
ORIGINAL ARTICLE

Hexahedral mesh generation constraints

Jason F. Shepherd Æ Chris R. Johnson

Received: 21 July 2006 / Accepted: 15 February 2007

� Springer-Verlag London Limited 2008

Abstract For finite element analyses within highly elastic

and plastic structural domains, hexahedral meshes have

historically offered some benefits over tetrahedral finite

element meshes in terms of reduced error, smaller element

counts, and improved reliability. However, hexahedral

finite element mesh generation continues to be difficult to

perform and automate, with hexahedral mesh generation

taking several orders of magnitude longer than current

tetrahedral mesh generators to complete. Thus, developing

a better understanding of the underlying constraints that

make hexahedral meshing difficult could result in dramatic

reductions in the amount of time necessary to prepare a

hexahedral finite element model for analysis. In this paper,

we present a survey of constraints associated with hexa-

hedral meshes (i.e., the conditions that must be satisfied to

produce a hexahedral mesh). In presenting our formulation

of these constraints, we will utilize the dual of a hexahedral

mesh. We also discuss how incorporation of these con-

straints into existing hexahedral mesh generation

algorithms could be utilized to extend the class of geom-

etries to which these algorithms apply. We also describe a

list of open problems in hexahedral mesh generation and

give some context for future efforts in addressing these

problems.

Keywords Hexahedral � Mesh generation �
Meshconstraints � Dualmethods

1 Introduction

Numerical approximation methods, including finite ele-

ment, finite difference, and finite volume methods, are

mathematical techniques used to model various scientific

and engineering phenomena for a wide variety of disci-

plines, including structural mechanics, dynamics, heat

transfer, and fluid dynamics. Because of the flexibility of

these approximation methods, the problems to which they

can be applied is growing. They are currently being utilized

in fields ranging in diversity from cellular microbiology

and quantum chromodynamics to star and galaxy formation

studies [1–3]).

An important requirement of the numerical approxima-

tion techniques above is the need to create a discrete

decomposition of the model geometry into a ‘mesh’. The

meshes produced are used as input for computational

simulation, as well as, the geometric basis for which many

of the visualization results are displayed.

The most common types of elements utilized in

numerical approximations are triangles or quadrilaterals

in two-dimensions and tetrahedral or hexahedral elements

in three-dimensions. To reduce the amount of time to

prepare a model, automated meshing algorithms have been

developed for creating triangular, quadrilateral, and tetra-

hedral meshes for a very generalized class of geometries.

In the case of tetrahedral meshing, algorithms are available

that can generate greater than 400,000 tetrahedra per

minute [4]. However, automated hexahedral mesh genera-

tion algorithms are available for a more limited class of

geometries. Because of the limited class of geometries for

which hexahedral meshes can be built, a significant amount

of time in generating a hexahedral mesh is devoted to

decomposing (cutting up) a model into pieces for which a

known hexahedral mesh generation algorithm will succeed.

J. F. Shepherd (&) � C. R. Johnson

Scientific Computing and Imaging Institute,

Salt Lake City, UT, USA

e-mail: jfsheph@sci.utah.edu

C. R. Johnson

e-mail: crj@sci.utah.edu

123

Engineering with Computers

DOI 10.1007/s00366-008-0091-4

The processing of geometry for creating a hexahedral mesh

can take several months for a generalized model, whereas

tetrahedral meshes can often be created in a matter of hours

or days [5, 6].

In spite of the limited availability of an automated

hexahedral mesh generation algorithm, hexahedral meshes

are sometimes preferred over tetrahedral meshes in certain

applications and situations for the following reasons:

1. Tetrahedral meshes typically require 4–10 times more

elements than a hexahedral mesh to obtain the same

level of accuracy [7, 8].

2. In some types of numerical approximations (i.e., high

deformation structural finite element analysis with

linear elements), tetrahedral elements will be mathe-

matically ‘stiffer’ due to a reduced number of degrees of

freedom associated with a tetrahedral element [9, 10].

