
ORIGINAL ARTICLE

Hexahedral mesh generation for biomedical models in SCIRun

Jason F. Shepherd Æ Chris R. Johnson

Received: 30 May 2007 / Accepted: 24 August 2007 / Published online: 27 August 2008

� Springer-Verlag London Limited 2008

Abstract Biomedical simulations are often dependent on

numerical approximation methods, including finite element,

finite difference, and finite volume methods, to model the

varied phenomena of interest. An important requirement of

the numerical approximation methods above is the need to

create a discrete decomposition of the model geometry into

a ‘mesh’. Historically, the generation of these meshes has

been a critical bottleneck in efforts to efficiently generate

biomedical simulations which can be utilized in under-

standing, planning, and diagnosing biomedical conditions.

In this paper we discuss a methodology for generating

hexahedral meshes for biomedical models using an algo-

rithm implemented in the SCIRun Problem Solving

Environment. The method is flexible and can be utilized to

build up conformal hexahedral meshes ranging from models

defined by single isosurfaces to more complex geometries

with multi-surface boundaries.

1 Introduction

Advanced techniques in biomedical computing, imaging,

and visualization are changing the face of biology and

medicine in both research and clinical practice. The goals

of biomedical computing, imaging and visualization are

multifaceted. While some images and visualizations facil-

itate diagnosis, others help physicians plan surgery.

Biomedical simulations can help to acquire a better under-

standing of human physiology. Still other biomedical

computing and visualization techniques are used for medical

training. Within biomedical research, new computational

technologies allow us to ‘‘see’’ into and understand our

bodies with unprecedented depth and detail. As a result of

these advances, biomedical imaging, simulation, and visu-

alization will help produce exciting new biomedical

scientific discoveries and clinical treatments.

Biomedical simulations are dependent on numerical

approximation methods, including finite element, finite

difference, and finite volume methods, to model the varied

phenomena of interest. An important requirement of the

numerical approximation methods above is the need to

create a discrete decomposition of the model geometry into

a ‘mesh’. The meshes produced are used as input for

computational simulation, as well as, the geometric basis

for which many of the visualization results are displayed.

Historically, the generation of these meshes has been a

critical bottleneck in efforts to efficiently generate

biomedical simulations which can be utilized in under-

standing, planning, and diagnosing biomedical conditions.

The most common types of elements utilized in

numerical approximations are triangles or quadrilaterals

in two-dimensions and tetrahedral or hexahedral elements

in three-dimensions. To reduce the amount of time to

prepare a model, automated meshing algorithms have been

developed for creating triangular, quadrilateral, and tetra-

hedral meshes for a very generalized class of geometries.

In the case of tetrahedral meshing, algorithms are available

that can generate greater than 400 thousand tetrahedra per

minute [16]. However, automated hexahedral mesh gen-

eration algorithms are available for a more limited class of

geometries. Because of the limited class of geometries for

which hexahedral meshes can be built, a significant amount

J. F. Shepherd (&) � C. R. Johnson

Scientific Computing and Imaging Institute,

Salt Lake City, UT, USA

e-mail: jfsheph@sci.utah.edu

C. R. Johnson

e-mail: crj@sci.utah.edu

123

Engineering with Computers (2009) 25:97–114

DOI 10.1007/s00366-008-0108-z

of time in generating a hexahedral mesh is devoted to

decomposing (cutting up) a model into pieces for which a

known hexahedral mesh generation algorithm will succeed.

The processing of geometry for creating a hexahedral mesh

can take several months for a generalized model, whereas

tetrahedral meshes can often be created in a matter of hours

or days [30, 31].

In spite of the limited availability of an automated

hexahedral mesh generation algorithm, hexahedral meshes

are sometimes preferred over tetrahedral meshes in certain

applications and situations for the following reasons:

1. For uniform mesh sizes, tetrahedral meshes typically

require 4–10 times more elements than a hexahedral

mesh to obtain the same level of accuracy [6, 29].

2. In some types of numerical approximations (i.e., high

deformation structural finite element analysis with

linear elements), tetrahedral elements will be mathe-

matically ‘stiffer’ due to a reduced number of degrees

of freedom associated with a tetrahedral element [2, 5].

This problem is also known as ‘tet-locking’.

Hexahedral mesh generation can be difficult and time-

consuming. In this paper, we will demonstrate a method for

generating hexahedral meshes using a methodology similar

to methods currently used for generating isosurfaces in

volumetric image data. This algorithm utilizes a theory for

hexahedral meshes outlined in [25], and implemented in

the SCIRun Problem Solving Environment [22, 10, 18].

We will describe the algorithm utilized and show how to

develop single surface and multi-surface hexahedral

meshes. We will demonstrate several example hexahedral

meshes generated with this algorithm. The generated

meshes will be similar in appearance to meshes generated

by hexahedral octree algorithms [20, 21, 24, 32, 33], but

the method of sheet insertion presented in this paper will

enable higher quality and finer control of the meshes than

previously demonstrated (at the cost of automation) as well

as a method for generation of conformal multi-material

hexahedral meshes.

2 Background

2.1 SCIRun background

The methods discussed throughout the remainder of this

paper have been developed in the SCIRun Problem Solving

Environment (PSE) [22, 10, 18]. SCIRun is a problem

solving environment that allows the interactive construction,

debugging, and steering of large-scale, typically parallel,

scientific computations. SCIRun provides a component

model, based on dataflow programming, that allows various

computational components and visualization components to

be connected together. SCIRun can be envisioned as a

‘‘computational workbench,’’ in which a scientist can design

and modify simulations interactively via a component-based

visual programming model. SCIRun enables scientists to

modify geometric models and interactively change numer-

ical parameters and boundary conditions, as well as to

modify the level of mesh adaptation needed for an accurate

numerical solution. As opposed to the typical ‘‘off-line’’

simulation mode - in which the scientist manually sets input

parameters, computes results, visualizes the results via a

separate visualization package, then starts again at the

beginning - SCIRun ‘‘closes the loop’’ and allows interactive

steering of the design, computation, and visualization phases

of a simulation. An example biomedical simulation utilizing

the SCIRun environment is shown in Fig. 1.

2.2 Algorithmic background

As imaging and scanning techniques continue to improve

for applications including biomedical imaging (e.g., CT,

MRI, confocal and light microscopy, etc.), geologic

imaging, and mechanical scanning, there has been sub-

stantial effort placed in generating computer models that

can be visualized and manipulated. Traditionally, the

Marching Cubes algorithm [15] has been utilized to con-

vert volumetric image data into isosurfaces that can be

viewed and manipulated. However, while suitable for

visualization, in many cases the meshes resulting from a

Marching Cubes algorithm are not of sufficient quality for

use with numerical techniques such as finite element, finite

volume, or finite differences methods.

Since the boundary of a hexahedral mesh is a quadri-

lateral mesh, we can utilize a methodology which is similar

to the marching cubes method [15] to create quadrilateral

isosurfaces. The hexahedral theory which supports this

methodology is outlined in [25] and the algorithm for

generating these quadrilateral isosurfaces was implemented

as a new module in SCIRun [18, 22]. For simplicity, the

algorithm takes a set of triangles describing the isosurface

along with a predefined hexahedral mesh that intersects the

isosurface (typically a bounding box surrounding the iso-

surface with a regular structured mesh). The algorithm will

be described in more detail in the next section.

3 Single surface methods

Because most isosurfacing algorithms generate triangle

meshes to represent the isosurfaces, an algorithm which

will convert the triangle surfaces to hexahedral meshes is a

very useful algorithm in creating models which can be used

98 Engineering with Computers (2009) 25:97–114

123

in computation. Additionally, numerous algorithms exist

for creating triangle meshes and most models in use for

computer visualization also utilize triangle meshes making

an algorithm that utilizes a triangle mesh as a starting point

is readily flexible for a wide-array of preexisting models.

The hexahedral meshes shown in this section were gener-

ated using the SCIRun software [18, 22] with a module (the

SCIRun module name is InsertHexSheetAlongSurface)

created for inserting hexahedral sheets into existing hexa-

hedral meshes given a triangle mesh that partitions the

hexahedral mesh into two regions (triangle meshes that

partition the hexahedral mesh into more than two regions

will be discussed in a later section). The basic algorithm

takes the following form:

Given an existing hexahedral mesh and a triangle mesh

representing the shape of the hexahedral sheet to be

inserted, do the following:

1. Locate all of the hexahedra that are intersected by one

or more triangles in the triangle mesh. A kdtree

containing all of the triangles is utilized to improve

the efficiency of this search. If there is a triangle in the

vicinity of a given hexahedron, each edge of the

hexahedron is tested for intersection with the triangles

in the region. Each of the intersected hexes is marked

as being intersected.

2. Separate the hexahedra into three groups: Side1,

Side2, and Intersected. Starting with an unmarked

hexahedron (i.e., a nonintersected hexahedron from the

previous step), use a flood-fill algorithm to group all of

the hexahedra that are connected to this hexahedron

and not marked (i.e., intersected by a triangle). This

group will be known as ‘Side1’. All of the marked, or

intersected, hexahedra are placed in a second group,

known as ‘Intersected’, and the remaining hexahedra

are placed in a third group, known as ‘Side2’. An

example of this process is shown in Fig. 2 where a

hemispherically-shaped triangle mesh is place in a

hexahedral grid. The boundary of the triangle mesh is

shown in black, and the ‘Intersected’ hexes are drawn

in yellow. ‘Side1’ is drawn in green and the remaining

hexahedra are placed in ‘Side2’ (shown in blue).

3. Collate the ‘Intersected’ hexahedra with either ‘Side1’

or ‘Side2’ and insert two hexahedral sheets between

these two groups of hexahedra. The ‘Intersected’

Fig. 1 The SCIRun PSE

showing the module network

(middle), the visualization

window (right). Researchers can

select UI (user interaction)

buttons on many of the modules

that allow control and feedback

of parameters within a particular

module (left)

Fig. 2 A hemispherically-shaped triangle mesh (the boundary of the

triangle mesh is shown in black) is placed in a hexahedral grid. The

hexahedra intersected by the triangle mesh are shown in yellow, while

‘Side1’ is drawn in green and ‘Side2’ is shown in blue

Engineering with Computers (2009) 25:97–114 99

123

hexahedra are subsequently added to either ‘Side1’ or

‘Side2’, and two sheets of hexahedra around these two

groups. For the example highlighted in Fig. 2, depend-

ing on which side the intersected hexahedra are

grouped, one of the meshes shown in Fig. 3 will result.

The hexahedral sheets are inserted by (refer to Fig. 4):

a. First, determining the quadrilateral boundary

between the two sides of the mesh,

b. separating the two meshes by shrinking the ele-

ments at this interface,

c. then, for each node on the separated boundary,

project a new node to the triangle mesh. A map to

each node is retained by both sides of the mesh, and

once all of the projected nodes have been created on

the boundary, the hexahedral connectivity for the two

sheets can be developed by using the quadrilaterals

on the interface boundary from both sides and the

map to each of the newly projected nodes.

4. Export the two new groups of hexahedra.

The shrinking process often forces some element

inversion, so it is necessary to smooth the mesh to obtain

the mesh quality desired. In addition, the projection of the

nodes to the triangle mesh often results in nonuniform

sizing of the quadrilateral elements on the boundary. This

is also remedied using a smoothing operation.

Smoothing on these meshes was accomplished in one of

two ways. The first option is to use the MESQUITE [4, 17]

suite of smoothing algorithms available from a mesh

smoothing module implemented in SCIRun [18, 22].

These smoothers include Laplacian smoothing, a hybrid

smoothing/optimization algorithm known as Smart Lapla-

cian [8], and a mesh optimization algorithm for improving

the ‘shape’ metric, called Shape Improvement Optimi-

zation [12]. In SCIRun, these smoothing/optimization

algorithms are available for smoothing quadrilaterals or

hexahedral meshes (as well as triangle and tetrahedral

meshes).

The second option is to export the mesh created in

SCIRun, and load it into the CUBIT Mesh Generation

Toolkit [7]. CUBIT has the mesh smoothing and optimi-

zation algorithms listed above, along with some additional

smoothing algorithms, including centroidal area smoothing

[11], condition number optimization [12], and untangling

[9, 12, 14, 28]. Additionally, CUBIT optionally allows

Fig. 3 Slightly different

meshes result depending on

which side the intersected hexes

are grouped. The image on the

left shows the resulting mesh

after sheet insertion if the

intersected hexes are placed

with Side1’s hexes, while the

image on the right has the

intersected hexes being grouped

with Side2

Fig. 4 Image a shows the shrunken hexahedra with the triangle mesh

shown in between the hexahedra. Image b shows a newly projected

node to the triangle mesh for each node on the boundary of the

shrunken mesh (note that a single node on the triangle mesh

corresponds to one node on each of the shrunken boundaries). Image c
shows the newly created hexahedron by mapping the quadrilaterals on

the boundary to the appropriate nodes (recently projected) on the

triangle surface mesh

100 Engineering with Computers (2009) 25:97–114

123

smoothing to occur on a focused-set of elements that can

dramatically reduce the amount of time needed for opti-

mization of specific hexahedral elements.

