
r Human Brain Mapping 32:382–396 (2011) r

CENTS: Cortical Enhanced Neonatal Tissue
Segmentation

Feng Shi,1 Dinggang Shen,1* Pew-Thian Yap,1 Yong Fan,1 Jie-Zhi Cheng,1

Hongyu An,2 Lawrence L. Wald,3,4 Guido Gerig,5 John H. Gilmore,6

and Weili Lin2

1IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina

2MRI Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina

3Department of Radiology, Massachusetts General Hospital, A.A. Martinos Center for
Biomedical Imaging, Charlestown, Massachusetts

4Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
5Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah

6Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

r r

Abstract: The acquisition of high-quality magnetic resonance (MR) images of neonatal brains is largely ham-
pered by their characteristically small head size and insufficient tissue contrast. As a result, subsequent image
processing and analysis, especially brain tissue segmentation, are often affected. To overcome this problem, a
dedicated phased array neonatal head coil is utilized to improve MR image quality by augmenting signal-to-
noise ratio and spatial resolution without lengthening data acquisition time. In addition, a specialized hybrid
atlas-based tissue segmentation algorithm is developed for the delineation of fine structures in the acquired
neonatal brain MR images. The proposed tissue segmentation method first enhances the sheet-like cortical
gray matter (GM) structures in the to-be-segmented neonatal image with a Hessian filter for generation of a
cortical GM confidence map. A neonatal population atlas is then generated by averaging the presegmented
images of a population, weighted by their cortical GM similarity with respect to the to-be-segmented image.
Finally, the neonatal population atlas is combined with the GM confidence map, and the resulting enhanced
tissue probability maps for each tissue form a hybrid atlas is used for atlas-based segmentation. Various
experiments are conducted to compare the segmentations of the proposed method with manual segmentation
(on both images acquired with a dedicated phased array coil and a conventional volume coil), as well as with
the segmentations of two population-atlas-based methods. Results show the proposed method is capable of
segmenting the neonatal brain with the best accuracy, and also preserving the most structural details in the
cortical regions.Hum Brain Mapp 32:382–396, 2011. VC 2010Wiley-Liss, Inc.
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INTRODUCTION

Tissue segmentation, which partitions brain magnetic
resonance (MR) images into gray matter (GM), white mat-
ter (WM), and cerebrospinal fluid (CSF), is a crucial step
for subsequent volumetric and cortical surface analysis.
However, effective segmentation of neonatal brain images
still remains a great challenge in many emerging neonatal
studies, which have the potential of revealing interesting
brain developmental patterns and also neurodevelopmen-
tal disorders. In particular, two major factors confound
neonatal tissue segmentation: (1) the inability of current
imaging techniques to acquire neonatal brain images with
sufficiently high resolution and signal-to-noise ratio (SNR)
for tissue segmentation, and (2) the lack of prior knowl-
edge for a more informed and guided segmentation. In
this article, we address both of these issues. First, a dedi-
cated neonatal phased array coil is devised to improve the
SNR as well as spatial resolution. Second, a hybrid atlas,
combining both the enhanced subject-specific cortical
structural characteristics and also population probability
maps, is constructed to improve the accuracy of neonatal
brain tissue segmentation.

Normally, the brain volume of a neonate is about one half
of an adult [Knickmeyer et al., 2008]. As a result, spatial
resolution of neonatal brain images is substantially limited,
particularly when data acquisition time is a constraint.
Moreover, rapid dynamic WM changes due to the ongoing
myelination process in the neonatal brain [Connors et al.,
2008] further complicates the differentiation between GM
and WM. In particular, GM and WM tissue contrast in neo-
nates is manifested in an inverted fashion when compared
with that of adults. All these factors confound the acquisi-
tion of good quality neonatal brain MR images, the effec-
tiveness of brain tissue segmentation, and hence the
accuracy of subsequent image analysis. To improve MR
image quality without lengthening data acquisition time, a
dedicated phased array neonatal head coil is devised. In a
conventional MR imaging session, a volume coil (independ-
ent of age) covering the whole brain is utilized. However, it
is a known fact that a surface coil with a smaller diameter
and thus a smaller sensitivity region can achieve higher
SNR in comparison with a volume coil [Roemer et al., 1990].
It is hence possible that multiple smaller coils can be
arranged in such a way that a larger region of interest (ROI)
can be covered. In doing so, the resulting phased array coil
capitalizes the advantages of surface coils in improving
SNR and at the same time covers a larger ROI. In addition,
coupled with parallel imaging technologies, it yields images
with improved quality compared with images acquired
using conventional techniques, which essentially translates
to a better head start for tissue segmentation. But it should
be pointed out that, despite the improved image quality, a
dedicated algorithm for neonatal brain segmentation is still
crucial.

Numerous brain image segmentation methods have
been proposed, but they are mainly developed for adult

brains [Pham et al., 2000]. For the case of neonatal brains,
existing methods include clustering [Anbeek et al., 2008]
and population-atlas-based segmentation approaches
[Prastawa et al., 2005; Warfield et al., 2000; Weisenfeld and
Warfield, 2009; Xue et al., 2007]. Affected by low image
quality and also large intensity variability between non-
myelinated and myelinated WM, clustering-based methods
relying solely on image intensities can be very limited in
terms of segmentation performance. In light of this, atlas-
based methods employ population atlases as spatial priors
for segmentation guidance. Existing atlases are usually
built by averaging a group of spatially normalized seg-
mented images, which we refer to as population atlas.
This approach is straightforward and easy to implement
but has several inherent drawbacks. First, the atlases are
in general blurry, especially in the cortical region. This is
an inevitable consequence of averaging a group of images
with varying anatomical structures, and hence the atlases
fall short in providing sufficient prior information, espe-
cially when fine tissue structures are concerned. Second, a
recent study points out that an atlas built from images
with anatomy similar to the to-be-segmented image can
achieve better segmentation performance than atlases built
from randomly selected images [Aljabar et al., 2009].
Hence, weighting population images based on their simi-
larity to the query image in building an atlas is a more
appropriate approach than equal weighting. Third, the
atlases are often aligned to the subjects utilizing affine or
low degrees-of-freedom nonlinear transformation, which
cannot guarantee topological correspondences and thus
jeopardizes segmentation accuracy. In summary, a good
atlas for guiding segmentation should have the following
two properties: (1) contains a wide range of coarse-to-fine
structural information to maximize guidance capacity, and
(2) capable of achieving sufficient homology with respect
to the subject in order to minimize guidance error. To
meet these requirements, we construct a hybrid atlas, by
incorporating unique subject-specific cortical information
from the to-be-segmented image in addition to a popula-
tion atlas, with the goal of capturing sufficient coarse and
fine brain structural information in neonatal images.

To construct such a hybrid atlas, a two-phase strategy is
proposed. First, the subject-specific cortical GM folding
patterns are extracted. Cortical folding patterns are com-
plex and are posed as a difficult segmentation problem
considering the fact that population atlas often appears
blurry and provides inadequate cortical tissue prior infor-
mation. It can be observed from the acquired neonatal
images (shown in Fig. 7a) that the fine structures of the
cortical folding are well delineated and hence should be
properly leveraged as a cortical prior. To this end, we
modify a vessel-tracking method [Frangi et al., 1998] to
enhance the cortical patterns, which will serve as subject-
specific cortical GM characteristics. Second, a population
atlas is constructed to provide global tissue spatial prior
information and to mitigate bias which is prone to happen
when the prior is derived from only a particular image.
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Combining the results from these two phases, a hybrid
atlas can be constructed to take advantage of both pieces
of information and to provide higher guidance power for
segmentation of major and minor brain structures.

The effectiveness of our framework is validated using
visual inspection and also quantitative comparison with
manual segmentations, as well as two population-atlas-
based methods. Experimental results indicate that by
enhancing image acquisition and improving atlas building,
neonatal segmentation accuracy is improved. The rest of
the article is organized as follows. The phased array coil
imaging technique is first introduced, and then the pro-
posed tissue segmentation scheme is detailed. Experimen-
tal results are provided, followed by the conclusion of this
article.

IMAGING WITH PHASED ARRAY COIL

In MR imaging, there is a trade-off between SNR and
image resolution [Mark et al., 1999]. It can be described as:

SNR=voxel / DxDyDy
ffiffiffiffiffiffiffiffiffiffi
Nacq

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
BWread

NxNyNz

q (1)

where Dx, Dy, and Dz are the voxel sizes, Nacq is the num-
ber of acquisitions, BWread is the readout bandwidth de-
pendence, and Nx, Ny, and Nz are the number of k-space
samples. The equation indicates that, if one increases the

image resolution (i.e., decreasing the voxel sizes Dx, Dy,
and Dz), the SNR decreases accordingly. If the SNR-resolu-
tion trade-off is improved, the acquisition time needs to be
increased. A parallel imaging technique is introduced later
to leverage this trade-off to enhance both the SNR and
image resolution without lengthening the acquisition time,
which is critical especially for neonates with no sedation
during the scan.

A phase array coil consisting of multiple small coils can
be employed to improve SNR. A volume coil provides
uniform coverage of a large ROI with the cost of a lower
SNR. On the other hand, a small surface coil covers a
small anatomical region with much higher signal sensitiv-
ity, leading to higher SNR compared with a volume coil.
Multiple mutually decoupled surface coils are usually
arranged in a way to provide a full coverage of a large
ROI. Signal acquired by these coils can be combined to
yield better image quality with higher SNR and within a
relatively short acquisition time, as demonstrated in previ-
ous studies [Roemer et al., 1990; Wald et al., 1995]. The
overall shape of the neonatal phased array coil used in
this study was designed according to the average brain
shape estimated from 60 normal pediatric subjects.

After acquiring a series of images by a number of coil ele-
ments (such as the eight coil elements in Fig. 1), the question
of how to combine these images needs to be addressed.
Because of the limited reachable volume of each surface
coil, voxels close to the coil yield better SNR and better tis-
sue contrast, compared with those farther away. Sum of
square metric is widely used to directly combine these coil

Figure 1.