This problem is also known as ‘tet-locking’.

Hexahedral mesh generation can be difficult and time-

consuming. In this paper, we focus on delineating the

underlying criteria that must be satisfied (i.e., constraints)

in order to produce a hexahedral mesh for a given

geometric model. This paper is intended to survey existing

methods and ideas in hexahedral mesh generation and

provide some basis for future research. In the remainder of

this paper, we give a brief overview of hexahedral mesh

generation, specifically in relation to the dual representa-

tion of a hexahedral mesh. Then, we outline topologic,

boundary, and quality constraints that must be satisfied to

generate a hexahedral mesh. We also give background on

several methods that may be utilized to satisfy specific

hexahedral constraints to capture spatial features within a

hexahedral mesh. We conclude the paper by highlighting

how incorporation of additional constraint satisfaction

methods into existing algorithms can dramatically extend

the class of geometries to which these algorithms apply.

We also identify several open problems in hexahedral mesh

generation, and give some context for how these solutions

might be addressed in future research.

2 Background

Numerous algorithms exist for producing hexahedral

meshes [11]. However, no one algorithm is completely

successful at generating provably correct and robust

hexahedral meshes. The most basic form of a hexahedral

mesh generation algorithm stems from the mesh of a

cuboid (i.e., subdivisions of a single hexahedral element).

For complex geometries, meshes can be obtained by

decomposing the initial geometry into collection of cu-

boids. For geometries that are encountered frequently,

common decompositions can be retained, or stored, as a

‘primitive’ decomposition, and when the common shape is

encountered again, meshing can be nearly automatic [12].

2.1 The dual of a hexahedral mesh

Because decomposition of a model into cuboids and/or

primitive shapes can be tedious, complex, and difficult to

automate, alternative algorithms have been sought that do

not require geometric decomposition.

In late 1993, hexahedral mesh generation was posed

as a topological problem by Thurston [13] and Murdoch

[14, 15]. They realized that utilizing the dual subdivision

of a hexahedral mesh yields a structure of internal sur-

faces (also known as ‘sheets’), where the structure of

the sheets dictates the structure of the hexahedral mesh

(and vice versa) according to some specific topological

requirements.

For a given quadrilateral mesh on a surface, the topo-

logic structure of the dual of the mesh can be visualized by

drawing a line segment across each quadrilateral connect-

ing opposite edges. For each quadrilateral, there are two

such line segments, one for each of the opposite pairs of

edges on a quadrilateral element. The intersection point of

these two segments (which has been termed a ‘centroid’) is

dual to the quadrilateral itself. By iteratively placing the

dual line segments for each quadrilateral in the surface

mesh, it is soon realized that each of the line segments from

a quadrilateral connect neighbor to neighbor until the line

segments form either a closed curve, or the resulting curve

has end points at the surface boundary. Each of these dual

curves is called a ‘chord’ in the quadrilateral mesh. An

example of a mesh (also known as the ‘primal’), with its

dual, is shown in Fig. 1.

Several important items can be gleaned from the dual

representation of the quadrilateral mesh:

1. The intersection point of two chords is known as a

‘centroid’, and a centroid is dual to a quadrilateral in

primal space.

2. Each chord represents a ‘stack’ of quadrilaterals in the

primal mesh.

3. All chords must either have endpoints on the boundary

of the surface, or they must form a closed curve within

the boundary of the surface. (i.e., there is no chord with

an endpoint in the interior of the surface.)

4. Chords cannot be tangent to other chords.

5. The ‘size’ of the primal mesh and the number of

elements local to an area of the surface is a function of

the density of chords and chord intersections relative to

that locale on the surface.

6. As a consequence of observation three above, it can be

shown that the parity of the edges around a surface

admitting a quadrilateral mesh must be even.

