
The SCIRun Problem Solving Environment� Implementation within

a Distributed Environment

Michelle Miller� Charles D� Hansen� Christopher R� Johnson
Department of Computer Science

���� MEB
University of Utah

Salt Lake City� UT ����	
fmmiller� hansen� crjg
cs�utah�edu

Extended Abstract

Introduction Building systems that alter program behavior during execution based on user�speci�ed
criteria computational steering systems� has been a recent research topic� particularly among the high�
performance computing community� To enable a computational steering system with powerful visualization
capabilities such as SCIRun to run in a distributed computational environment� a distributed infrastruc�
ture or runtime system� is required� This infrastructure permits one to harness a variety of machines to
collaborate on an interactive simulation� Building such an infrastructure requires devising strategies for co�
ordinating execution across machines concurrency control mechanisms�� mechanisms for fast data transfer
between machines� and mechanisms for user manipulation of remote execution�

Interactive scienti�c visualization and computational steering require low�latency and high bandwidth
computation in the form of model generation� solvers� and visualization� Latency is particularly a problem
when analyzing large datasets� constructing and rendering three�dimensional models�meshes� and allowing a
scientist to alter the parameters of the computation interactively thus �steering� the computation�� However�
large�scale computational models often exceed the system resources memory and storage� of a single machine�
motivating closer investigation of meeting these same needs with a distributed computational environment
comprised of many machines�

SCIRun� a scienti�c problem solving environment PSE�� provides the ability to interactively guide or steer
a running computation� Initially designed for a shared memory multiprocessor� SCIRun is a tightly integrated�
multi�threaded framework for composing scienti�c applications from existing or new components� High�
performance computing is needed to maintain interactivity for scientists and engineers running simulations�
Extending such a performance�sensitive application toolkit to enable pieces of the computation to run on
di�erent machine architectures all within the same computation proves useful for some scientists� Not only
can many di�erent machines execute this framework� but also several machines can be con�gured to work
synergistically on computations e�g�� farming o� compute�intensive pieces to the �big iron���

Distributing SCIRun Large�scale scienti�c computations require multiprocessors of some form due to
the vast amount of data inherent in these applications�simulations� However� the computer architecture of
multiprocessors varies greatly� di�ering in the number of processors� communication mechanism� operating
system� and memory model� etc� Using abstraction to hide the underlying details of the memory model
i�e�� shared memory versus distributed memory� from the application allows us to take advantage of the
range of machine types� from shared memory multiprocessors to massively parallel processors� However� such
an abstraction creates extra layers in the software infrastructure that generally result in increased software
overhead� One must strike a balance of exposing enough details to e�ciently tune the application without
losing portability�

To achieve our goal of computational steering of distributed simulations� we �rst created a mechanism
for using SCIRun across multiple machines� then we can solve the problem of running a scienti�c code on
a distributed memory architecture� This discussion focuses on the infrastructure mechanisms needed to run
one SCIRun computation across multiple machines while maintaining control of the computation from the
user�s local workstation� The goal of SCIRun has been to maintain interactive rates for users constructing



and manipulating models and simulations� To be successful with a distributed version of SCIRun� we must
not impair interactive speeds by incurring excessive network latency�

To meet the demand for growing computational problem sizes� we have extended the existing communi�
cations infrastructure within SCIRun to include cross�machine communications and execution� In this way�
we can preserve existing system functionality for shared�memory executions� as well as providing more archi�
tectural �exibility� In constructing a distributed system� our goal is to provide SCIRun users with the illusion
of running on a single computer� while they are actually utilizing several computers� which could be large
distances away� each with potentially very di�erent characteristics� For example� we could utilize various Grid
resources in geographically separate areas to take advantage of highly specialized resources�

Software Architecture for Distributed SCIRun The model for running SCIRun on multiple machines
calls for the scientist to initiate the computation i�e�� start SCIRun� on a graphics�capable machine� to
compose an application from existing SCIRun components modules�� to specify which of these should run
remotely� and then to start execution of the computation data�ow network�� Interacting with modules�
viewing the rendered visualization� and interacting with three�dimensional data probes widgets� within the
visualization all occur on the initiating machine� which we denote as the Master� The compute�intensive
data�ow subnetwork executes on the remote machine� which could be a multiprocessor machine�

We abstract away the di�erences between running on one or more than one machine by modifying the
scheduling� inter�module communication� user interface mechanisms� and other �internal� portions of SCIRun
that an application writer would typically never see� Making modi�cations to the infrastructure allows
programs that have been designed for the SCIRun problem solving environment to function in either a multi�
machine� networked environment or a single�machine� shared memory environment�

Distributed Control Infrastructure The SCIRun scheduler controls the execution order of modules
and tracks and signals modules that need to run again� SCIRun is based on a hybrid form of a data�ow
network where data passes from upstream modules to downstream ones� To ensure concurrency control�
we use one scheduler for all machines working collaboratively on a SCIRun computation� A master�slave
con�guration yields a single point of control from which module scheduling decisions can be made for the
entire network consisting of both local and remote modules� For each remote module� the Master SCIRun
instance� running on the user�s workstation� instantiates proxy modules to keep the internal module state
necessary for scheduling and control� Thus� the single scheduler model is e�cient and e�ective�

Remote Data Transfer Since we must maintain the data�ow metaphor within one SCIRun application
program or data�ow network�� we provide a mechanism for data transport from modules running on one
machine to downstream modules running on di�erent machines� We accomplish this remote data�ow by
opening a communication channel� in this case a socket� for every data pipe linking two modules running
across machine boundaries� The data are then bundled into messages and sent across the channel from the
module�s output port� These data channels are instantiated and torn�down when the user makes� or destroys�
a connection between modules which cross machine boundaries� Connected modules running on the same
machine� even though remote� use the current SCIRun shared memory data communication�

Remote User Interaction and Steering SCIRun succeeds in allowing a range of intuitive user interac�
tions with parameters of the model� choice of simulation techniques and their parameters� and the resulting
visualization� When we move to a distributed environment� careful attention must be paid to maintaining
close coupling between user action and system response� Further� providing visual feedback to the user about
the runtime performance traits helps the user choose appropriate modules to execute remotely�

We have built a remote communication mechanism into our Tcl wrapper calls used by the GUI� These are
based on a combined push and pull strategy� Modules always check the most current user�selected parameters
before using them� and remote modules do the same� Similarly� a progress bar� which indicates the percentage
of the computation completed� is updated on the proxy module residing on the Master by the corresponding
Slave module� Finally� if a user changes a parameter in one of the steering windows� the module is rescheduled
in both the single�machine and distributed versions of SCIRun�


