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ABSTRACT

Vector field simplification aims to reduce the complexity of the flow
by removing features in order of their relevance and importance,
to reveal prominent behavior and obtain a compact representation
for interpretation. Most existing simplification techniques based on
the topological skeleton successively remove pairs of critical points
connected by separatrices, using distance or area-based relevance
measures. These methods rely on the stable extraction of the topo-
logical skeleton, which can be difficult due to instability in numeri-
cal integration, especially when processing highly rotational flows.
These geometric metrics do not consider the flow magnitude, an
important physical property of the flow. In this paper, we propose a
novel simplification scheme derived from the recently introduced
topological notion of robustness, which provides a complemen-
tary view on flow structure compared to the traditional topological-
skeleton-based approaches. Robustness enables the pruning of sets
of critical points according to a quantitative measure of their sta-
bility, that is, the minimum amount of vector field perturbation
required to remove them. This leads to a hierarchical simplifica-
tion scheme that encodes flow magnitude in its perturbation metric.
Our novel simplification algorithm is based on degree theory, has
fewer boundary restrictions, and so can handle more general cases.
Finally, we provide an implementation under the piecewise-linear
setting and apply it to both synthetic and real-world datasets.

Keywords: Vector field data, topology-based techniques, flow vi-
sualization.

1 INTRODUCTION

Vector fields and their analysis are indispensable for many applica-
tions in science and engineering. With the increasing gap between
the size and complexity of the vector field data from real-world ap-
plications and the limited bandwidth of our visual perception chan-
nel, it is more and more challenging for domain experts to interpret
their data in detail or as a whole. This challenge is prominent in 2D
turbulence flows, where features are everywhere and feature sizes
differ by a few orders of magnitude. Vector field simplification aims
at reducing the complexity of the flow by removing features in or-
der of their relevance and importance, revealing prominent behav-
ior, obtaining a compact representation for interpretation and giving
a consistent and multi-scale view of the flow dynamics.

A considerable amount of research has been focused on vec-
tor field simplification based on the notion of a topological skele-
ton [14, 16]. A topological skeleton consists of critical points con-
nected by special streamlines called separatrices, which provides a
condensed representation of the flow by dividing the domain into
regions of uniform flow behavior. However, existing simplification
techniques rely on the stable extraction of the topological skeleton,
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which can be difficult due to instability in numerical integration, es-
pecially when processing highly rotational flows, e.g. Figure 1. Fur-
thermore, the distance and area-based relevance measures that are
commonly used to determine the cancellation ordering of critical
points typically rely on geometric proximities and do not consider
the flow magnitude, an important physical property of the flow.

In this paper, we propose a new vector field simplification
scheme derived from the recently introduced notion of robustness.
Robustness, a notion related to persistence [10, 20], is used to rep-
resent the stability of critical points and assess their significance
with respect to perturbations of the vector field. Intuitively, the ro-
bustness of a critical point is the minimum amount of perturbation,
with respect to a metric encoding flow magnitude, that is required
to cancel it within a local neighborhood. Our contributions are:

• We propose a new simplification strategy based on robustness.
It is hierarchical and enables the pruning of sets of critical
points according to a quantitative measure of their stability.

• By comparing with the distance-based metric, our method
provides a complementary view to topological-skeleton-based
simplification. It does not require the topological skeleton nor
heuristic parameters, while providing comparable simplifica-
tion results for typical scenarios. Furthermore, the method can
handle more general situations and the simplification can be
computed efficiently based on sublevel sets for large, complex
datasets when separatrices are difficult to integrate.

• Our strategy is built on a novel simplification algorithm based
on degree theory. The algorithm can remove critical points
in any connected sub-region of the vector field whose degree
is zero. It can handle more general boundary configurations
without requirements on the Conley Index. We provide an
implementation under the piecewise-linear (PL) setting, and
apply it to a number of synthetic and real-world datasets.

We do not intend to show that the robustness-based method is
necessarily better than topological-skeleton-based methods across
all scenarios. In the typical situation involving pairs of critical

(a) (b)

(c)

Figure 1: Topological skeleton: Sinks (and saddle-sink separatrices) are red, sources
(and saddle-source separatrices) green, and saddles blue. (a) A highly rotational flow
field where the pointed critical points are close to Hopf-bifurcations. Numerical inac-
curacies may accumulate during integration and separatrices may intersect or switch.
(b)-(c) Instability of separatrices under a small perturbation: The upper right sink is
not connected with the saddle on the left in (b), but is after a small perturbation in (c).



points connected by separatrices, they offer comparable visual re-
sults. Rather, the robustness-based method can handle more general
situations, is scalable, and gives a novel, mathematically rigorous
hierarchical simplification scheme. Our method finds, in the space
of all vector fields, the one that is closest to the original vector field
with a particular set of critical points removed, according to a met-
ric based on the L∞ norm (the maximum point-wise modification to
the vector field). Our results are optimal in this norm, that is, there
exists no simplification with a smaller perturbation.