T1 MR images obtained from the eight phased array coil elements. Each image shows different

sensitivity region, which corresponds to the individual location of each coil.
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images [Roemer et al., 1990]. A better approach is by utiliz-
ing a coil profile, which can be obtained concurrently in the
same scanning session by taking a low-resolution scan of
the whole brain, as a reference image to generate a sensitiv-
ity map for each coil. An optimal weighting scheme can
then be devised to take full advantage of each image in gen-
erating a final single combined image.

In this study, we propose a segmentation-oriented multi-
channel image combination strategy. This is achieved by
controlling the proportion of sensitivity map used in combi-
nation, with the goal of constructing a high GM-WM con-
trast image for facilitating the subsequent tissue

segmentation. Specifically, the phased array coil consists of
8 receiving channels (see Fig. 1). Their acquired images,
denoted as Ci, i ¼ 1, : : : ,8 are accompanied by their respec-
tive sensitivity profiles, denoted as Pi, i ¼ 1, : : : ,8, respec-
tively. Although the resolution of the coil profile images is
low, they still contain too much structural information to be
used as sensitivity maps. To estimate a sensitivity map from
the respective coil profile Pi, a low-pass filter [Lin et al.,
2003] is employed (Fig. 2c). For simplicity, the same notation
Pi is used to also denote the generated sensitivity map for
each coil. On the basis of sensitivity maps, a high-quality
image I can be reconstructed from the acquired coil images:

Figure 2.

Illustrations of (a) coil image, (b) coil profile image, and (c) estimated sensitivity map. Note that,

to obtain (c), non-brain tissues are first removed to better concentrate on the brain

parenchyma.

Figure 3.

Image reconstruction results with different q values. (a–d) show the results when q is set as 0,

0.3, 1, 2, respectively. (f–i) are the GM and WM intensity distributions corresponding to (a–d),

obtained with the help of a manually segmented image (e). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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where N is the number of coils, which is 8 in this study.
As we can see from this equation, the image Ci is first cor-
rected via inverse weighting by Pi, which is effectively an
intensity equalization process, and is then further
weighted by the sensitivity map with exponent raised to q,
i.e., Pq

i . The parameter q reflects the weight assigned to
each of the sensitivity maps in the reconstruction. For
example, when q is 0, the 8 intensity-corrected images are
combined in a spatially uniform manner. When q is 1, we
have the special case of directly combining coil images
with sum-of-squares metric without the help of sensitivity
maps as I ¼ 1

N

PN
i¼1 ðCiÞ2

� �1
2
, which is widely used in the

previous studies [Roemer et al., 1990]. As q decreases (or
increases), voxels farther away from the coils will be
increasingly emphasized (or suppressed). Determining a
suitable q value will give us a balanced image with good
whole brain tissue contrast. Sample results with q ¼
0,0.3,1,2, are shown in Figure 3a–d. With the help of a
manually segmented image, as shown in Figure 3e, the in-
tensity distributions of GM and WM can be computed, as
shown in Figure 3f–i. These distributions are indicative of
how well GM and WM can be separated. Generally, the
farther the GM and WM curves are, the easier the segmen-
tation will be. We employ the symmetric Kullback–Leibler
(KL) divergence to measure the difference between the
GM and WM distributions. With q values ranging from �1
to 2 with a 0.1 interval, the KL divergence curve for global
region is shown in Figure 4. The peaks of the KL diver-

gence curve falls within the q interval of 0–0.5. To verify
this finding, we selected some small regions such as regions
A, B, and C in Figure 4, and found that their respective
peaks of the parameter q are actually in the same range. We
chose a moderate value in this range as q ¼ 0.3 in this study.
In this way, we can better combine the multichannel images
than the traditional sum-of-square technique.

Quality Comparison Between Images Acquired

Using Volume Coil and Phased Array Coil

To better demonstrate the image quality improvement
brought forth by the phased array coil compared with
images acquired from a volume coil used in our previous
neonatal studies, we collect images utilizing both coils
with an MPRAGE sequence using a 3T Siemens scanner.
A summary of the MR imaging parameters are provided
in Table I. It can be seen that, the image resolutions of
both T1 and T2 are higher using the phased array coil
than that of the volume coil, without significantly length-
ening the acquisition time.

The image quality can also be investigated by calculat-
ing the SNR. For this purpose, the SNR is defined as aver-
aged intensity ratio of the given regions for a certain
tissue and the background [Mark et al., 1999]:

SNR ¼ ltissue
1:25� lbackground

(3)

where l is the mean intensity of the given regions. Notice
that the SNR is spatially dependent for the phased array
coil and is more uniform for a volume coil. We manually
delineate four different regions of interest for the GM,

Figure 4.

Symmetric KL divergence between the GM and WM histograms for different q values in the

global region, regions A, B, and C, respectively. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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WM, and background to obtain the mean SNR values
(see Fig. 5).

The resulting SNR values of 10 images taken using the
phased array coil and another 10 images using volume
coil (with all subjects randomly selected from a large
dataset) are shown in the right of Figure 5. The SNR val-
ues are higher by using phased array coil than that of
volume coil for both GM and WM. In summary, by
introducing a phased array coil technique for neonatal
MRI acquisition and proposing a new multichannel
image combination strategy, high-resolution images can
be acquired with high SNR at a sufficiently short acqui-
sition time, which provides a good head start for the
problem of neonatal brain MR segmentation.