All mesh quality results are reported using the scaled

Jacobian metric as calculated by the Verdict library of

mesh quality metrics [27].

4 Single surface examples

In this section, we demonstrate the methods outlined in the

previous section to generate several hexahedral meshes for

models consisting of single surfaces. We demonstrate

geometric conformity to the original geometry, and high-

light the resulting hexahedral element quality inherent with

this methodology.

4.1 Hand model

The original triangle mesh for the hand model is provided

courtesy of INRIA by the AIM@SHAPE Shape Repository

(http://shapes.aim-at-shape.net/index.php).

The hexahedral mesh of the hand model, shown in of

Fig. 5 contains 202,974 hexahedra and was generated in

SCIRun and optimized in CUBIT. The mesh was generated

by using the process described in the heading to this sec-

tion, namely first creating a regular grid of hexahedra that

was 5% larger than a tight bounding box around the hand

geometry. The size of the elements was uniform throughout

the grid, and was chosen to be roughly the same size as the

elements in the original triangle mesh. To obtain a sharper

boundary near the wrist, the original bounding box was

moved slightly to allow the original triangle mesh to extend

past the boundary of the regular hexahedral grid. Two

hexahedral sheets were then placed in the grid using the

original triangle mesh as a guide.

Smoothing and optimization of this mesh was completed

in CUBIT [7]. The quadrilateral mesh on the boundary was

smoothed with a centroidal-area smoother to improve the

quality of the surface mesh. After smoothing the quadri-

laterals, the boundary nodes were fixed and the hexahedral

elements were smoothed with a Laplacian smoother, fol-

lowed by a mesh untangling operation on any hexahedra

that may have been inverted by the Laplacian smooth.

Upon completion of the untangling operation, an optimi-

zation algorithm to improve the condition number of each

of the elements was performed to give the final results

shown in Fig. 6.

Figure 7 displays the geometry for both the original

geometry and the hexahedral mesh [the facets of the ori-

ginal triangle mesh are shown in red (on the left) and the

facets from the hexahedral mesh are shown in green (in

the middle)]. In this model, the geometric fidelity of the

hexahedral mesh is very satisfactory as evidenced by the

completely mottled appearance of the overlapping facets

shown in the left image of both figures. The solid red area

at the base of the wrist indicates the region where the tri-

angle mesh was allowed to extend past the original

hexahedral grid. Table 1 gives a listing of the original

volume enclosed by the triangles and the final volume

enclosed by the hexahedral mesh. The volume in the

hexahedral mesh is 3.17% smaller than the volume

enclosed by the original triangles. The bulk of the volume

lost is due to the region at the wrist of the model where the

triangle mesh was extended past the hexahedral mesh.

4.2 Mouse model

The original triangle mesh was generated from CT data and

was provided courtesy of Jeroen Stinstra from the Scientific

Computing and Imaging Institute at the University of Utah.

The hexahedral mesh of the mouse model, shown in of

Fig. 8 contains 74,828 hexahedra and was generated in

SCIRun and optimized in CUBIT. The mesh was generated

first creating a regular grid of hexahedra that was larger

than a tight bounding box around the mouse geometry. The
Fig. 5 Front and back view of the hexahedral mesh of the hand. The

mesh contains 202,974 elements

Fig. 6 Distribution of element quality for the hand model

Engineering with Computers (2009) 25:97–114 101

123

http://shapes.aim-at-shape.net/index.php

size of the elements within this mesh was chosen based on

a percentage of length of each of the sides of the bounding

box. The element size is uniform throughout the model,

which is not conducive to high element quality near the

feet and tail, but these locations were deemed unimportant

for subsequent numerical analysis. Two hexahedral sheets

were then placed in the hexahedral grid using the original

triangle mesh as a guide. After the sheet insertion process,

the hexahedral elements exterior to the mouse model were

discarded.

Mesh quality optimization for this model was performed

in CUBIT, where the quadrilateral mesh on the boundary

was smoothed with a centroidal-area smoother to improve

the quality of the surface mesh. Because of the nonsmooth

nature in some areas of the original triangle mesh (shown

in Fig. 9), some additional quadrilateral smoothing was

done on some of the quadrilaterals whose nodes collected

in areas of discontinuity of the original triangle mesh. After

obtaining a reasonable quadrilateral mesh, the boundary

nodes were fixed and the hexahedral elements were

smoothed with a Laplacian smoother, followed by a mesh

untangling operation on any hexahedra that may have been

inverted by the Laplacian smooth. Upon completion of the

untangling operation, an optimization algorithm to improve

the condition number of each of the elements was per-

formed to give the final results shown in Fig. 10.

Figure 11 displays the geometry for both the original

geometry and the hexahedral mesh [the facets of the ori-

ginal triangle mesh are shown in red (left) and the facets

from the hexahedral mesh are shown in green (middle)]. In

this model, the geometric fidelity of the hexahedral mesh is

satisfactory with a fair amount of mottling over the entire

mouse, although evidence of the original segmentation

process is evident by the layering seen in the mottling.

Some additional refinement around the arm may also be

Fig. 7 Geometry generated

from original triangle facets

shown in red (on the left), and

the geometry generated from the

hexahedral facets is shown in

green (in the middle). An image

where both sets of facets are

overlapped is given on the right

to give an indication of the

overall geometric fidelity of the

hexahedral mesh

Table 1 Table indicating volume changes resulting from conversion

of the original triangle mesh to a hexahedral mesh for the hand model

Volume

(triangle mesh)

Volume

(hexahedral mesh)

Difference Percent change

0.430513 0.416846 -0.01367 -3.17%

Fig. 8 Hexahedral mesh of a mouse generated from CT data. The

mesh contains 74,828 elements

Fig. 9 Original triangle mesh of the mouse model

Fig. 10 Distribution of element quality for the mouse model

102 Engineering with Computers (2009) 25:97–114

123

necessary to remove a blending in this region, as well (note

the area of green surrounding the joint near the top of the

arm). Additionally, utilizing a smoother initial triangle

mesh, or presmoothing the triangle mesh, would enable

additional geometric fidelity to be obtained. Table 2 gives

a listing of the original volume enclosed by the triangles

and the final volume enclosed by the hexahedral mesh. The

volume in the hexahedral mesh is 0.17% larger than the

volume enclosed by the original triangles with the addi-

tional volume gained mainly in the concave regions near

the arms and legs.

4.3 Bunny model

The original triangle mesh for the bunny model was gen-

erated by John Schreiner using the ‘afront’ software [19].