2 RELATED WORK

Vector field simplification can be classified into topology-based and
non-topology-based techniques [32]. Non-topology-based tech-
niques typically focus on Laplacian smoothing of the potential
of a vector field [18, 25, 31]. Topology-based techniques mod-
ify the vector field topology explicitly by merging or cancelling
nearby critical points based on the notion of a topological skele-
ton [5, 14, 16, 32]. De Leeuw and Van Liere [7, 8] made use of a
geometry-based relevance measure (e.g. with respect to distance or
area proximity) to determine the pair of critical points to be can-
celled. Tricoche et al. [26] focused on a piecewise analytic de-
scription for the simplified field, which was later extended to time-
dependent 2D flows [28]. Theisel et al. [24] presented a topology-
preserved compression and simplification of vector fields. Zhang
et al. [32] introduced a framework for fixed point pair cancellation
based on Conley index theory. Chen et al. [5] extended this idea
to include periodic orbits and presented a more complete pairwise
cancellation framework. Recently, Chen et al. [4, 6] introduced
a multi-scale hierarchy of the vector field topology based on the
Morse Connection Graph (MCG) computed from Morse decompo-
sition [6]. This was extended to address piecewise constant vector
fields by Szymczak el al. [23, 22]. Such representations could be
used to simplify vector fields by iteratively merging pairs of Morse
sets that are adjacent in the MCG. The order of the pairs for cancel-
lation depends only on the geometric characteristics of the Morse
sets, i.e., the pairs that lead to smaller merged Morse sets will be
cancelled or merged first. Weinkauf et al. [30] introduced a topo-
logical simplification technique for 3D vector fields based on the
extraction of higher-order critical points. The simplification is as-
sisted by a derived auxiliary 2D vector field on a closed surface
surrounding each higher-order critical point.

Simplifications have also been proposed in a combinatorial set-
ting [19, 21]. Edelsbrunner et al. [9, 10] performed pair cancella-
tion on scalar fields defined on surfaces by changing the values of
the scalar function near the fixed point pair. This is equivalent to
simplifying the gradient vector field of the scalar function. Finally,
scale space techniques [15, 20] have also been proposed to assess
the importance of a critical point for topology-based simplification.

Robustness is closely related to the notion of persistence [10].
While persistence has been used successfully for scalar field visual-
ization, robustness, first introduced in [11], is specifically designed
for vector-valued data [3, 12]. Recent work [29] assigns robustness
to critical points in both stationary and time-varying settings, and
obtains a structural description of the vector field. Such a struc-
tural description implies the existence of a hierarchical simplifica-
tion strategy based on robustness, which is the focus of this paper.

In general, topology-based simplification techniques pair the
topological features for cancellation via the computation of sepa-
ratrices, which can be numerically unstable [6]. In contrast, the
proposed robustness-based method does not require this computa-
tion and, thus, is insensitive to numerical error. The simplification
hierarchy obtained from topology-based methods is typically in-
variant to scaling (multiplying the vector field with a scalar field),
while our technique is sensitive to the change of vector field mag-
nitude as it directly corresponds to our perturbation metric (Section
3). The robustness-based method achieves comparable results to
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Figure 2: Figure adapted from [29]. Suppose the vector field is continuous, where
sinks are red, source are green and saddles are blue. From left to right: vector fields
f , relations among components of Fr , and augmented merge trees. f contains four
critical points, a sink x1, a source x3, and two saddles x2 and x4. We use β , γ , ω etc. to
represent components of certain sublevel sets.

the topology-based simplification and can handle more challenging
cases where the topology-based methods may fail (Section 5).

3 BACKGROUND

We provide relevant background in degree theory and robustness by
reviewing previous work [3, 29] with minimal algebraic definitions
and illustrating the related concepts through an example (Figure 2
adapted from [29]). We also provide introductory descriptions of
isolating neighborhoods and Laplacian smoothing [5, 32].
Degrees. For a critical point x in 2D, its degree deg(x) equals its
(Poincaré) index, that is, the number of field rotations while travel-
ing along a closed curve centered at x counter-clockwise. Sources,
sinks, centers, and saddles have indices +1, +1, +1 and −1, re-
spectively. Furthermore, for a (path-)connected component C en-
closing several critical points, its degree deg(C) is the sum of the
respective degrees of those critical points [3]. For our robustness-
based simplification strategy, we rely on a corollary of the Poincaré-
Hopf theorem (which is also employed by topological-skeleton-
based simplification, e.g. [27]), which states that if a connected
component C in 2D has degree zero, then it is possible to replace
the vector field inside C with a vector field free of critical points.
Merge tree. To analyze a continuous 2D vector field f : R2→ R2,
we define a corresponding scalar function (referred to as the flow
magnitude function) f0 : R2→ R which assigns for each point the
magnitude (Euclidean norm) of the corresponding vector, f0(x) =
|| f (x)||2. We use Fr = f−1

0 (−∞,r] to denote the sublevel set of f0
for some r ≥ 0. F0 is precisely the set of critical points of f .