Engineering with Computers

123

Extending these observations of quadrilateral meshes to

hexahedral meshes, we can formulate the dual of a

hexahedral mesh. Since each hexahedral element will

consists of three pairs of opposing quadrilaterals (similar to

the two opposing edges for quadrilateral elements), we can

draw line segments between the centers of each of the

opposing faces of the hexahedra. We observe that, in

similar fashion to the chords of a quadrilateral mesh, the

chords within a hexahedral mesh define a stack of

hexahedra. However, we also observe that these stacks

now interact in two directions resulting in ‘layers’ of

elements. A layer of elements corresponds to a surface in

the dual space of the mesh. This dual surface has been

referred to as a ‘sheet’ [16], an ‘interior surface’ [17], or as

a ‘twist plane’ [15, 14]. For the purposes of this paper, we

will utilize the term ‘sheet’ to apply to these dual surfaces.

An example dual subdivision of a hexahedral mesh is

shown in Fig. 2.

Reviewing a valid hexahedral mesh with its’ dual sub-

division, the following observations can be made (refer

also to Fig. 3:

1. Only three sheets can intersect at a single point. The

intersection point of three sheets has been identified as

a ‘centroid’ [14]. A centroid is dual to a single

hexahedron in primal mesh.

2. Each sheet in the dual space represents a ‘layer’ of

hexahedral elements in the primal mesh.

3. All sheets either form a closed shell within the mesh

space, or have terminating edges around the boundary

of the mesh (i.e., there is no sheet that terminates in the

interior of the hexahedral mesh.)

4. Sheets cannot be tangent to other sheets.

5. The ‘size’ of the primal mesh and the number of

elements local to an area of the surface is a function

of the density of sheets and the triple intersections of

sheets relative to that locale within the mesh.

Utilizing these observations along with theorems of

topology, Thurston theorized [13] that for a given solid,

any quadrilateral mesh composed of an even number of

quadrilaterals should admit a compatible hexahedral mesh

within the solid. This theory was later proved by Mitchell

[16], and shown to have linear complexity by Eppstein

[17]. These proofs, however, have not resulted in any

practical algorithms for generating hexahedral meshes in

an arbitrary solid suitable for analytic use.

While it is true that, topologically speaking, any solid on

whose boundary contains a quadrilateral mesh with even

parity will admit a compatible hexahedral mesh, there must

also exist some geometric and quality requirements that

must be satisfied to enable a hexahedral mesh to be usable

for analytic methods, such as finite element analysis.

3 Methods

In this section, we explore and derive some of the criteria

which must be satisfied (i.e., constraints) for generating a

hexahedral mesh in an arbitrary geometry. These

Fig. 1 A quadrilateral mesh on a circular disk (left). The dual of a

quadrilateral mesh is created by line segments (chords) connecting

opposite edges of an individual quad, and traversing all of the edges

of all of the quads on the mesh (middle). The intersection of two

chords is called a centroid and is dual to a quadrilateral. The complete

dual is on the right

Fig. 2 Example of a cylinder

meshed with hexahedra (left).
The picture in the middle shows

the hex mesh with its dual

subdivision in red. The sheets of

the mesh are shown on the right

Engineering with Computers

123

constraints are identified using the dual structures of a

hexahedral mesh which were outlined earlier. Specifically,

we will be looking at the topology and geometry of the

hexahedral sheets both interior to a solid, as well as at the

boundary of a geometry. By understanding these con-

straints, we can propose possible extensions to existing

algorithms, along with new approaches, to enhance the

class of geometries for which existing hexahedral meshing

algorithms are applicable. In the last part of this section we

will also highlight some algorithms that may be utilized to

satisfy some additional hexahedral constraints within an

existing mesh.

3.1 Hexahedral mesh constraints

3.1.1 Topological constraints

In delineating the topological requirements of a hexahedral

mesh, we will utilize the constraints given by Mitchell in

his proof of hexahedral mesh existence [16]. While his

proof started by considering a solid homeomorphic to a ball

with an even-parity quadrilateral mesh on the boundary, it

should be recognized that the constraints given will also

apply to any arrangement of sheets within a solid where no

boundary mesh on that solid has been specified. That is, if

we start with an arrangement of sheets and place these

sheets interior to a solid, the topological constraints enu-

merated below will still hold with only minor concessions

to incorporate the boundary of the solid that does not

contain a quadrilateral mesh. The requirements for sheets

near the geometric boundary will be discussed in the next

section.