The hexahedral mesh of the bunny model, shown in

Fig. 12 contains 125,183 hexahedra and was generated in

SCIRun and optimized in CUBIT. The mesh was generated

first creating a regular grid of hexahedra that was 5% larger

than a tight bounding box around the bunny geometry. The

size of the elements within this mesh was chosen using a

size from the original triangle mesh in an area with a

moderate amount of detail. Two hexahedral sheets were

then placed in the hexahedral grid using the original tri-

angle mesh as a guide, and the mesh was then exported

from SCIRun and translated into a file format readable by

CUBIT.

In CUBIT, centroidal-area smoothing was used on the

quadrilateral boundary. After smoothing the quadrilateral

mesh, the boundary nodes were fixed and the hexahedral

elements were smoothed with a Laplacian smoother, fol-

lowed by a mesh untangling operation on any hexahedra

that may have been inverted by the Laplacian smooth.

Upon completion of the untangling operation, an optimi-

zation algorithm to improve the condition number of each

of the elements was performed to give the final results

shown in Fig. 13.

Figure 14 displays the geometry derived from the facets

of the original triangle mesh and the hexahedral mesh [the

facets of the original triangle mesh are shown in red (left)

and the facets from the hexahedral mesh are shown in

green (middle)]. In this model, the geometric fidelity of the

hexahedral mesh is reasonable with a fair amount of mot-

tling over the entire bunny, although evidence of blending

Fig. 11 Geometry generated from original triangle facets shown in

red (upper left), and the geometry generated from the hexahedral

facets is shown in green (upper right). An image where both sets of

facets are overlapped is given on the bottom to give an indication of

the overall geometric fidelity of the hexahedral mesh

Table 2 Table indicating volume changes resulting from conversion

of the original triangle mesh to a hexahedral mesh for the mouse

model

Volume

(triangle mesh)

Volume

(hexahedral mesh)

Difference Percent change

16.845 16.873 0.028 0.17%

Fig. 12 Hexahedral mesh of the bunny model, containing 125,183

elements

Fig. 13 Distribution of element quality for the bunny model

Engineering with Computers (2009) 25:97–114 103

123

by the hexahedral elements is evident in areas of higher

curvature, specifically around the neck, tail, ear, and thigh

of the rabbit. Some refinement of the original grid in these

regions should improve the geometric fidelity of the

hexahedral mesh. Table 3 gives a listing of the original

volume enclosed by the triangles and the final volume

enclosed by the hexahedral mesh. The volume in the

hexahedral mesh is 0.05% larger than the volume enclosed

by the original triangles with the additional volume gained

mainly in the concave regions near the legs, tail and neck.

4.4 Dragon model

The original triangle mesh for the dragon model was

generated by John Schreiner using the ‘afront’ software

[19].

The hexahedral mesh of the dragon model, shown in two

separate images in Fig. 15 contains 465,527 hexahedra and

was generated in SCIRun and optimized in CUBIT. The

mesh was generated first creating a regular grid of hexa-

hedra that was 5% larger than a tight bounding box around

the dragon geometry. The size of the elements within this

mesh was chosen using a comparable size from the original

triangle mesh in an area with a moderate amount of detail

(the original trimesh of the dragon is shown in Fig. 16).

This size was made uniform throughout the original

hexahedral grid.

Two hexahedral sheets were then placed in the hexa-

hedral grid using the original triangle mesh as a guide.

After placement of the new sheets, the hexahedral elements

exterior to the dragon model were discarded.

Mesh optimization for the mesh was performed in

CUBIT using a centroidal-area smoothing on the boundary,

followed by Laplacian smoothing for all interior nodes was

performed. This was followed by a mesh untangling

operation on any hexahedra that may have been inverted by

the Laplacian smooth, and, finally, mesh optimization to

improve the condition number of each of the elements was

performed to give the final results shown in Fig. 17.

Figure 18 displays the geometry derived from the facets

of the original triangle and hexahedral meshes [the facets

of the original triangle mesh are shown in red (on the left)

and the facets from the hexahedral mesh are shown in

green (in the middle)]. In this model, the geometric fidelity

of the hexahedral mesh is reasonable over the entire model

as demonstrated by a fair amount of mottling over the

entire dragon. Some blending of the hexahedral mesh over

original detail in the triangle mesh is evident in areas of

high concavity, specifically the solid green areas near the

joints around the legs, feet, and face, as well as along the

Fig. 14 Geometry generated

from original triangle facets

shown in red (upper left), and

the geometry generated from the

hexahedral facets is shown in

green (upper right). An image

where both sets of facets are

overlapped is given at the

bottom to give an indication of

the overall geometric fidelity of

the hexahedral mesh

Table 3 Table indicating volume changes resulting from conversion

of the original triangle mesh to a hexahedral mesh for the bunny

model

Volume

(triangle mesh)

Volume

(hexahedral mesh)

Difference Percent change

753507.7 753918.2 410.5 0.05%

Fig. 15 Two views of the

hexahedral mesh of the dragon

model. The mesh contains

465,527 elements

104 Engineering with Computers (2009) 25:97–114

123

scales along the back of the dragon. Some of these artifacts

may be due to the grouping of the intersected hexes dis-

cussed in the heading of this section. To improve the

geometric fidelity of the hexahedral mesh in regions of

high convexity, the hexahedra that were intersected by the

triangle mesh were added to the group of hexahedra located

in the interior of the triangle mesh to capture additional

geometric detail in the horns, facial fans, and teeth.

Including all the intersected hexes with the hexes interior to

the dragon enables an improved mesh that better captures

high convexity details, but can be deleterious to some

features in areas of high concavity. While this process did

not greatly impact the resulting mesh, improvements to this

algorithm can be made that may improve the overall geo-

metric fidelity of the model, as well as reduce the amount

of questionable hexahedral elements in the final model.

Table 4 gives a listing of the original volume enclosed

by the triangles and the final volume enclosed by the

hexahedral mesh. The volume in the hexahedral mesh is

0.16% larger than the volume enclosed by the original

triangles with the additional volume being gained largely in

the concave regions around the leg joints, mouth, and along

the spines on the back of the dragon.

4.5 Brain model

The original triangle mesh for the brain model is provided

courtesy of INRIA by the AIM@SHAPE Shape Repository

(http://shapes.aim-at-shape.net/index.php).

The hexahedral mesh of the brain model, shown in

Fig. 19 contains 644,221 hexahedra and was generated in

SCIRun and optimized in CUBIT. The mesh was generated

first creating a regular grid of hexahedra that was 5% larger

than a tight bounding box around the brain geometry. A

uniform element size was chosen using a comparable size

from the original triangle mesh. Two hexahedral sheets

were then placed in the hexahedral grid using the original

triangle mesh (shown in Fig. 20) as a guide, and the mesh

was then imported in CUBIT for mesh optimization.