HYBRID ATLAS CONSTRUCTION AND

TISSUE SEGMENTATION

Because of low tissue contrast and large overlap of GM
and WM intensity distributions in neonatal brain images,
additional tissue priors need to be employed to provide
helpful cues in tissue segmentation. Unlike the widely used
population atlases, a hybrid atlas approach is proposed in
this article. In particular, our atlas combines subject-specific
cortical GM distribution with a neonatal population atlas.
The neonatal tissue segmentation problem is then formu-
lated as an iterative hybrid atlas construction and image
segmentation problem. The segmentation framework con-
sists of three major steps, shown as steps (a–c) in Figure 6.
The first step involves the extraction of the cortical GM
sheet in neonatal image, which will serve as a cortical GM
confidence map to aid the following differentiation between
GM and WM. This can be achieved via a second-order geo-
metric structure identification approach. The second step
involves the construction of the neonatal population atlas
by nonlinear registration of a large group of presegmented
neonatal images, weighted by their similarities to the to-be-
segmented image in cortical GM region provided by the
confidence map. Finally, the cortical GM prior of this sub-
ject is combined with the weighted neonatal population
atlas, resulting in a hybrid atlas. The registration accuracy
between the warped atlas and the to-be-segmented image
is refined by a simultaneous registration and segmentation
process. All details are given in the following subsections.

Before segmentation, all images are preprocessed using
a standard procedure. Non-brain tissues (such as skull
and dura) are stripped with brain surface extractor [Shat-
tuck and Leahy, 2001], followed by manual editing with
ITK-SNAP software [Yushkevich et al., 2006] to ensure
accurate removal of non-brain tissues. The cerebellum
and brain stem are also manually removed so that we can
focus on the tissue segmentation of only the cerebrum
[Kwon et al., 2003]. Bias correction is performed in all
images with N3 method [Sled et al., 1998] to reduce the
impact of intensity inhomogeneity and thus improve the
performance of the subsequent tissue segmentation.
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Extraction of Cortical GM Confidence Map

Brain cortical convolution pattern is unique for each
individual. It is hence desirable that this pattern can be
enhanced to formulate a more informed segmentation
algorithm especially when the cortical region is con-
cerned. Segmentation of cortical region is often the weak
spot of population-based atlases, since fine details in this
region are often smoothed out by the averaging process
in constructing the atlases due to large intersubject vari-
ability. Approaches based on intensities alone are quite
limited in revealing the cortical pattern, since the inten-
sity distributions of GM and WM are often overlapping
and not separable. One way of revealing this pattern is
by utilizing geometric measurements [Kirbas and Quek,
2004], which reflect the shape relationship of the anatomi-
cal structures and not solely the intensity differences.
They can delineate fine structures with seemingly similar

intensities and can hence enhance local GM/WM inten-

sity contrast especially in the cortical region, where we

can often find rapid changes of geometric patterns. The

first-order intensity derivative, i.e., gradient, measures the

major local direction of intensity change and can only

give us information on whether or not there is a struc-

ture. The second-order derivative, as is encapsulated in

the Hessian matrix, can furnish further information such

as the curvature of the local structure. We thus employ

the Hessian matrix for building structural filters to delin-

eate the cortical patterns in the brain images, although

other similar techniques may be also applicable. Details

are given later.
First, the to-be-segmented image is combined with

Gaussian smoothing to reduce the effect of noise. Specifi-
cally, for each voxel x, a Gaussian kernel r is convolved
with the original image I0:

Figure 5.

Left: Regions of interest on the GM, WM, and background (BG). Right: SNR values for GM and

WM of 10 images taken with the conventional volume coil, and 10 images with the surface coils.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6.

Schematic diagram of the proposed neonatal segmentation framework. (a–c) shows the three

major steps involved. The T1 and T2 images on the left are the inputs, and the segmented image

on the right is the output.
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IðxÞ ¼ I0ðxÞ � GðxjrÞ (4)

where r is the scale-space parameter and set as 0.75 in this
article. A larger r corresponds to a coarser image.

Then, for the Gaussian smoothed image I, its local struc-
ture can be analyzed with Taylor approximation up to the
second order in a neighborhood defined by scale r:

Iðxþ DxÞ � IðxÞ þ DxTrðxÞ þ 1

2
DxTHðxÞDx (5)

where x is a current voxel, x 1 Dx is a neighboring voxel
in the range of scale r; ! is the gradient vector, and H the
Hessian matrix. H can be decomposed in the form of:

Hlk ¼ kklk (6)

where lk and kk are the k-th eigenvector and eigenvalues,
respectively, and k 1,2,3 in the 3D case.