Before outlining the topological constraints, we will

define additional needed terminology. First, let us clarify

our definition of a sheet to be the following: For a given

problem domain in <3 (where the boundary of the space is

defined by the boundary of the solid(s) to be meshed), a

sheet is a manifold surface in <3: A sheet manifold may be

either orientable or non-orientable (Schwartz and Ziegler

recently demonstrated an embedded mesh containing a

non-orientable sheet [18]). Because the sheet is a manifold

in the space, the sheet must either be closed within the

boundary of the mesh space or the boundary of the sheet

must coincide with the boundary of the mesh space. A

collection of sheets will intersect to form various cell

complexes. The sheets are restricted in their intersections

with other sheets such that the resulting cell complexes are

dual to a hexahedral mesh. The following collection of sub-

entities will be found in the resulting cell complexes,

defined as follows (see also Fig. 4):

• A centroid (i.e., a 0D element) occurs at the intersection

(local) of three sheets. (It is possible that a single sheet

may self-intersect, such that a single sheet is effectively

two (or even all three) of the local sheets needed to

form a centroid.)

• A chord (i.e., a 1D element) is produced along the

intersection (local) of two sheets.

• A 2-cell (i.e., a 2D element) is a polytope on a sheet

resulting from an intersection with one, or more, other

sheets, where the polytope boundary are the chords

produced by the sheet intersection.

• A 2-cell (i.e., a 2D element) is a polytope on a sheet

resulting from an intersection with one, or more, other

sheets, where the polytope boundary are the chords

produced by the sheet intersection. • A 3-cell (i.e., a 3D

element) is a volumetric polytope resulting from the

division of the original space by one, or more, sheets,

where the boundary of the 3-cell are the 2-cells

enclosing the sub-space.

Utilizing the above definitions, Mitchell outlined [16] the

topological requirements for a given arrangement of sheets

to produce a hex mesh as follows:

1. Each internal 2-cell is contained in exactly two distinct

3-cells.

2. Each face contains at least one lower dimensional face

(excepting centroids).

3. Each chord segment must contain two distinct

centroids.

4. Every internal cell contains at most one surface cell of

one lower dimension.

5. Each internal chord segment must be contained in

exactly four distinct 2-cells.

6. Each centroid is contained in six chord segments.

Note, also, that each chord segment at a centroid is

paired with another chord segment belonging to the

same chord.

7. Two 3-cells have, at most, one 2-cell in common.

When any of the conditions above are violated, the result

will be either a degeneracy or void regions in the resulting

Fig. 3 Image showing the relationship between dual entities for a

mesh of three hexahedra. A chord results from the intersection of two

sheets, and a centroid is located at the intersection of three sheets

Engineering with Computers

123

hexahedral mesh. Proofs for each individual requirement

can be found in Ref. [16].

For purposes of aiding the reader’s intuition, these

constraints can, in most cases, be viewed as:

1. Only three sheets can intersect at any given centroid.

2. Sheets cannot be tangent with another sheet.

3. Sheets must span the space, or form a closed surface

within the space (i.e., the boundary of the sheet must

either coincide with the boundary of the space being

meshed, or form a closed manifold within the space.)

4. When traversing the centroids along a single chord,

consecutive instances of a single centroid are not

permitted (i.e., for the six quadrilaterals of a hexahe-

dron, any two of the six quadrilaterals may not be

identical.)

3.1.2 Boundary constraints

The topological constraints outlined above do not address

some of the complexities near the geometric boundary of

the space or solid. In this section, we make several

observations regarding the geometric boundary of solids

and formulate the additional requirements necessary to

ensure compatibility of the interior sheets with the geo-

metric boundary of a space or solid geometry.