In CUBIT, the quadrilateral mesh on the boundary was

smoothed with a centroidal-area smoother to improve the

quality of the surface mesh. After smoothing the quadri-

lateral mesh, the boundary nodes were fixed and the

hexahedral elements were smoothed with a Laplacian

smoother, followed by a mesh untangling operation on any

hexahedra that may have been inverted by the Laplacian

smooth. Upon completion of the untangling operation, an

optimization algorithm to improve the condition number of

each of the elements was performed to give the final results

shown in Fig. 21.

Table 5 gives a listing of the original volume enclosed

by the triangles and the final volume enclosed by the

hexahedral mesh. The volume in the hexahedral mesh is

Fig. 16 Original triangle mesh of the dragon model

Fig. 17 Distribution of element quality for the dragon model

Fig. 18 Geometry generated

from original triangle facets

shown in red (on the left), and

the geometry generated from the

hexahedral facets is shown in

green (in the middle). An image

where both sets of facets are

overlapped is given on the right

to give an indication of the

overall geometric fidelity of the

hexahedral mesh

Engineering with Computers (2009) 25:97–114 105

123

http://shapes.aim-at-shape.net/index.php

1.85% larger than the volume enclosed by the original

triangles. The additional volume gain is noticeable in areas

of concavity of the original triangle mesh with the bulk of

the additional volume being gained in the loss of internal

cavities in the brain.

Figure 22 displays the geometry derived from the facets

of the original triangle and hexahedral meshes [the facets

of the original triangle mesh are shown in red (on the left)

and the facets from the hexahedral mesh are shown in

green (in the middle)]. In this model, the geometric fidelity

of the hexahedral mesh is reasonable over the entire model

as demonstrated by a fair amount of mottling over the

entire brain. However, loss of detail is apparent in many of

the brain folds and especially in some of the interior

structure of the brain as evident in Fig. 23. The loss of the

internal cavities accounts for the bulk of the volume gain

shown in Table 5.

The loss of detail and negative element quality can be

attributed to a couple of basic assumptions made in the

current sheet insertion algorithm. First, the assumption is

made that the shrunken hexahedral grid is directly

homeomorphic to the original triangle mesh. With proper

element sizing, this assumption is reasonable assuming that

nonmanifold connections between elements do not exist in

the groups of elements around which the sheets are inserted

(i.e., regions where the boundary of the group of elements

being pillowed is ‘pinched’ together). The algorithm

implemented in SCIRun detects locations where nonman-

ifold edges exist, but does not detect nonmanifold nodes.

Normally, decreasing the size of the mesh will improve the

geometric fidelity and remove many, if not all, of the

nonmanifold nodes. However, decreasing the size comes at

a cost, and because we utilized uniform sizing and based on

the the number of elements in the original grid adding

additional elements to the mesh was not an option without

increasing the amount of memory on the machine gener-

ating the meshes. In the brain mesh, the element sizing

utilized resulted in 150 nonmanifold nodes that account for

nearly all of the negative Jacobian elements in the resulting

mesh (shown in Fig. 24).

A second assumption was that the intersected hexahedra

should all go to one side or the other. As discussed in the

dragon example, depending on which side the group of

intersected hexes is added, dramatic improvements in

geometric fidelity can be realized. Because the isomor-

phism to the triangle mesh is only requirement, better

Table 4 Table indicating volume changes resulting from conversion

of the original triangle mesh to a hexahedral mesh for the dragon

model

Volume

(triangle mesh)

Volume

(hexahedral mesh)

Difference Percent change

11140235.34 11158459.36 18224.02 0.16%

Fig. 19 Hexahedral mesh of the brain model, containing 644,221

elements

Fig. 20 Original triangle mesh of the brain model

Fig. 21 Distribution of element quality for the brain model

Table 5 Table indicating volume changes resulting from conversion

of the original triangle mesh to a hexahedral mesh for the brain model

Volume

(triangle mesh)

Volume

(hexahedral mesh)

Difference Percent change

67855.98 69109.39 1253.41 1.85%

106 Engineering with Computers (2009) 25:97–114

123

separation of the intersected hexes between groups may be

a more viable solution, especially if regions of high con-

vexity and concavity can be distinguished from the original

triangles.

5 Multisurface methods

In the previous section, we demonstrated hexahedral mesh-

ing of complex geometric solids that are defined by a single

surface. In this section, we demonstrate hexahedral mesh

creation on geometric solids that are bounded by more than

one surface using a similar methodology as used earlier.

In solid modeling, a volume is bounded by one or more

surfaces and a surface is bounded by zero or more curves.

A volume that is bounded by a single surface with zero

curves can be meshed using an isosurfacing methodology

as described in the previous section. In this section, we will

focus on volumes that are bounded by more than one

surface, which in turn is bounded by one or more curves.

We will consider these curves to be discontinuities in the

boundary of the mesh. These curves can be categorized as

follows (see Fig. 25):

Definition: A soft curve on a volume is a curve on the

boundary of the volume where the transition from one

surface to the next surface across the curve is smooth, or

nearly smooth.

Definition: A hard curve on a volume is a curve on the

boundary of the volume, where the transition from one

surface to the next surface across the curve is not smooth.

These definitions are somewhat ambiguous, and it is left

to the reader to determine when a transition is smooth

versus when the transition is not smooth. The techniques

presented in this section will be general enough to account

Fig. 22 Geometry generated from original triangle facets shown in

red (on the left), and the geometry generated from the hexahedral

facets is shown in green (in the middle). An image where both sets of

facets are overlapped is given on the right to give an indication of the

overall geometric fidelity of the hexahedral mesh

Fig. 23 Transparent view to show internal structure of the geometry

generated from original triangle facets shown in red (on the left), and

the geometry generated from the hexahedral facets is shown in green

(in the middle). An image where both sets of facets are overlapped is

given on the right to give an indication of the overall geometric

fidelity of the hexahedral mesh

Fig. 24 Locations of negative scaled Jacobian elements in the brain

model

Engineering with Computers (2009) 25:97–114 107

123

for this ambiguity; however, the examples presented in this

section will, for the most part, ignore the cases of curves

that can be defined nearly unambiguously as being ‘soft

curves’ on the boundary of the geometry.