Increasing r from 0, the space Fr evolves and we can construct a
graph that tracks the (connected) components of Fr as they appear
and merge. This is called a merge tree (or join tree as described in
[1]). The root represents the entire domain of f0 while the leaves
represent the creation of a component at a local minimum. An in-
ternal node represents the merging of two or more components. We
further record an integer at each node which is the degree of the
corresponding component in the sublevel set, and refer to the result
as an augmented merge tree. An initial computation of the degrees
of critical points is sufficient to determine the degree of any compo-
nent of any sublevel set by computing the sum of the degrees of the
critical points lying in it [3]. An example is shown in Figure 21. The
merge tree on the right shows how the components of the sublevel
sets Fr evolve. At r = 0 there are four components that correspond
to the four critical points, each with non-zero degree. At r = r1,
components that contain x1 and x2 merge into a single component
β1 which has zero degree. When r = r2, components β1 and β2
merge into a single component γ1 with degree +1, while β3 grows
into γ2. Finally at r = r3, the single component ω1 has zero degree.
Static robustness and its properties. The (static) robustness of
a critical point is the height of its lowest degree zero ancestor in
the merge tree [2, 29]. The static robustness quantifies the stability

1We do not show any components which appear after r = 0 as they have
zero degree and do not correspond to critical points of the vector field.



of a critical point with respect to perturbations of the vector fields
through the following lemmas explicitly stated in [29].

We first define the concept of perturbation. Let f ,h :R2→R2 be
two continuous 2D vector fields. Define the distance between the
two mappings as d( f ,h) = supx∈R2 || f (x)− h(x)||2. A continuous
mapping h is an r-perturbation of f , if d( f ,h)≤ r.

Lemma 3.1 (Critical Point Cancellation [29]) Suppose a critical
point x of f has robustness r. Let C be the connected component
of Fr+δ containing x, for an arbitrarily small δ > 0. Then, there
exists an (r+δ )-perturbation h of f , such that h−1(0)∩C = /0 and
h = f except possibly within the interior of C.

Lemma 3.2 (Degree & Critical Point Preservation [29])
Suppose a critical point x of f has robustness r. Let C be the
connected component of Fr−δ containing x, for some 0 < δ < r.
For any ε-perturbation h of f where ε ≤ r− δ , the sum of the
degrees of the critical points in h−1(0)∩C is deg(C). If C contains
only one critical point x, we have deg(h−1(0)∩C) = deg(x). That
is, x is preserved as there is no ε-perturbation that could cancel it.

Revisiting the example in Figure 2, the robustness of the critical
points x1, x2, x3, and x4 are r1, r1, r3, and r3, respectively. Since
the robustness of x3 is r3, for any δ > 0, we consider a component
C⊆ Fr3+δ that is slightly larger than ω1 and contains x3 (in fact, ω1
contains all four critical points). Lemma 3.1 implies the existence
of an (r3 +δ )-perturbation that cancels x3 by locally modifying the
component C. Now consider another component C′ ⊆ Fr3−δ where
r2 < r3−δ < r3, then C′ has degree +1. Lemma 3.2 states that any
(r3−δ )-perturbation preserves the degree of C′.
Isolating neighborhood and Laplacian smoothing. Previously,
topology-based simplification focuses on cancelling pairs of criti-
cal points that are connected by separatrices. Zhang et al. [32] and
Chen et al. [5] propose to compute an isolating neighborhood sur-
rounding a pair of critical points, where a critical-point-free vector
field can be found by solving a constrained optimization problem,
referred to as a vector-valued Laplacian smoothing [32].

Based on Conley index theory, every boundary point of an iso-
lating neighborhood can be classified as either an entrance or exit
point. If an isolating region C in the domain contains multiple crit-
ical points and has trivial Conley index, the flow inside C can be
replaced with a new field free of critical points [32]. A typical sit-
uation for C to have a trivial Conley index is when its boundary
∂C consists of a single inflow and a single outflow component. As
shown in the later examples, such an isolating neighborhood is not
always easy to construct. The robustness-based method has no such
constraint and only requires the degree of C to be zero.

4 ROBUSTNESS-BASED SIMPLIFICATION ALGORITHMS

In robustness-based simplification, we first locate sets of critical
points that share the lowest zero-degree ancestors in the merge tree
and sort them based on their robustness values. For each set with a
common robustness r, we compute the corresponding component of
the sublevel set C⊆Fr. Since by construction deg(C)= 0, our strat-
egy can simplify C, whereas the distance-based strategy requires an
isolating neighborhood with trivial Conley index.

4.1 Preliminary
First we introduce the relevant constructions in a smooth setting,
and then translate the corresponding language into the PL setting.

Given a 2D vector field restricted to a degree-zero component C,
f : C→R2, we define the image space of C, im(C). For each point
p∈C, we have a vector vp = f (p)∈R2. im(C)⊂R2 is constructed
by mapping p to its vector coordinates vp. The origin in im(C)
corresponds to the critical points (0 vectors) in C. Since C ⊆ Fr, it
follows that ∀p∈C, ||vp||2 ≤ r, therefore im(C) is contained within
a disc of radius r in R2. We denote the boundary of this disc by S.