For clarity, we need to define what is meant by a solid

geometry. A solid geometry consists of five main entity

types, namely vertices, curves, surfaces, solids (or vol-

umes), and collections of volumes (these may be referred

to as an ‘assembly’). These entities are often arranged in a

hierarchical structure, as shown in Table 1. This hierar-

chical structure is often referred to as the topology of the

solid geometry. (Please note the distinction between the

mesh topology and the geometric topology of the solid.)

The solid geometry defines the space which will be dis-

cretized into a mesh.

While there may be special cases to the hierarchy shown

in the table (i.e., curves without endpoints, surfaces without

curves, surfaces with zero area, etc.), most of these special

cases can be ignored, or remedied by introducing the

necessary entities to match the definitions shown in the

table and minimally affecting the solid geometry

representation.

Understanding the interaction between these entity types

is important to understanding how the boundary constraints

on hexahedral meshes help to capture the geometric enti-

ties. For instance, in order to mesh a surface, the mesh

topology of the surface must somehow incorporate the

curves and vertices ‘owned’ by that surface. For many solid

geometries, it may be easy to capture the geometric shape

of the object, but very difficult to capture the geometric

topology of the object.

One other important distinction is the difference

between mesh entities and geometric entities. We will

utilize the following terminology, shown in Table 2, in

order to distinguish between mesh entities and geometric

entities. From this table, we can also note the hierarchical

relationship inherent in the mesh entities, which is similar

to the relationship between geometric entities noted earlier.

It is also possible to construct a table (Table 3) indi-

cating entity correspondence between the dual and primal

spaces for hexahedral meshes.

3.1.3 Geometric surface constraints

A couple of key observations can be made from Table 3.

First, note that a chord is dual to a quadrilateral. Since

chords were drawn between centers of hexahedra, the

chord between two centroids was dual to the quad shared

by these two hexahedra. In some sense, the chord can be

viewed as an approximation to the normal of the quadri-

lateral between two hexes.

Fig. 4 Entities in the dual

Table 1 Hierarchical arrangement of geometric entities

Geometric entity Bounding entities

Vertex None

Curve Two vertices

Surface One or more curves

Volume One or more surfaces

Table 2 Relationships between geometric entities and mesh entities

Dimensionality Geometric entity Mesh entity

0D Vertex Node

1D Curve Edge

2D Surface Quadrilateral (or triangle, etc.)

3D Volume Hexahedron (or tetrahedron, etc.)

Engineering with Computers

123

Observation 1: The boundary of any hexahedral mesh is

a quadrilateral mesh.

To improve the quality of the mesh at the boundary of

our geometry, it is desireable to align the chords with the

local surface normals. Doing this promotes higher quality

hexahedral elements on the boundary of the mesh. Addi-

tionally, it is important to note that convexity, or non-

convexity, of the geometric boundary does not affect these

constraints so long as the sheets used to satisfy the

boundary constraints are manifold and satisfy the topologic

constraints listed earlier.

Boundary Constraint 1: For each surface of a hexa-

hedrally meshed solid, there exists a set of sheet patches,

which are geometrically similar (i.e., similar in shape) to

the surface, but offset a distance that is a function of the

size of the mesh local to that boundary (i.e., the local chord

length). The minimal number of sheets to which the col-

lection of sheet patches might belong is a single sheet.

Justification: Given a hexahedral mesh and utilizing

Observation 1, select a quadrilateral on the boundary. This

quadrilateral is dual to a chord that is found at the inter-

section of two sheets whose boundary are the two chords

intersecting the quadrilateral on the boundary. Since the

boundary quadrilateral is contained in only one hexahedral

element of the mesh, there must be a third sheet that

intersects the other two creating the centroid that is dual to

the hex. On this third sheet, there is an area within the sheet

that can be said to correspond directly with the quadrilat-

eral on the boundary. This area of the sheet is also

geometrically similar in shape to the quadrilateral,

although offset a distance based on the size of the hexa-

hedron to which the sheet and quadrilateral correspond. A

collection of contiguous areas on a single sheet corre-

sponding to a set of quadrilaterals on the boundary will be

defined as a ‘sheet patch’. The collection of ‘sheet patches’

corresponding to all quadrilaterals on the surface boundary

is geometrically similar to the boundary surface. (see

Fig. 5). Also notice that the minimal number of sheets to

which this collection of patches might belong is a single

sheet.