The three eigenvectors can be used to form an ellipsoid,
which describes the local structures. Several structures can
be identified by the relative amplitudes of the eigenvalues,
namely line-, plate-, and blob-like structures. If the three
eigenvalues are comparable, the local structure around x is
similar to a blob. Assuming |k1| � |k2| � |k3|, if |k1|
� |k2|, |k3|, local intensities change significantly in two
directions and so it is a line-like structure. If |k1|, |k2| �
|k3|, the local structure is plate-like. In human brain, cort-
ical GM covers the WM in a sheet-like fashion with a
thickness ranging from 1.5 to 5 mm. By setting an appro-
priate scale r (e.g., 3.5 mm chosen in this article), the
neighbor of given GM voxel contains other tissues like
WM or CSF. In neonatal T1 images, GM has higher inten-
sity than that of WM and CSF. The GM voxel could be
identified by detecting bright structures from dark back-
grounds. If this scale r is too small, the structure is blob-
like and cannot be distinguished from other blob-like

structures in WM and CSF. Because of this, we fine-tune
this specific filter width to facilitate the following GM
structure extraction. Meanwhile, because the cortical fold-
ing curvature is sharp at the tip of gyri and the valley of
sulci, but flat at locations between them, both line- and
plate-like local structures exist in the cortical GM sheet.
Hence, we compute both structures and take the maxi-
mum as to form the GM confidence map. Note that, due
to the existence of a large amount of irregular structures, the
line- and plate-like structures cannot be simply extracted.
We thus define two geometric ratios RB and RA:

<B ¼ jk1jffiffiffiffiffiffiffiffiffiffiffiffijk2k3j
p ; <A ¼ jk2j

jk3j (7)

where RB accounts for the deviation from a blob-like
structure, and RA distinguishes plate-like structure from
line-like structure.

For extracting bright structures from a dark background,
such as extracting GM from a T1 image of a neonate, in
which GM has higher intensity than adjacent WM and CSF
as shown in Figure 7, k2 and k3 should be negative for line
structure, and k3 should be negative for plate structure. On
the contrary, for extracting dark structure from a bright
background, such as extracting GM from a T2 image, these

Figure 8.

Topological template, used as a subcortical mask, displayed in

three orthogonal sections. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 7.

Cortical GM confidence map extraction. Original T1 image (a), an enlarged region (b), GM con-

fidence map of the enlarged region (c), whole GM confidence map (d), and final cortical GM

confidence map with subcortical regions removed by the topological template shown in Figure 8.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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eigenvalues should be positive. The line and plate filters for
extracting bright structures are given by:

Vline ¼ 1� exp � <2
A

2a2

� �� �
exp � <2

B

2b2

� �
1� exp � S2

2c2

� �� �
;

if k2 < 0 and k3 < 0; otherwise Vline ¼ 0 ð8Þ

Vplate ¼ exp � <2
A

2a2

� �
exp � <2

B

2b2

� �
1� exp � S2

2c2

� �� �
;

if k3 < 0; otherwise Vplate ¼ 0 ð9Þ

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j�D
k2j

r
(10)

where D is the dimension of the image (in our case D ¼
3), and S is the second-order structureness measurement
defined to constrain the magnitudes of the derivatives. a,
b, and c are the parameters which control the structure
sensitivity of the filters. In this article, a, b are fixed at 0.5,
and c is set as half the value of the maximum Hessian
norm. The aforementioned equations are applied to each
voxel and the probability maps returned by them indicate
the degrees of structureness of each voxel. It is worth not-
ing that by using only the plate filter, there will be some
discontinuities in the cortical GM structure probability
map. Hence, we employ both the line and plate filters, and
determine the structure at each voxel based on the maxi-
mal value between the two values given by the two filters.

The detected GM profile is shown in Figure 7. Part of
the profile is enlarged, as shown in Figure 7b,c, for better
demonstrating the patterns. Notice that, for the GM profile
in Figure 7d, it includes not only the cortical GM convolu-
tion pattern, but also the boundary of the ventricle. This is
because the adjacent brain tissues are brighter than the
ventricular region, and so the boundary of the ventricle is
also detected. For our case, this portion of the GM profile
is not desirable because it may result in a wrong subcorti-
cal GM prior. To remove it, a topological template is
employed. This template is obtained by manually delineat-
ing the subcortical region, ventricle inclusive, on a struc-
tural atlas built by averaging a group of normalized T1
images. Then this topological template is registered to the
neonatal image to mask out the subcortical region in the
detected GM profile map (see Fig. 8). In this way, we
retain only the cortical GM (Fig. 7e) for providing addi-
tional subject-specific cortical GM spatial information for
segmentation. Notice that the subcortical region may not
be masked out perfectly due to possible registration error,
but this imperfectness has only minor influence on the
subsequent segmentation results because the tissue distri-
bution will be estimated in a way, which is insensitive to
local variation.

Construction of Similarity-Weighted Neonatal

Population Atlas

Because of the rapid development of neonatal brains
especially during the first year of life, adult atlases, or
even those constructed from pediatric brains, are not
directly applicable for segmentation of neonatal brain
images due to large anatomical differences. For construct-
ing a population atlas, we use a dataset of T2 MR images
of 68 neonatal subjects (38 male and 30 female), along
with their segmentation results and also GM, WM, and
CSF tissue probability maps from our previous study [Shi
et al., 2010]. Note that these images are used only for gen-
erating the neonatal population atlas.