S
im(C)

im(C)

S
C

(b)

(a)

C

(c)

Figure 3: (a)-(b): Illustrative examples for uncovered (a) and covered (b) boundaries
of im(C). (c): A component and its image space with a few mappings highlighted.

Now suppose the boundary of C, denoted as ∂C, is a simple
closed curve2. Note that the above maps ∂C to S, obtaining the
image, im(∂C). We refer to the boundary of im(C) as uncovered,
if im(∂C) ⊂ S, otherwise, as covered. Figures 3(a)-(b) illustrate
these concepts. Note that both examples have zero degree. In 3(a),
the region C encloses a saddle-sink pair connected by a separatrix.
By traversing counter-clockwise along ∂C and observing how its
image im(∂C) wraps around S, we see that the boundary of im(C)
is uncovered. In 3(b), the region C encloses a saddle-sink pair not
connected by separatrix and the boundary of im(C) is covered.

In the PL setting, the vector field f is restricted to a triangulation
K of C, f : K→R2, where the support of K, |K|=C. We construct
the image of C by mapping each vertex p ∈ K to its vector coordi-
nates vp = f (p). Through linear interpolation, this also maps edges
and triangles in K to edges and triangles in im(C) as illustrated in
Figure 3(c). The concept of covered and uncovered boundaries of
im(C) can be defined similarly up to a small additive constant.

4.2 Algorithm Overview
Our simplification strategy consists of four operations:

• Smoothing(C): Perform Laplacian smoothing on C;

• Cut(C): Deform the vector field in its image space im(C) to
remove critical points in C;

• Unwrap(C): Modify the vector field in its image space im(C)
so part of its boundary is uncovered;

• Restore(C): Set the boundary to its original value.
There are three cases which are classified by the Conley index of C,
denoted as CH∗(C). The operations to simplify each case are:

(a) If CH∗(C) is trivial, return C1 = Smoothing(C).

(b) If CH∗(C) is non-trivial and the boundary of im(C) is uncov-
ered, then C1 = Cut(C), and return C2 = Smoothing(C1).

(c) If CH∗(C) is non-trivial and the boundary of im(C) is
covered, then C1 = Unwrap(C), C2 = Cut(C1), C3 =
Restore(C2) and return C4 = Smoothing(C3).

By construction, deg(C) = 0 in all three cases. Indeed, deg(C) 6= 0
is a sufficient condition such that there exists no simplification.

4.3 Algorithm Details
We describe the Cut and Unwrap operations in detail and discuss
the maximum amount of perturbation needed due to these opera-
tions. Smoothing is only used to achieve visually appealing results.
Cut operation. Suppose the boundary of im(C) is uncovered. The
idea behind the Cut operation is to deform im(C) such that there is
a small neighborhood surrounding the origin that is not covered by
im(C). This corresponds to the situation where there is no critical
point in C after the deformation. As shown in Figure 5(left), we

2This is not needed, but it simplifies the algorithm and exposition.
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(shown in red), and the optimal unwrap point c∗ corresponding to phase φ ∗. (e) The modified boundary of im(C) (shown in purple) which becomes uncovered.
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Figure 5: Cut operation. Left: The projection of edges which intersect ` during the
Cut operation. Right: After Cut, the light blue region represents im(C) which no
longer contains (covers) the origin and so is critical point free.

choose a point c∗ on the uncovered part of the circle S (this point is
referred to as the cut point) and define the line ` as the line segment
beginning at the origin O and terminating at c∗. Define another line
`′ which is orthogonal to ` and is ε away from the origin. The point
s ∈ `′ is at a distance ε from the origin. Next, we find all the mesh
edges vpvq (corresponding to the edge pq in K) in the interior of
im(C) that intersect with the line `, and project their end points
onto `′, forming the projected edge v′pv′q. In the original domain,
the vectors at p,q ∈ K are deformed from vp and vq to the vectors
v′p and v′q respectively. Third, we locate all the mesh edges vxvy
where x ∈ ∂C (and so vx is on the boundary of im(C) and vy is
in the interior). We move the point vy to s so that the edge vxvy no
longer crosses ` and the boundary vector remains unchanged. Since
the boundary of im(C) is uncovered, there is no edge that intersects
` whose end points are both located on the boundary of im(C) (i.e.
whose corresponding points are both in ∂C). This operation creates
an empty wedge around the origin (Figure 5 right), which ensures
that there is no critical points in C after the modification. By con-
struction, the amount of perturbation is less than r+ε . When doing
Laplacian smoothing, we keep the projected vertices (end points of
the cut edges) fixed to ensure that the origin is not recovered.

The procedure to find a cut point c∗ is shown in Figure 4(a)-(b).
In (a), by traversing counter-clockwise along ∂C and observing how
its image im(∂C) (blue curve) wraps around S, we define the angle
θ of a point along S to be its phase. In (b), we showcase (in blue)
the corresponding phase plot (a.k.a. angle-valued function), that is,
a function h : ∂C → θ where θ ∈ [−π,π]. Traversing ∂C again,
we can use phase-unwrapping to give us a continuous function ϕ :
∂C→ φ for φ ∈ R (shown in red) using the following equation

ϕ(i) = bθ(i)−ϕ(i−1)+ 1/2c+θ(i).