This poses an immediate question: Is it better to capture

a boundary surface with a single sheet, or with multiple

sheet patches? For the majority of cases, the answer to this

question is that single sheets for capturing a surface are

better than multiple sheet patches. The reasoning for this is

due to the irregularities introduced whenever a sheet is

diverted away from a surface. When partial sheets are

utilized to capture a surface, the area of the sheet where the

transition occurs results in increased nodal valence in the

mesh, skewing of the elements (caused by the sheet cur-

vature), and in some cases the formation of adjacent

hexahedron that contain faces sharing two or more edges

(also known as a ‘‘doublet’’ and will be described in more

detail later in the paper). Figure 6 shows several examples

of the transition elements resulting from partial sheets

capturing boundary surfaces. Therefore, in most cases, the

use of a single sheet to capture boundary surfaces is

preferred.

3.1.4 Geometric curve constraints

Boundary constraint 2: For each curve on a hexahedrally

meshed solid, there exists a set of sheet patch pairs such

that the lines of intersection between each of the patch

pairs is a piecewise approximation of the curve, only offset

a distance, which is a function of the mesh sizes local to the

curve.

Justification: From our description of curves in solid

geometry, a curve in the solid is the boundary between two

surfaces on the solid. From Boundary Constraint 1, there

exists a collection of sheet patches local to the curve that

are geometrically similar to each of the surfaces. The lines

of intersection of two sets sheet patches are a set of chord

segments that are geometrically similar to the curve at the

boundary between the two surfaces, and that are offset a

distance which is a function of the mesh size in the

boundary curve’s locale (see Fig. 7):

3.1.5 Geometric vertex constraints

Boundary constraint 3: There exists at least one triple-

sheet pairing that corresponds to each vertex on the

Table 3 Conversions between dual and primal entities

Primal entity Dimension Dual entity Dimension

Hex 3 Centroid 0

Quad 2 Chord 1

Edge 1 2-Cell 2

Node 0 3-Cell 3

Fig. 5 Image showing how a sheet captures the geometric boundary.

The picture on the left shows a single sheet capturing the cylindrical

surface, while the picture on the right (of a different mesh) shows the

same surface being captured with multiple sheets

Engineering with Computers

123

boundary. This triple-sheet pair is equivalent to a centroid,

and is offset a distance related to the mesh size local to the

vertex.

Justification: Any vertex on the boundary of the solid

must contain one mesh node in order for the mesh to be

compatible with the solid. Since a node is dual to a 3-cell,

and the simplest 3-cell is formed at the intersection of three

sheets with the boundary of the solid. Therefore, there

exists at least one-triple sheet pairing that corresponds to

each vertex on the boundary.

Some additional insights may help better understand

geometric vertex constraints. Because a node is at the

corner of each hexahedral element, we can also draw

relationships for each vertex to a set of centroids. Because

every node is contained in at least one hexahedral element,

there must exist at least one centroid that is offset a dis-

tance related to the mesh size local to the vertex (the

intersection of the triple-sheet pair is the centroid corre-

sponding to the vertex in the simplest case). However,

there is a complicating difference with vertices, in that it is

not necessary for a vertex to correspond to a single

centroid. Rather, a vertex may correspond to many cen-

troids within a single solid.

We can re-write this observation in terms of sheets, such

that, for each centroid, there exist a local, triple-set of

sheets whose intersection form a centroid that corresponds

to a vertex. However, because a vertex on the boundary can

correspond to one or more centroids, there will be cases

when this vertex will correspond to more than one triple-

sheet pairing. A few examples are shown in Fig. 8.