5.1 Sharp feature capture

Whenever a hard curve is present in the boundary of a

volume, it is advantageous to the quality of the mesh and to

the fidelity of the geometry to have a string of mesh edges

that align themselves with the curve. In a hexahedral mesh,

a string of mesh edges results whenever two sheets inter-

sect. We can control the placement of the edges resulting

from the intersection of the two sheets by controlling the

locations of the sheet intersections. For example, in Fig. 26

we place a planar sheet behind the face in the head model.

The intersection of the planar sheet (which also captures a

new planar surface) with the boundary sheet inserted ear-

lier, produces a string of mesh edges that are nicely aligned

to create the sharp corner. This allows the face to be cut

from the head model.

By controlling where the sheet intersections occur, or

manipulating the conformation of the sheets such that

intersections occur in the proximity of hard curves, we can

manipulate the hexahedral mesh to obtain a mesh topology

that mimics the geometric topology with the hard curves.

Therefore, we can use this methodology to enable hexa-

hedral meshing of multisurface geometries by strategic

insertion of the fundamental sheets needed to capture the

geometric surfaces, curves and vertices of the orginal

model.

Additionally, by inserting multiple sheets (similar to the

procedure used for isosurfacing), we can construct complex

geometries by performing Boolean-like operations in the

hexahedral mesh while still maintaining conformity with

all of the split-off pieces. In Fig. 27 we demonstrate several

successive spherical cuts from a single hexahedral mesh of

a cubical geometry. Where two sheets intersect, the result

is a string of mesh edges that align with the cut enabling

the sharp features in the resulting model to be recognized.

Figure 28 lists the resulting quality of each of the elements

demonstrating the overall high quality of the resulting

mesh.

In SCIRun [18, 22], we utilize the same algorithm that

was developed for the hexahedral isosurfacing (as descri-

bed previously) to affect the sheet insertion process. By

ensuring that another sheet already exists in the location

where we desire the hard curve to be placed, the addition of

the new sheet results in a string of mesh edges that can be

moved to the location of the hard curve. A similar meth-

odology is used in the MeshCutting algorithm [3] as

implemented in CUBIT.

Fig. 25 The highlighted curve in the image on the left could be

considered a soft curve, while the highlighted curve in the image on

the right would be considered a hard curve

Fig. 26 In locations where two

sheets intersect, the resulting

mesh topology contains a string

of edges that can be aligned

with sharp features, or hard

curves. In this image, we ‘cut’

the face from the head model by

inserting a planar sheet behind

the face. The inserted boundary

sheet capturing the face (shown

in the image on the right), along

with the newly inserted planar

sheet (middle image) behind the

face, results in a mesh topology

that contains a string of edges

sufficient to produce a sharp

boundary where the two sheets

intersect, as shown in the

middle image above

108 Engineering with Computers (2009) 25:97–114

123

The remainder of this section demonstrates hexahedral

meshing on several multisurface models. These results were

obtained using both the algorithms in SCIRun and CUBIT,

with the exact recipe for generating the mesh being detailed

in each respective section. The first example of a mechan-

ical part demonstrates the sheet insertion process for

capturing both hard and soft curves. Later examples

demonstrate increased model complexity utilizing sheet

insertion and mesh cutting examples as implemented in

both SCIRun and CUBIT.

6 Multisurface examples

6.1 Mechanical part

The hexahedral mesh of the mechanical part model, shown

in Fig. 29, was generated in CUBIT and contains 27,486

hexahedra. The original geometry contains two soft curves

that are shown in Fig. 30. In this example, we will show

how these soft curves can be captured utilizing the sheet

insertion techniques described earlier, while also generat-

ing a hexahedral mesh for the volume.

The difficulty in generating a hexahedral mesh on this

model using traditional methods is a result of the long

quarter-cylindrical cut along one of the edges of the model

coupled with the quarter-circle soft curve on the base of the

model. These two features of the model prevent the use of a

traditional sweeping method. Other common methods for

producing a hexahedral mesh with a fair amount of struc-

ture require a fair amount of decomposition to the model to

develop recognizable hexahedral mesh primitives.

To generate the mesh for the mechanical part, we first

generated a mesh of a simpler version of the model that

could be meshed utilizing a sweeping algorithm [23, 26]

(see Image a in Fig. 31). Utilizing this mesh, we inserted

three additional sets of sheets into the mesh using the three

triangle meshes as guides shown in Image b, c, and d in

Fig. 31. These triangle meshes were created directly on the

original surfaces using an advancing front triangle meshing

algorithm available in CUBIT. Following the insertion of

the sheets, the inserted sheets from the triangle mesh in

Image B was used to cut the original geometry to produce

the final geometry for the mechanical part and recover the

hard curves around the cylindrical section.

Following sheet insertion, the new mesh edges that were

formed to capture the soft curves were fixed in place and a

centroidal area smoothing of the boundary was performed

Fig. 27 By inserting spherical sheets into the geometry, we can

perform Boolean-like operations in the mesh, while maintaining the

integrity of the hexahedral mesh. At each of the boundary surfaces,

the intersection of the spherical sheet with the original planar sheets in

the cuboid mesh is sufficient to produce a hexahedral mesh with a

string of mesh edges that can be utilized to capture the boundary

discontinuities resulting from the spherical cuts

Fig. 28 The distribution of scaled Jacobian values for the cuboid

geometry with the spherical cutouts shown in Fig. 27

Fig. 29 Hexahedral mesh of the mechanical part model showing

images from the side and bottom of the mesh

Engineering with Computers (2009) 25:97–114 109

123

to improve quality of the surface mesh for the solid. The

hexahedral elements were then smoothed with a Laplacian

smoother followed by optimization via the mean-ratio

metric for each of the hexahedra resulting in the mesh

quality distribution shown in Fig. 32

6.2 Skull model

The skull model is provided courtesy of INRIA by the

AIM@SHAPE Shape Repository (http://shapes.aim-at-

shape.net/index.php). The difficulty in generating this

model with traditional methods is several fold. First, the

original model was constructed from a triangle mesh only,

and no solid model description of this model is available.

Therefore traditional decomposition with solid modeling

operations is not readily accessible. Second, since there are

no hard curves in the model traditional methods for

determining a decomposition strategy for common hexa-

hedral methods are not present. With commonly available

methods for generating hexahedral meshes, this model

would be extremely difficult to produce.

The hexahedral mesh of the skull model, shown in

Fig. 33, was generated in SCIRun and contains 19,330

hexahedra in the skull bone and an additional 34,815

hexahedra in the mesh of the cranial cavity. The mesh is

completely conformal throughout the model, but is sepa-

rated into the two material blocks. A transparent view of

the geometry showing the bone and cranial cavity is given

in Fig. 34.