Since the boundary of im(C) is uncovered, it follows that
max∂C(ϕ)−min∂C(ϕ) < 2π . We set the cutting angle φ∗ as the
mid-point of the uncovered part and the corresponding cut point is

φ
∗ =

1
2

(
max
∂C

(ϕ)+min
∂C

(ϕ)

)
+π, c∗ = (r cosφ

∗,r sinφ
∗),

where r is the robustness parameter of the sublevel set (and the ra-
dius of the disk S, where im(C)⊂ S). By using the phase parameter
θ , we do not need to worry about PL effects when computing c∗.

Unwrap operation. If the boundary of im(C) is covered, we
must first Unwrap the boundary before we perform the Cut pro-
cedure.The Unwrap operation is divided into the steps illustrated
in Figure 4(c)-(e). Similarly to the cut point, we determine the opti-
mal unwrap point. As before, we traverse ∂C and compute a phase
plot h : ∂C→ θ , unwrapping the phase to obtain a continuous func-
tion ϕ : ∂C → φ (Figure 4(c)-(d)). The unwrapping point φ∗, is

φ
∗ =

1
2

(
max
∂C

(φ)+min
∂C

(φ)+2nπ

)
,

where n is the smallest integer such that |min(θ) + 2nπ −
max(θ)|< π , and c∗ = (r cosφ∗,r sinφ∗). To Unwrap the bound-
ary, let X ∈ ∂C be the set of points on the boundary such that
φ(X) > φ∗ − δ , and Y ∈ ∂C be the set of points that φ(Y ) <
φ∗ + δ − 2nπ . As illustrated in Figure 4(e) , to Unwrap we set

φ(X) = φ
∗−δ , φ(Y ) = φ

∗−2nπ +δ ,

vx =

(
r cos(φ(x))
r sin(φ(x))

)
x ∈ X , vy =

(
r cos(φ(y))
r sin(φ(y))

)
y ∈ Y,

where r is the magnitude of the vectors on the boundary (e.g. the
sublevel set parameter). The final step is to Restore the boundary to
its original values, which covers the boundary but keeps the origin
uncovered. As in case (b), the deformation is bounded by r+ε . We
omit the proof, but the key observation is that internal nodes move
less than r+ ε , while the boundary has the original values.

(b)

(c)

(d)

(e)

(f)

(a)

x1

x2

x3

x4

Figure 6: SyntheticA. (a) The original vector field, sinks are red, sources are green and
saddles are blue. (b) The topological skeleton, saddle-sink separatrices are red, saddle-
source separatrices are green. (c)-(d) 1st level simplification: before (c) and after (d)
Smoothing. (e)-(f) 2nd level simplification: before (e) and after (f) Smoothing.

4.4 Synthetic Examples
We illustrate our robustness-based simplification strategy on three
PL synthetic examples, highlighting the three different cases.

SyntheticA (Figure 6) corresponds to the example in Figure 2.
It involves pairs of critical points connected by separatrices. At r1,
we have a component which contains critical points x1 and x2 and
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Figure 7: SyntheticB. (a) the original vector field with its topological skeleton. (a)-(b):
Single level simplification before (a) and after (b) by Cut and Smoothing. (c) Only
applying Smoothing does not make the region a critical point free field.

(a) (b) (c)

Figure 8: SyntheticC. (a) the original vector field with topological skeleton. (b)-(c)
Before (b) and after (c) simplification by combining Unwrap, Cut and Smoothing.

at r3 we have a component which contains all four critical points
x1 to x4. The simplification hierarchy involves two steps ranked
by robustness values: first x1 and x2 are simplified then x3 and x4.
Since both components (marked by yellow boundary) have trivial
Conley index, this corresponds to case (a), where only Smoothing
operations are needed. SyntheticB (Figure 7) involves a group of
four critical points which are interconnected by separatrices, which
could be simplified in a single level using robustness-based strat-
egy. Since the component of interest has non-trivial Conley index,
directly applying Laplacian smoothing fails (as shown in Figure
7(c)). The component’s boundary is uncovered, so we apply case
(b) of our simplification by combining Cut with Smoothing.

SyntheticC (Figure 8) corresponds to case (c) of our algorithm.
This is an untypical case involving a pair of critical points not di-
rectly connected by a separatrix. In this case, the component of in-
terest C has non-trivial Conley index, and the boundary of its image
is covered. The robustness-based strategy cancels the critical point
pair without any issue by combining Unwrap, Cut and Smoothing
operations. We further focus on this example by illustrating the
image space of C, im(C), during various steps of simplification in
Figure 9. In Figure 9(a), the entire boundary and disk are covered.
However, from the left phase plot in Figure 10, we can see that
the degree is 0. Once the optimal unwrapping point is computed,
we perform the Unwrap operation, giving the right phase plot in
Figure 10 and the image space in Figure 9(b), leaving the bound-
ary S uncovered. The effect of the Cut operation in image space is
shown in Figure 9(c), creating a void surrounding the origin. Lastly,
in Figure 9(d), the boundary is restored for the final output.