In this case, utilizing the sheets in meeting this con-

straint is helpful instead of the centroids because there are

usually geometric curves emanating from each of the ver-

tices. The sheets utilized to capture the geometric surfaces

and curves will also be the same sheets which capture the

vertices. The convergence of many sheets around some

vertices must be handled with care to maintain the topo-

logical constraints local to a vertex (i.e., only three sheets

can intersect at a single point, etc.).

3.1.6 Geometric, or quality, constraints

Specifying constraints in relation to the quality of the mesh is

often difficult because a complete understanding of how

mesh quality affects analysis error is largely unknown, spe-

cifically with hexahedral meshes. While there has been some

recent work in this area [19, 20], the only consistent con-

straint placed on hexahedral mesh generation is that the

(scaled) Jacobian of each mesh element must be positive

(i.e., non-inverted). In this section, we will demonstrate how

the Jacobian for a hexahedral mesh is defined, and we will

consider how the geometric properties of a sheet affect the

overall quality of the resulting hex mesh, while the ultimate

goal will be to determine the necessary conditions on a sheet

to have a resulting non-inverted mesh. We will begin by first

discussing the sheets relating to the ideal mesh as developed

for finite elements, and then by discussing how geometric

and topological modifications to the ideal sheets change the

underlying quality of the resulting hexahedral meshes.

3.1.6.1 Quality considerations In terms of hexahedra, the

ideal element for which finite element basis functions are

formulated is a cube of six quadrilaterals of equal area,

Fig. 6 When partial sheets capture boundaries, the quality and

regularity of the mesh is affected. a shows elements from a single

sheet capturing the upper boundary of the solid. b and c use patches

from two sheets to capture the upper boundary of the solid. In b and c,

note how the regularity of the mesh is affected, and the resulting skew

in the transition element due to the sheet curvature away from the

boundary. In c, a near doublet element is formed due to the low

curvature of the boundary being captured

Fig. 7 Capturing a curve utilizing an offset chord (from the

intersection of two sheets)

Engineering with Computers

123

with edges of equal length, and which are mutually

orthogonal to each other. Such cubes are easily subdivided

by dividing each edge by two and each quadrilateral into

four smaller, but mutually equivalent quadrilaterals. The

arrangement of the sheets in dual space for such an ideal

mesh is simply a collection of Cartesian planes which

subdivide the mesh as described earlier in the dual con-

struction of a mesh (see Fig. 9).

Utilizing the ideal mesh as our goal, the following

constraints can be added:

1. Maximize orthogonality in the sheet topology: From

the topological constraints earlier, we know that at

most three sheets can intersect at a single point. From

the ideal mesh, it is apparent that a perfectly orthog-

onal intersection of the three sheets is desired.

Deviations from orthogonal intersections of the sheets

will produce ‘skewing’ of the hexahedral elements in

the mesh (see Fig. 10).

2. Minimize sheet curvature: The ideal isotropic mesh

contains perfectly planar sheets. Therefore, it is

desireable for the local curvature of a sheet to be as

minimal as possible. Curvature of the sheets causes

‘keystoning’ of the elements, where the length of one

edge is substantially different than it’s opposite edge.

This phenomenon can be readily seen in Fig. 11, as we

increase the curvature of a single sheet of elements.

3. Maximize the topologic regularity of the sheets: The

regular topological arrangement of the sheets, as

shown in the ideal mesh, is also desirable (and is

essentially required in finite difference calculations).

In finite element methods this requirement has some

flexibility, but maintenance of this regular topology,

where possible, has some additional benefits from

several algorithmic standpoints including element

numbering, matrix formulation, compression, etc.

Additionally, non-regular arrangements of sheets have

a tendency to interfere with the optimization of

constraints 1 and 2 above.

4. Sheet density controls element sizing: Element sizing

information is determined directionally as a function of

the local density of the sheets in an area. To increase

the element size in one direction, decrease the density

of locally parallel arrangement of sheets. Except in a

few cases (for example, boundary layers in fluid flow),

a dramatic transition in the density of sheets is

undesirable (see Fig. 12).