Image normalization for population

Numerous approaches for atlas construction have been
proposed [Altaye et al., 2008; Joshi et al., 2004]. Some ear-
lier approaches involve the registration of all images onto
a template (usually chosen from one of the subjects) and
then averaging the aligned images [Warfield et al., 2002].
Approaches as such are bias prone, since the chosen tem-
plate often has dominance over the final atlas. A better al-
ternative is to introduce the groupwise registration
strategy, to construct a data-driven representative atlas.

To groupwisely normalize all subjects onto a same coordi-
nate space, two steps are performed. Affine transform is
first used for rough alignment. Then, a nonlinear registra-
tion is performed to more effectively remove the intersub-
ject variability. To avoid bias in registration due to the
preselection of template, we adopt a groupwise registration
approach, similar to [Joshi et al., 2004], to transform all sub-
jects to their group center, to which all subjects can be
warped with the minimum overall transformations. Note
that we used T2 MR images for spatial normalization.

Specifically, we first average the affine transformed
images Ii, i ¼ 1, : : : ,N, to obtain an initial template T0.
Then a nonlinear registration algorithm, called HAMMER
[Shen and Davatzikos, 2002], is performed to register each
subject to the current template Tt�1, resulting in the
warped subjects Tt

i and taking their averaged image as an
updated template Tt. By iteratively alternating between
subject alignment and template generation, all images will
be eventually warped onto a common space after conver-
gence of registration.

Similarity weighting

The traditional way of generating an atlas from the nor-
malized images of a population is by equally averaging the
subject images. In such approach, structures with low inter-
subject anatomical variances will be retained (like the thick
WM branches), and regions with high anatomical variances
will be blurred (such as the cortical GM convolutions). It
was recently shown that atlases built by images with similar
anatomy have better guidance power for segmentation
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[Aljabar et al., 2009]. Motivated by this, we utilize image
similarity values between the population images and the
to-be-segmented image as weighting factors to build a neo-
natal population atlas which is more similar to the new sub-
ject, for taking full advantage of the population data.
Moreover, to make the cortex provide relatively more spe-
cific structural information in atlas building, we first binar-
ize the GM confidence map (obtained from the previous
section) by choosing voxels with at least 90% confidence
level, and then use it as an image mask to measure the
image similarity only in the cortical GM regions. This allows
us to generate a subject-specific atlas with emphasis on cort-
ical regions, thus leading to better segmentation with a sub-
sequent atlas-based segmentation algorithm. Specifically,
for similarity comparison, the to-be-segmented image is
warped to the template generated in the last section by first
performing affine transform and then utilizing an intensity-
based nonrigid registration [Shen, 2007].

Many metrics are available for image similarity meas-
urements, such as cross correlation, mutual information,
and mean square differences. We choose the popular mu-
tual information as similarity measure in this article:

wi ¼
H Qt; Iti
� �

P
i H Qt; Iti
� � (11)

Pk ¼
P

i wiI
t
i kð ÞP

i wi
; k 2 fWM;GM;CSFg (12)

where Iti is the i-th aligned image (after t-th iteration); wi is
the weight for i-th image; H(�) is the mutual information
function; Qt is the to-be-segmented query image on the
template space; and Pk is the resulting weighted average
probability map for GM, WM, and CSF, respectively. After
the aforementioned similarity weighting procedure, the
resulting subject-specific atlases are shown in Figure 9a–c.

Joint Registration and Segmentation

The neonatal atlas is modified according to the GM
confidence map. For a given voxel x in the neonatal atlas,
there are three tissue probabilities PGM

x , PWM
x , and PCSF

x

(PGM
x 1 PWM

x 1 PCSF
x 1). Note that voxels in the cortical

region that show high confidence as GM (as judged by
the cortical GM confidence map CGM

x ) should have their
GM probabilities increased, and those with low confi-
dence should have their GM probabilities reduced. Their
CSF probabilities should be kept unchanged and WM
probabilities adjusted accordingly. In the subcortical
region as labeled by the topological mask, these probabil-
ities are kept unchanged. For cortical regions (where the
topological mask is 0), we combine the hybrid atlas as
follows:

PGM
x;hybrid ¼ PGM

x þ CGM
x

� �
=2 (13)

PCSF
x;hybrid ¼ PCSF

x (14)

PWM
x;hybrid ¼ 1� PGM

x;hybrid � PCSF
x;hybrid (15)

where the final GM probability map PGM
x;hybrid is combined

with the WM and CSF probability maps to form a hybrid
atlas as shown in Figure 9e–g.

After obtaining the hybrid atlas, an atlas-based segmen-
tation algorithm [Ashburner and Friston, 2005] is applied
to perform tissue segmentation on the neonatal subjects. In
brief, the algorithm involves alternating among bias cor-
rection, tissue classification, and atlas-to-subject registra-
tion. In particular, a mixture of Gaussians is used to
model the distribution of each brain tissue. The hybrid
atlas represents the prior probabilities of existence of dif-
ferent tissues at each image location. Bayes rule is used
to combine these priors with tissue probabilities derived
from voxel intensities to provide the posterior probability,
thus giving the tissue membership probabilities for each
voxel. Based on the segmentation results, the registration
between the atlas and the neonatal subject can be refined by
another round of deformable registration [Shen and Davatzi-
kos, 2002], to further reduce registration error and thus bring
the atlas closer to the neonatal subject for more accurate seg-
mentation guidance, as is done in most joint registration and
segmentation algorithms [Yezzi et al., 2003]. Bias correction,
tissue segmentation, and atlas- to-subject registration are iter-
ated until convergence.