This model was generated by placing a triangle mesh

describing the geometry of the skull bone (minus the sur-

face describing the cranial cavity) in a regular grid of

hexahedra and inserting two hexahedral sheets using the

triangle mesh to guide the placement of the newly formed

hexahedra. The mesh exterior to the skull was discarded,

and an additional set of sheets was added using a triangle

mesh describing the cranial cavity to control the placement

of the new hexahedral elements belonging to the inserted

sheets. This generation process is shown pictorially in

Fig. 35.

These two groups of hexahedral elements were then

optimized in CUBIT, by first, using a centroidal-area

smoother on the exterior skull surface and the shared sur-

face of the cranial cavity. Laplacian smoothing was then

utilized on the hexahedra in both volumes. Additional mesh

untangling and condition number optimization were

performed on the hexahedra in the hexahedral mesh of

the bone. The final mesh quality, dictated by the scaled

Jacobian metric, is shown in the distribution in Fig. 36.

6.3 Goose16 model

The goose16 model is provided courtesy of ANSYS [1].

The most significant difficulty in generating a hexahedral

mesh of the goose model using traditional hexahedral

algorithms is the circularity created in the geometry. This

Fig. 30 Geometry for the mechanical part showing two soft curves:

one in the upper cylindrical section and a second on the base of the

model

Fig. 31 Flow chart showing the

sheet insertion steps to create

the mesh for the mechanical

part. The red surfaces represent

hexahedral sheets that were

inserted into the simplified

hexahedral mesh on the left to

create the final hexahedral mesh

on the right

Fig. 32 Distribution of element quality for the mechanical part

model

110 Engineering with Computers (2009) 25:97–114

123

http://shapes.aim-at-shape.net/index.php
http://shapes.aim-at-shape.net/index.php

prohibits common hexahedral mesh generation methods

without doing a fair amount of precision decomposition to

the original model. Additionally, the branching of the

cylindrical cut-outs in the back make traditional sweeping

methods impossible to use on this model without creating

degenerate hexahedra at the branch points.

The hexahedral mesh of the goose16 model, shown in

Fig. 37, was generated using sheet insertion algorithms in

SCIRun and mesh cutting algorithms in CUBIT. A close-

up view detailing the internal pipe detail is shown in

Fig. 38. The final mesh contains 57,114 hexahedra. The

mesh quality distribution of scaled Jacobian measures for

the goose16 mesh is shown in Fig. 39.

The mesh was generated following the process flow

shown in Fig. 40. Specifically, a simplified geometry that

was sweepable was created and meshed in CUBIT. A set of

sheets was created and inserted into this mesh to fit the

geometry of the original model using a triangle mesh of

this surface as a guide in placing the hexahedral sheets. The

elements outside the original volume boundaries described

by the newly inserted sheet were discarded.

On the backside of the goose model, a set of half-

cylindrical sheets following the pipe-like arm created in the

previous step was added to this mesh with the elements

interior to this cylinder being discarded. An additional half-

cylindrical branch to the previous sheets was added to this,

discarding the elements interior to this set of sheets,

resulting in the mesh shown in Image H of Fig. 40.

Finally, one last set of sheets was added near the top of

the model to produce the filleted region and finalize the

mesh. Because this last set of sheets was nearly tangent

with the top of the surface near the middle of the model, a

line of doublet elements resulted where the two sheets

meet. This line of doublets was resolved with a boundary

face collapse operation [25] to join the two disjoint sheets

into a single continuous sheet across the top of the model.

The resulting mesh was smoothed using a Laplacian

smoother on the boundary quadrilaterals and hexahedral

elements, followed by a mesh untangling operation and

condition number optimization. The resulting mesh quality

distribution of scaled Jacobian measures is shown in

Fig. 39.

Fig. 33 Hexahedral mesh of the skull model. Bone (left) and cranial

cavity (right) meshes are shown separately

Fig. 34 Transparent view of the combined geometry generated from

the facets of the hexahedral mesh of the skull model

Fig. 35 Pictorial flow chart demonstrating the mesh generation

process for creating the hexahedral mesh of the skull. Triangle

meshes (pink) are utilized to guide placement of hexahedral sheets

into existing hexahedral meshes to achieve new meshes that are

conformal with the original solid geometry

Engineering with Computers (2009) 25:97–114 111

123

7 Conclusion

Biomedical simulations are often dependent on numerical

approximation methods, including finite element, finite

difference, and finite volume methods, to model the

varied phenomena of interest. Meshes are used as input

for computational simulation, as well as, the geometric

basis for which many of the visualization results are

displayed. Historically, the generation of these meshes

has been a critical bottleneck in efforts to efficiently

generate biomedical simulations which can be utilized in

understanding, planning, and diagnosing biomedical

conditions.

For some types of analyses, hexahedral meshes are

desirable for reduced element counts and improved analysis

fidelity. However, automated hexahedral mesh genera-

tion algorithms are available for a more limited class of

geometries. Because of the limited class of geometries

for which hexahedral meshes can be built, a significant

amount of time is often required to generating a hexahedral

mesh. For many models the process of creating a hexahedral

mesh can take several months for a generalized model

[30, 31].

In this paper, we have built upon theory outlined in [25]

to create an algorithm that can be utilized for generating

hexahedral meshes for biomedical models. The algorithm

uses a framework that is similar to Marching Cubes

approaches for generating triangle isosurfaces. The algo-

rithm is also flexible and can be utilized to build up more

complex geometries while maintaining geometric fidelity

and mesh quality. We demonstrated this flexibility by

creating meshes for biomedical and mechanical models of

increasing complexity. All of the results were verified

using the Verdict mesh quality library [27] and the scaled

Jacobian measure for a hexahedral element and shown to

have acceptable quality suitable for use in subsequent

simulations.