Figure 9: SyntheticC. The image space is shown through the different steps: (a) origi-
nal, (b) after Unwrap, (c) after Cut and (d) final output after Restore.

5 RESULTS

We demonstrate our robustness-based simplification strategy on a
number of real-world datasets. When possible, we compare our
method with distance-based simplification. The first real-world
dataset we explore is the top layer of a 3D simulation of global
oceanic eddies [17] for 350 days of the year 2002. The 2D time-
varying vector field has resolution 3600× 2400. We extract tiles
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π

Figure 10: SyntheticC. Left: The phase plot, original version (blue) and the phase-
unwrapped version (red). Right: The phase plot with optimal unwrap point (orange)
and the modified phase plot with boundary uncovered (purple).

representing the flow in the central Atlantic Ocean (60× 60) and
construct standard triangulation on the point samples. We select
multiple time slices from this data: OceanA contains slices #21217
and #21311; OceanB and OceanC correspond to slices #20904 and
#20821, respectively; OceanD includes a time-varying sequence of
slices from #20710 to #20715. Our second real-world dataset is
a 2D time-varying vector field simulation of homogeneous charge
compression ignition (HCCI) engine combustion [13] represented
as a 640×640 regular grid with a periodic boundary. The data con-
sists of 299 time-steps at intervals of 10−5 seconds. We selected
slice #173 from this data, referred to as the Combustion dataset.

5.1 Topologically Equivalent Scenarios
In many scenarios, our approach produces topologically equivalent
and visually comparable results to the distance-based approach,
such as for the OceanB dataset (Figure 11(a)). The critical point
pairs of interest are highlighted by the black dashed boxes in the
top row left. The critical points are colored by their robustness val-
ues (red—low, blue—high). The upper right pair is more robust
than the lower middle pair and is further apart. The simplification
results generated by distance-based and the robustness-based ap-
proaches are shown in the second and third row, respectively. The
approximated isolating neighborhoods are highlighted by the white
boxes (middle row), while the sublevel sets the yellow enclosure
(bottom row). From the comparison, we observe that: First, both
the distance and robustness metrics generate the same pairs of criti-
cal points; Second, the simplification orderings determined by these
two metrics agree. A subtle difference in the resulting vector fields
is visible due to the different local regions determined by the two
metrics and different algorithms for modifications.

OceanA dataset (Figure 12 (a)-(b)) shows a more complex sce-
nario where the region encloses more than two critical points. The
vector fields in this example are from slices #21217 and #21311.
Each of these two clusters (highlighted by the black dashed boxes
in Figure 12(a)-(b)) consists of four critical points that are close in
distance and have small identical robustness values. The robustness
metric groups them as one cluster automatically and computes a re-
gion based on their sublevel set. The bottom row of Figure 12(a)-(b)
provides the simplification results using the algorithm introduced in
Section 4. Although the distance-based method cannot group these
four critical points in one simplification, for comparison we com-
pute an isolating neighborhood that encloses them and apply Lapla-
cian smoothing. Both methods are shown to return similar results.
Nevertheless, the robustness-based method can handle regions with
more complex boundary configurations.

5.2 Inconsistent Hierarchical Scenarios
We also identified a number of scenarios where the distance-
based and robustness-based methods disagree. One example is the
OceanC dataset (Figure 11(b)). Here, two pairs of critical points
are studied (highlighted in the top row of Figure 11(b)). Even
though the pairing of these four critical points is consistent with
both metrics, their actual simplification orderings are different. The
distance-based method cancels the pair in the middle-right of the
domain first, while the robustness-based method cancels the lower-
middle pair first. Figure 13 provides another example that shows
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Figure 11: (a) The OceanB dataset. (b) The OceanC dataset. For each subfigure: Top Row: Left – shows robustness values with the region of interest highlighted, robustness values
are colored from red to white, where red means low and white means high robustness; Right – shows the vector field marked by critical point types along with separatrices. Middle
Row: the two-step hierarchical simplification based on distance. Bottom Row: the two-step hierarchical simplification based on robustness.

(a) (b) (c)

Figure 12: The OceanA dataset: (a) #20311; (b)-(c) #21217. (a)-(b) For each subfigure, Top Row: Left – shows robustness values with region of interest highlighted; Right – shows
the vector field marked by critical point types and its topological skeleton. Bottom Row: results after distance-based (left) and robustness-based simplifications(right). (c) A region
(yellow boundary) with non-trivial Conley index and uncovered boundary (top), where smoothing does not remove its critical points (bottom).

the discrepancy of the two approaches in determining the simplifi-
cation ordering of critical point pairs in the time-varying setting. In
this example, we look at consecutive time steps from the OceanD
dataset. Figure 13(a) highlights the critical points of interest. The
pairings of these four critical points again agree with each other us-
ing both topological-skeleton and robustness metrics. We perform
a per-slice simplification using the two approaches. The results are
shown in the second (distance-based) and third (robustness-based)
columns in (b)-(c), respectively. From the results, we see that the
cancellation orderings change over time using the distance-based
metric. This is due to an increased distance between the two criti-
cal points near the upper-right corner, resulting in a change of the
simplification order. On the other hand, the robustness for these

two pairs are stable. Therefore, the robustness-based simplification
returns a consistent outcome in this example.