EXPERIMENTAL RESULTS

A total of 10 neonates with manual segmentation results
are used for performance evaluation of the proposed neo-
natal brain segmentation framework. They consist of five

Figure 9.

Illustration of population atlas, cortical GM confidence map, and

their hybrid atlas. (a–c) GM, WM, and CSF probability maps of

population atlas, (d) cortical GM confidence map constructed

from the to-be-segmented MR image, and (e–g) resulting GM,

WM, and CSF probability maps of hybrid atlas.
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males and five females with postnatal age range of 0.5–1.9
months. T1 and T2 images were acquired by using a 3T
head-only MR scanner with scanning parameters provided
in Table I. In addition, a low-resolution spin density
weighted 3D FLASH sequence was employed to obtain
eight coil sensitivity profiles. The constructed T1 and T2
neonatal brain images are shown in Figure 10a,b. T2 image
is chosen for both automatic and manual segmentation,
because it has better tissue contrast than T1 image in neo-
natal stage as also demonstrated in our previous study
[Shi et al., 2010]. Manual segmentations were performed
on typical brain slides, including two sagittal slices, three
coronal slices, and three axial slices, selected by a trained
rater. All these selected sliced images were first segmented
by an intensity clustering method, and then manually
edited with the ITK-SNAP software [Yushkevich et al.,
2006]. The typical manual segmentation results could be
observed in Figures 10d, 12e, 14a, and 16e.

Visual Inspection

Representative segmentation results yielded by the pro-
posed method and a manual rater on two subjects are
shown in Figure 10. Also shown are their original T1 and

T2 images for comparison. The fine structures in neonatal
image, especially in the T2 image, are well preserved after
segmentation and are comparable with those of manual
segmentations. Accurate tissue segmentation facilitates fur-
ther cortical surface reconstruction (see Fig. 11).

Quantitative Comparison with Manual

Segmentations

To quantitatively evaluate the performance of our pro-
posed segmentation method, manual segmentation was
performed on all 10 neonates, and the obtained results are
used as the ground truth for evaluating the automatic seg-
mentations. For quantitative comparison, the Dice ratio
(DR) [Dice, 1945], DR ¼ 2|A \ B|/(|A| þ |B|), is
employed to measure the overlap rate between the manual
segmentation A and automatic segmentation B. The DR
ranges from 0 to 1, corresponding to the worst and the
best segmentation results. The DRs of the proposed
method for GM, WM, and CSF are shown in Figure 13, as
0.89 � 0.02, 0.89 � 0.01, and 0.87 � 0.03, respectively.

Quantitative Comparison with Two

Population Atlases

To further evaluate the performance of our constructed
hybrid atlas, two population atlases are included for com-
parison. In the first method (which we refer to as ‘‘Method

Figure 10.

Illustration of (a) T1 image, (b) T2 image, and segmentation

results yielded by (c) the proposed segmentation method and

(d) a manual rater.

Figure 11.

Surface rendering of tissue segmentation result of one subject.

(a) Gray matter surface and (b) white matter surface. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 12.

(a) Original T2 image, and segmentation results of (b) Method A, (c) Method B, (d) our pro-

posed method, and (e) a manual rater.
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A’’ later), a population atlas obtained from 76 infants rang-
ing in age from 9 to 15 months [Altaye et al., 2008] is used
to directly guide the tissue segmentation of neonatal
brains. In the second method (which we refer to as
‘‘Method B’’ later), the neonatal atlas generated in previous
section (Fig. 9a–c) is used to directly guide the brain tissue
segmentation of neonates. An example of the prior proba-
bility maps used in Method B and proposed method are
shown in Figure 9. It can be observed that the prior proba-
bility maps used in Method A is more blurry than that of
Method B. These three methods are essentially using dif-
ferent atlases but with the same joint registration-segmen-
tation algorithm for fair comparison. Figure 12 shows the
corresponding segmentation results of these three methods
on the neonatal brain image given in Figure 12a. It can be
observed that the segmentation results obtained by our
proposed method provide more detailed segmentations in
both coarse and fine structures, compared with those pro-
duced by Method A and Method B.

The DR is employed to measure the overlap rate
between the manually segmented images and those pro-
duced by Method A, Method B, and proposed method,
respectively. The DRs of the three methods for GM, WM,
and CSF are shown in Figure 13. In GM, the DR is 0.81 �
0.02 for Method A and 0.82 � 0.02 for Method B. In WM,
the DR is 0.74 � 0.05 for Method A and 0.77 � 0.05 for

Method B. In CSF, the DR is 0.78 � 0.05 for Method A and
0.78 � 0.07 for Method B. As we can observe from Figure
13, the proposed hybrid atlas-based segmentation method
produces results which agree best with manual segmenta-
tion results for both GM and WM.

