and a downstream depth
of 0.053 m with a horizontal bed and having a Manning friction coe�cient of 0.012.
Computations were carried out on a ®xed mesh of 4025 triangles. The water surface pro®les for
each of the ®rst 6 sec of simulation are shown in Fig. 13. The steep front is seen to be preserved
from the outset and propagates to the end of the channel without dissipation. The e�ect of the
two dimensional nature of the channel on these pro®les can be seenÐthere is a reduction in
depth behind the right moving front before an increase at the upstream end.

Figure 15 shows depth histories at ®ve points in the channel. Included for comparison are the
measurements from the experimental study of Bellos et al. and the results of Garcia-Navarro et
al. [8]. It can be seen how, at each point, the depth is resolved well with the steep fronted wave
being captured and its shape maintained. Both sets of numerical results fail to position the wave

Fig. 12. Solution domain for the Bellos Channel problem, showing depth gauge positions (all dimen-
sions in metres).
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travelling from the downstream end well. This is probably due to the imposition of inappropri-
ate boundary conditions which, as mentioned above, are not speci®ed in the description of the
experimental procedure.

The second problem has the same upstream depth and Manning coe�cient but for ¯ow onto
a horizontal dry bed. The results were obtained from a 3095 triangular mesh with tolerances for
wetting/drying being htol1 = 0.001, htol2 = 0.011. Water surface pro®les are shown in Fig. 14
where it can be seen that the wave front moves over the dry bed until it eventually leaves the
domain at the downstream end. In Fig. 16 the depth histories from the experimental study and
this work are shown. The ®rst four plots agree very well with the experimental data; only the
last, at 18.5 m, di�ers in that the depth never reaches the measured levels. This again is probably
due to uncertainty and lack of agreement in the boundary conditions applied at the downstream
boundary in the case of the numerical solution.

5.3. Flow in the river axe estuary

A practical problem which demonstrates the full capabilities of the approach described here is
that of ¯ow in the River Axe estuary. The associated ®eld data, kindly provided by Wessex
Water, is of a high quality enabling the physical problem to be described in terms of: upstream
discharge from the River Axe; downstream sea-ward tide-cycle measurements; cross-sectional
measurements detailing the topographical (bed-elevation) information required to compute the
solution domain, Fig. 17. The river position and path was constructed from OS maps [34].

The unstructured gridding routine is able to take full advantage of the ®eld data by describing
the highly complex geometry to greatest e�ect in that the mesh is concentrated in user speci®ed

Fig. 13. Water surface pro®les for Bellos Channel at six instants in timeÐExpt. 1.

Fig. 14. Water surface pro®les for Bellos Channel at six instants in timeÐExpt. 2.
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Fig. 15. Comparison of depth histories at ®ve points in the Bellos ChannelÐExpt. 1.
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Fig. 16. Comparison of depth histories at ®ve points in the Bellos ChannelÐExpt. 2.
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regions of complex topology via the mesh weighting function described in Section 2.1. The result
is that steep bed gradients are resolved adequately with a moderate number of triangles.

The bed surface, which is highly non-uniform, consists of two very ¯at regions which slope up
toward each side together with a narrow steep-sided main channel. The available ®eld measure-
ment data for the bed consists of four cross-section pro®les from which the data are interpolated
on to the computational mesh. Figure 19(a) is a three-dimensional view of this bed surface con-
taining 1200 evenly distributed triangles, highlighting the main topographic features, but reveal-

Fig. 17. River Axe: domain and boundary conditions.

Fig. 18. Surface oscillation specifying the downstream boundary condition for the River Axe.
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Fig. 19. Three representations of the bed topography: 1200 uniform triangulation (a), 1067 weighted tri-
angulation (b), 4262 weighed triangulation (c), solid view of the bed surface from (a).
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ing that with this number and arrangement of triangles the main narrow channel is not resolved
particularly well. This can be overcome without the need to employ an excessive number of tri-
angles over the two comparatively broad bounding ¯anks, by biasing the triangular decompo-
sition toward the channel region as shown in Fig. 19(b). Comparing Fig. 19(a) and (b), reveals
that the latter grid distribution is necessary to best resolve the steepness of the `V' shaped chan-
nel side walls. For the sake of clarity the bottom image, Fig. 19(c), shows a `solid' view of the
bed surface produced from one uniform re®nement of the middle imageÐa plan view of the cor-
responding mesh is shown in Fig. 20.

Examination of Fig. 17 shows that three types of boundary condition need to be speci®ed: to
the left and right are solid walls; at the upstream end, in¯ow is speci®ed using a constant dis-
charge condition; at the downstream or sea-ward boundary, a speci®ed depth is imposed. The
latter, depth data, is obtained from recorded tide height history dataÐa typical tidal cycle is
shown in Fig. 18. The initial conditions are assumed to be zero ¯ow over the entire solution
domain with a water surface elevation of 10.0 m. For this elevation and prescribed tidal bound-
ary condition no wetting/drying occurs so that the htol values do not require setting.

Fig. 20. Plan view of the River Axe Estuary mesh with 2126 triangles.
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The velocity vectors for a typical ¯ow due to a ¯ood tide are shown in Fig. 21. The ¯ow is
funnelled predominantly into the river channel where its velocity increases rapidly. Note how,
at the river mouth, the ¯ow is non-symmetric which could indicate a possible navigation pro-
blem if this were a shipping channel. At the edges of the estuary close to the sea-ward bound-
ary the ¯ow is reversed resulting in the two stagnation points shown and ¯ow being forced
out of the domain by the rise in sea level at these points. Figure 22 shows typical velocity
vectors for an ebb tideÐ¯ow out to seaÐin which the rapid velocities in the river reduce, as
expected, as the estuary widens and ¯ows into the sea. There are no stagnation points appar-
ent in this ¯ow.

In Fig. 23 velocity vectors are shown for the region close to the mouth of the river at a point
in time when ¯ow is being reversed by a change in tide. Note the well-de®ned diagonal line
along which ¯ow is directed when the contra-directional velocities meet which is terminated at
each end by a stagnation point re¯ecting an increase in sea-level. This is an interesting example
of a truly two-dimensional ¯ow feature occurring during a tide cycle in this estuary.

Fig. 21. Typical velocity vectors and position of stagnation points (1 and 2) a ¯ood tide.
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6. CONCLUSIONS

An e�cient ®nite volume based numerical algorithm for the solution of the shallow water
equations is presented which embodies adaptive meshing, re®nement/de-re®nement, and variable
time-stepping for application to geometrically challenging practical river and estuary ¯ow pro-
blems. Accurate results are obtained for trans-critical ¯ow situations via shock capturing tech-
niquesÐin the form of an approximate Riemann solverÐcoupled with a weighted triangular
tessellation of the solution domains of interest. The latter is achieved using a readily available
mesh generator which is then further processed to create the appropriate data structures.

Key features of the methodology are ¯exibility and accuracy coupled with the option of auto-
matic error control. Of practical interest is the ability to prescribe easily a wide range of bound-
ary conditions including the wetting/drying of ¯ood planes.

A convincing demonstration of the ability to deal with a convoluted, practical ¯ow problem is
given, in the form of the River Axe estuary, where it is shown that the ¯ow is truly two-dimen-
sional, casting doubt on the validity of predictions that might be obtained via simpli®ed one-
dimensional models of such ¯ows.

Fig. 22. Typical velocity vectors for an ebb tide.
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