5.3 Challenging Scenarios
There are a number of cases where the topological-skeleton based
metric combined with the Laplacian smoothing technique is inca-
pable of simplifying the given vector field. For example, for the
SyntheticB dataset shown in Figure 7, it is impossible to find an
isolating neighborhood with trivial Conley index that encloses all
the critical points due to the boundary condition. Therefore, even
though the obtained local region is guaranteed to be zero-degree,
Laplacian smoothing fails to solve for a critical point free field.
On the other hand, the simplification algorithm introduced in Sec-
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Figure 13: The OceanD dataset. (a) A sampled time series with pairs of critical points highlighted, where white numbers indicate time stamps. (b) #21710. (c) #21715. For each
subfigure (b)-(c), Top Row: The original vector field (left) and with (right) the separatrices. Middle Row: The simplification ordering for the distance-based strategy. Bottom Row:
The simplification ordering for the robustness-based strategy. Orderings for distance and robustness-based methods are consistent in (b) and different in (c).

Figure 14: The Combustion dataset. The bottom-up hierarchical simplifications (Top) from the distance-based strategy and (Bottom) from the robustness-based strategy.

tion 4 successfully simplifies the field. A similar situation occurs
in Figure 12(c) (OceanA slice #21217). In this example, we try to
apply Laplace smoothing in the local region computed based on ro-
bustness (top). The boundary configuration of this region is rather
complex and does not satisfy trivial Conley index. The Lapla-
cian smoothing based on this boundary configuration fails (bottom),
while the proposed simplification method succeeds. These two ex-
amples showcase the utility of the proposed algorithm in solving a
critical point free field within any given regions with zero degree.
This relieves the requirement of the trivial Conley index whose cor-
responding isolating neighborhood is sometimes difficult to obtain.

Figure 8 shows a non-typical case that involves the cancellation
of a pair of critical points not directly connected by separatrix. It is
impossible for the topological-skeleton-based method to compute
an isolating neighborhood that encloses two critical points (but not
the others) not connected by separatrix [5]. Nonetheless, the ro-

bustness metric derives a local region that encloses only these two
critical points with total degree equal to zero under certain configu-
ration of the flow magnitude. Hence, these two critical points may
be cancelled.While this may rarely occur in the real-world data, it
illustrates the flexibility and generality of the proposed method. In
practice, a simpler but similar situation may occur.

In the slice of the combustion data (Figure 14) the simplification
results and hierarchies, of the distance-based metric (first row) and
the robustness-based metric (second row), do not agree. The corre-
sponding vector field is a high resolution incompressible flow. Con-
ventional topological-skeleton-based methods are potentially diffi-
cult to apply, as the separatrices either do not exist or require many
integration steps before reaching the sink/source-like critical points,
making pairing the critical points challenging. A standard solution
in 2D flow is to compute the skeleton of the vector field rotated by
90 degrees [32]. While this approach may work well for 2D fields,



it is not straightforward in the 3D case. In addition, computing a
topological-skeleton for the dual vector field and deriving the sub-
sequent isolating neighborhood for a given pair is computationally
expensive. In contrast, the robustness-based method does not re-
quire the computation of topology, and its computation is fast and
parallelizable, making it more practical for large datasets.

6 DISCUSSIONS

We have presented a new and complementary simplification frame-
work which does not depend on the topological skeleton but in-
corporates topological information through robustness. Rather than
considering the geometric proximity of critical points, we consider
the minimum perturbation required to remove critical points. Our
algorithm comes with theoretical guarantees on the amount of per-
turbation we introduce. The motivation for Laplacian smoothing is
to produce more visually appealing results. However, to the best of
our knowledge, no non-trivial bounds exist on the amount of per-
turbation introduced by such a smoothing. In practice, smoothing
only marginally increases the amount of perturbation 3.
Scalability: Our method should scale to very large datasets. The
robustness computation and the simplification steps (e.g. Cut and
Unwrap) run in linear time in the size of the mesh. For example,
for a region of 21k vertices and 64k edges, Cut required 2 seconds
in MATLAB and 0.03 seconds in C++.
Generality: The simplification procedure only requires that the de-
gree of the boundary be zero and so applies to a wide range of cases.
It can deal with highly rotational data (e.g. centers) as well as cases
where critical points are not connected by separatrices.
Other metrics: We use robustness and the L∞ norm (the maximum
over the domain), however using other metrics such as the L2-norm
which incorporates both the magnitude of the vectors and the area
to capture a quantity closer to the energy of a perturbation would be
interesting. The simplification only requires degree-zero compo-
nents and any metric could be used to construct a hierarchy. It is an
open question to find zero-degree regions under different metrics.
Time-varying and 3D vector fields: The main challenge in simpli-
fying time-varying 2D vector fields is to achieve consistency across
time-slices, e.g. obtaining critical points correspondences at a given
simplification level. Finally, the prospect of extending our frame-
work to 3D vector fields is promising. While there remain technical
obstacles, certain operations (such as cutting and smoothing) in our
pipeline readily extend to higher dimensions. This, however, is be-
yond the scope of this paper but will be addressed in future work.
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The sampled running time of the various operations used in simplifying the vector fields based on our approach are shown in Table 1.