Fig. 36 Distribution of element quality for the skull model (bone is

shown in white and cranial cavity is shown in black)

Fig. 37 Hexahedral mesh of the goose16 model showing images

from the front and back of the mesh, respectively

Fig. 38 Close-up view of the goose16 model showing detail in the

area of several cuts

Fig. 39 Distribution of element quality for the goose16 model

112 Engineering with Computers (2009) 25:97–114

123

References

1. ANSYS (2007) ANSYS, http://www.ansys.com

2. Benzley SE, Perry E, Merkley K, Clark B (1995) A comparison

of all hexagonal and all tetrahedral finite element meshes for

elastic and elasto-plastic analysis. In: Proceedings, 4th interna-

tional meshing roundtable. Sandia National Laboratories,

pp 179–191

3. Borden MJ, Shepherd JF, Benzley SE (2002) Mesh cutting:

fitting simple all-hexahedral meshes to complex geometries. In:

Proceedings, 8th international society of grid generation

conference

4. Brewer M, Freitag-Diachin L, Knupp P, Leurent T, Melander DJ

(2003) The MESQUITE mesh quality improvement toolkit. In:

Proceedings, 12th international meshing roundtable. Sandia

National Laboratories, pp 239–250

5. Bussler ML, Ramesh A (1993) The eight-node hexahedral ele-

ments in FEA of part designs. In: Foundry management and

technology, pp 26–28

6. Cifuentes AO, Kalbag A (1992) A performance study of tetra-

hedral and hexahedral elements in 3-D finite element structural

analysis. Finite Elem Anal Des 12(3–4):313–318

7. The CUBIT geometry and mesh generation toolkit (2007) Sandia

National Laboratories, http://cubit.sandia.gov/

8. Freitag L (1997) On combining Laplacian and optimization-based

mesh smoothing techniques. AMD trends in unstructured mesh

generation. ASME 220:37–43

9. Freitag LA, Plassmann P (2000) Local optimization-based sim-

plicial mesh untangling and improvement. Int J Numer Methods

Eng 49(1):109–125

10. Johnson C, MacLeod R, Parker S, Weinstein D (2004) Biomed-

ical computing and visualization software environments.

Commun ACM 47(11):64–71

11. Jones TR, Durand F, Desbrun M (2003) Non-iterative,

feature-preserving mesh smoothing. ACM Trans Graph 22(3):

943–949

12. Knupp P, Mitchell SA (1999) Integration of mesh optimization

with 3D all-hex mesh generation, LDRD subcase 3504340000,

final report. SAND 99-2852, October 1999

13. Knupp PM (2003) Hexahedral and tetrahedral mesh shape opti-

mization. Int J Numer Methods Eng 58(1):319–332

14. Knupp PM (2000) Hexahedral mesh untangling and algebraic

mesh quality metrics. In: Proceedings, 9th international meshing

roundtable. Sandia National Laboratories, pp 173–183

15. Lorenson WE, Cline HE (1987) Marching cubes: a high resolu-

tion 3D surface construction algorithm. Comput Graph

21(4):163–169. Proceedings of SIGGRAPH ’87

16. Loriot M (2006) TetMesh-GHS3D v3.1 the fast, reliable, high

quality tetrahedral mesh generator and optimiser, http://www.

simulog.fr/mesh/tetmesh3p1d-wp.pdf

17. MESQUITE (2005) The mesh quality improvement toolkit, ter-

ascale simulation tools and technology center (TSTT),

http://www.tstt-scidac.org/research/mesquite.html

18. Parker S, Weinstein D, Johnson C (1997) The SCIRun compu-

tational steering software system. In: Arge E, Bruaset A,

Langtangen H (eds) Modern software tools in scientific com-

puting. Birkhauser Press, Boston, pp 1–40

19. Scheidegger C, Schreiner J (2007) Afront, http://sourceforge.net/

projects/afront/

20. Schneiders R (1996) A grid-based algorithm for the generation of

hexahedral element meshes. Eng Comput 12:168–177

21. Schneiders R (1997) An algorithm for the generation of hexa-

hedral element meshes based on an octree technique. In:

Proceedings, 6th international meshing roundtable. Sandia

National Laboratories, pp 183–194

22. SCIRun (2007) A scientific computing problem solving envi-

ronment, scientific computing and imaging institute (SCI),

download from http://software.sci.utah.edu/scirun.html

23. Scott MA, Earp MN, Benzley SE, Stephenson MB (2005) Adaptive

sweeping techniques. In: Proceedings, 14th international meshing

roundtable. Sandia National Laboratories, pp 417–432

24. Shephard MS, Georges MK (1991) Three-dimensional mesh

generation by finite octree technique. Int J Numer Methods Eng

32:709–749

25. Shepherd JF (2007) Topologic and geometric constraint-based

hexahedral mesh generation. Published Doctoral Dissertation,

University of Utah

26. Shepherd JF, Mitchell SA, Knupp P, White DR (2000) Methods

for multisweep automation. In: Proceedings, 9th international

meshing roundtable. Sandia National Laboratories, pp 77–87

27. The verdict mesh verification library (2007) Sandia National

Laboratories, http://cubit.sandia.gov/verdict.html

28. Vachal P, Garimella RV, Shashkov MJ (2002) Mesh untangling.

LAU-UR-02-7271, T-7 Summer Report 2002

29. Weingarten VI (1994) The controversy over hex or tet meshing.

Machine Design, pp 74–78, April 18

30. White DR, Leland RW, Saigal S, Owen SJ (2001) The meshing

complexity of a solid: an introduction. In: Proceedings, 10th

international meshing roundtable. Sandia National Laboratories,

pp 373–384

Fig. 40 Pictorial flow chart demonstrating the mesh generation

process for creating the hexahedral mesh of the goose16 model.

Triangle meshes (red) are utilized to guide placement of hexahedral

sheets into the existing hexahedral mesh to achieve a new mesh that is

conformal with the original solid geometry

Engineering with Computers (2009) 25:97–114 113

123

http://www.ansys.com
http://cubit.sandia.gov/
http://www.simulog.fr/mesh/tetmesh3p1d-wp.pdf
http://www.simulog.fr/mesh/tetmesh3p1d-wp.pdf
http://www.tstt-scidac.org/research/mesquite.html
http://sourceforge.net/projects/afront/
http://sourceforge.net/projects/afront/
http://software.sci.utah.edu/scirun.html
http://cubit.sandia.gov/verdict.html

31. White DR, Saigal S, Owen SJ (2003) Meshing complexity of

single part CAD models. In: Proceedings, 12th international

meshing roundtable. Sandia National Laboratories, pp 121–134

32. Yerry MA, Shephard MS (1984) Three-dimensional mesh gen-

eration by modified octree technique. Int J Numer Methods Eng

20:1965–1990

33. Zhang Y, Bajaj C (2005) Adaptive and quality quadrilateral/

hexahedral meshing from volumetric imaging data. In: Proceed-

ings, 13th international meshing roundtable. Sandia National

Laboratories, pp 365–376

114 Engineering with Computers (2009) 25:97–114

123

	Hexahedral mesh generation for biomedical models in SCIRun
	Abstract
	Introduction
	Background
	SCIRun background
	Algorithmic background

	Single surface methods
	Single surface examples
	Hand model
	Mouse model
	Bunny model
	Dragon model
	Brain model

	Multisurface methods
	Sharp feature capture

	Multisurface examples
	Mechanical part
	Skull model
	Goose16 model

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