Besides comparing global volumes of segmented GM
and WM as described earlier, the segmentation perform-
ance is further evaluated more closely in the cortical WM

Figure 13.

Dice ratio curves by comparing manual segmentations with automatic segmentations obtained by

Method A, Method B, and our proposed method, respectively. Segmentation is performed on

the neonatal images acquired using a phased array coil. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 14.

Illustration of cortical WM used for evaluating segmentation,

which is obtained by removing the large WM bundles. Segmen-

tation of this part of the WM is the weakest spot of most

algorithms.
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by removing the large WM bundles, with an example
shown in Figure 14. The DRs are computed for each of the
three methods, and results are given in Figure 15. Again,
the proposed method gives the best agreement with the
manually segmented images, compared with the two pop-
ulation-atlas-based segmentation methods. Both visual
inspection and quantitative evaluation results confirm the
advantages of using the proposed hybrid atlas for neonatal
brain image segmentation.

Evaluation in Neonatal Images Acquired by

Conventional Volume Coil

To evaluate the performance of the proposed segmenta-
tion framework with respect to the types of coils used, 10
neonatal images acquired with conventional volume coil
are used (four females and six males with postnatal age
range of 0.7–1.7 months). MR scanning parameters are also
provided in Table I. Compared with images acquired
using the phased array coil, image quality is reduced, and
cortical convolution is not clearly delineated. Representa-

tive segmentation results for one subject are shown in Fig-
ure 16, with Figure 17 showing the quantitative
segmentation accuracy for each of the 10 subjects. In GM,
the DR is 0.87 � 0.02 for proposed method, 0.82 � 0.03 for
Method A, and 0.85 � 0.03 for Method B. In WM, the DR
is 0.84 � 0.03 for the proposed method, 0.75 � 0.05 for
Method A, and 0.79 � 0.04 for Method B. In CSF, the DR
is 0.81 � 0.04 for the proposed method, 0.76 � 0.05 for
Method A, and 0.77 � 0.04 for Method B. As we can see,
the segmentation accuracy of the proposed method on
images obtained using the volume coil is better than that
of Method A and Method B, although not as good as on
those acquired with the phased array coil. For Method A
and Method B, they showed slightly higher segmentation
accuracy for images acquired with conventional volume
coil. One of the reasons might be that the atlases used by
their methods were constructed by images also acquired
using a conventional volume coil, thus they are better
suited for segmenting images obtained with similar coils.

DISCUSSION

Tissue segmentation of neonatal brain images has been
a daunting task owing to poor spatial resolution resulting
from small brain size, and low SNR resulting from the
ongoing processes of myelination and maturation. We
have shown that by introducing a phased array coil dedi-
cated for neonatal brains, the quality of images acquired
can be significantly improved by combining a set of coil
images. The coils, operating in a parallel fashion, make ac-
quisition with a sufficiently low time cost possible. This is
especially crucial for the acquisition of neonatal brain
images. We propose to use the KL divergence between
GM and WM for estimating the optimal range of image
combination parameter q. The best performance is found
when q falls in the range of 0–0.5, giving the image with
best contrast by combining the images from the individual
coils.

Note that while the parallel imaging technique adopted
in this article can help obtain high resolution and high
SNR images with a short acquisition time, the fundamen-
tal difficulty of segmenting neonatal images, which are dif-
ferent from adult subjects due to tissue development,

Figure 16.

(a) Original T2 image, and segmentation results of (b) Method A, (c) Method B, (d) our proposed

method, and (e) a manual rater, for neonatal images acquired with a conventional volume coil.

Figure 15.

Dice ratio curves by comparing manual segmentations with

automatic segmentations obtained by Method A, Method B, and

our proposed method, respectively. Segmentation is performed

on the cortical WM region of the neonatal images acquired

using a phased array coil. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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remains unsolved. We developed a novel hybrid atlas-
based tissue segmentation framework to remedy this prob-
lem. This hybrid atlas combines the benefits of the subject-
specific cortical GM folding pattern and the neonatal
population atlas. The results, compared with two popula-
tion-atlas-based segmentation methods, demonstrate that
the proposed approach is capable of achieving higher ac-
curacy on images acquired with both phased array coils
and conventional volume coils, especially in the cortical
regions. The proposed framework is flexible and can also
be applied to adult images.

In summary, we have proposed a novel way of building
an atlas for tissue segmentation. Many existing atlases
were constructed either by equally weighting all images or
by selecting a particular image in a population. We dem-
onstrate a way to fuse the population atlas with the sub-
ject-specific characteristics, i.e., cortical GM convolution
pattern. The effectiveness of our method is confirmed by
the distinction of the GM from other tissues in the cortical
region, where segmentation is known to be difficult espe-
cially with population atlas-based method. The segmenta-
tion outcome using the proposed method agrees very well
with that obtained from the manual rater. Using the pro-
posed method, segmentation of a brain MR image can be
performed automatically within 20 minutes. The capability

of yielding relatively accurate segmentation results allows
subsequent operations, such as cortical surface construc-
tion and cortical thickness measurement, to be performed
more precisely.
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