Dataset Name Tile # Region # of vertices # of edges Reading input (sec) Smoothing (sec) Cut (sec)

OceanC 20904 (1,6) 120 285 0.007 0.647 0.014
(8,9) 85 212 0.005 0.521 0.010

Synthetic SyntheticC 1318 3767 0.100 19.993 0.195

Combustion 173

(10,13) 21662 64035 0.273 166.723 2.007
(0,3) 1694 4852 0.020 0.1031 0.151
(5,8) 3949 11474 0.084 0.423 0.542

(18,20) 1106 3091 0.019 0.070 0.108

Table 1: The running time of the various operations used in simplifying the vector fields. For comparison, we show the time taken to load as inputs the respective vector fields.
The code is implemented in MATLAB and the running time is given in seconds. The main bottleneck in the computation is often Laplacian smoothing, whose running time is
highly dependent on the chosen parameters. The values shown are obtained with identical parameters to the ones which are used for the results in the paper. Finally we note that
in a more recent C++ implementation of the same algorithm, the times have been reduced by at least an order of magnitude and could be further improved with a more optimized
implementation.

The simplification algorithm comes with theoretical guarantees on bounding the amount of perturbation we introduce, whenever cutting
and/or unwrapping is used. The main motivation for introducing Laplacian smoothing is to produce more visually appealing results. As
shown in Figure 1(b), the cutting procedure alone gives a correct, continuous but not visually appealing simplification result, compared to the
vector field with Laplacian smoothing in Figure 1(c). To further describe the amount of perturbation we introduce in practice for both our
synthetic and real-world datasets, we include Table 2 below. In practice, the addition of Laplacian smoothing does increase the amount of
perturbation but not significantly. For most datasets, the total amount of perturbation after Cut alone (the 5th column), as well as combining
Cut and Smoothing (the 6th column) is roughly upper-bounded by the robustness of the critical points (e.g. the maximum magnitude of the
vector field in the region of interest, the 7th column), as indicated by a radio below 1.

(a) (b) (c)

Figure 1: syntheticB. (a) the original vector field with its topological skeleton. (b) Simplification result by Cut only (without smoothing). (c) Simplification result by Cut and
Smoothing.
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Dataset Name Tile # Region Smoothing Cut Cut and Smoothing Max Magnitude

OceanA 20311 (6,9) 0.8863 0.4547 0.7162 4.2849
21217 (8,9) 0.5902 0.5598 0.5727 5.0136

OceanB 20821 (2,4) 0.2869 0.2409 0.2409 8.0435
(6,7) —- 0.5432 0.5432 6.3153

OceanC 20904 (1,6) 0.1744 0.3095 0.3095 8.3236
(8,9) 0.2740 0.5080 0.5080 9.8286

OceanD
20710 (4,5) 0.7971 0.5296 0.6801 8.3474

(7,8) 0.3533 0.1923 0.2830 6.7341

20715 (5,7) 1.2277 0.7006 0.9239 8.0544
(8,9) —- 0.5040 0.5040 10.7337

Synthetic
SyntheticA 1.0744 1.1701 1.0744 0.0059
SyntheticB 1.2003 1.1706 1.2003 0.0059
SyntheticC 1.4375 1.1706 1.2024 0.0059

Combustion 173

(3,6) 0.1490 0.0936 0.1490 0.1220
(10,14) —- 0.5944 0.6016 0.2542
(12,13) 0.4614 0.2674 0.2699 0.0699
(18,19) —- 0.3626 0.3669 0.1998
(10,13) 0.2775 0.9446 0.9448 0.4557

(0,3) —- 0.1439 0.1439 0.2583
(5,8) —- 0.4559 0.4559 0.3015

(18,20) 0.0846 0.2661 0.2661 0.1109

Table 2: Amount of perturbation introduced during our simplification algorithm. The first three columns indicates the specific regions of interest, where the 3rd column includes
the coordinates of the regions to be simplified. For a particular region C, the amount of perturbation (or vector field distortion) introduced by the simplification is shown as a
ratio with respect to the radius of im(C) (which is approximately the robustness value), which is given by the maximum magnitude of the region C (7th column). The 4th column
includes distortion introduced using just Laplacian smoothing. The 5th column is for Cut procedure (possibly preceded by Unwrap) and the 6th column is for Cut and Smoothing
(corresponds to results shown in the paper). For the synthetic datasets, for Cut operation only, the values could be brought arbitrarily close to 1 through an appropriate choice of ε

(see Section 4.3). Some values are missing for Smoothing as these operations do not remove the critical points.
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