Fig. 8 At least three sheets are necessary to capture a geometric

vertex in a given mesh topology (a). However, more than one triple-

pair of sheets is not exclusive for each vertex. For geometric vertices

whose valence is higher than three, more than one triple pair is

necessary to capture all of the geometric features related to the vertex.

A four-sided pyramid (b) requires four sheets (creating two distinct

centroids, or two triple-pairs) and a five-sided pyramid (c) requires

five sheets (creating three distinct centroids, or three triple-pairs) to

succinctly capture the geometric features associated with the vertex.

In b there are two red sheets, one green, and one yellow shown. In c
there are two red, two green and one yellow sheet shown

Fig. 9 The ideal mesh (left)

with the induced sheet

arrangements at two different

mesh sizes (the sheet

arrangement on the right is

twice as dense as the sheet

arrangement in the middle)

Engineering with Computers

123

3.1.6.2 Mesh untangling Before proceeding further, it will

be helpful to introduce the idea of mesh untangling as

developed by Knupp et al. [21]. The Jacobian matrix is cal-

culated for each node with respect to a hexahedral element.

For each node in a hex, there are exactly three ‘neighbor’

nodes connected via an edge in the hexahedra. For a single

node of a hexahedra, the Jacobian matrix is defined as:

A0 ¼
x1 � x0 x2 � x0 x3 � x0

y1 � y0 y2 � y0 y3 � y0

z1 � z0 z2 � z0 z3 � z0

�
�
�
�
�
�

�
�
�
�
�
�

For a single hex, there will be eight such matrices (for

additional discussion on elements with multiple Jacobian

matrices see [20]. The minimal determinant of these eight

matrices is known as the ‘Jacobian’ of the hexahedral

element. By allowing nodal movement for each of these

elements, an optimization problem can be formulated to

maximize the following objective function (other similar

functions have also been utilized):

f ðAÞ ¼ 0:5 �
X

ðjamj � amÞ

where am is the determinant a single Jacobian for a mesh

with m elements.

If the mesh is untangled, then the summation reaches a

maximum value of zero. For a hexahedral mesh, this can be

a difficult optimization. It is common to use local optimi-

zation algorithms, such as conjugate gradient methods, to

obtain a solution to the untangling optimization problem.

However, because the untangling problem is non-convex, it

is possible to reach a local maxima without obtaining an

optimal solution. This is an ongoing and challenging

research area [21–24]. It is undetermined whether a mesh

that satisfies the topological requirements cited earlier can

always be untangled, although it is believed that there are

meshes that do not have an untangled solution.

3.1.6.3 Additional quality observations The quality of a

hexahedral mesh, as determined from its dual subdivision,

is largely unexplored. From the quality considerations

enumerated earlier, it is known that there exists a correla-

tion between the conformation of the sheet and the ultimate

quality of the hexahedral mesh. Specifically, high curvature

of the sheet is a necessary condition to creating an inverted

hexahedral element, however, as shown earlier, high cur-

vature of the sheet is not a sufficient condition to guarantee

that elements will become inverted. We list some case

Fig. 10 As sheet intersections deviate from orthogonality, the skew

of the mesh increases

Fig. 11 Increasing the curvature of a single sheet results in ‘keys-

toning’ of elements where one edge shrinks in size while the other

grows as the curvature of the sheet increases

Fig. 12 Note that as the sheet density increases in one direction only,

the element aspect ratio increases as can be seen in this figure

Engineering with Computers

123

studies that may be of value in determining the additional

sufficient conditions resulting in poor quality hexahedral

meshes.

• Low sheet curvature is important for high quality:

Figure 13 shows a sheet from a volume that was

meshed via the whisker weaving algorithm [25]. At the

base of the trough in this sheet is a collection of

inverted elements that are currently untangle-able [21,

22]. Mesh smoothing can only improve the sheet

conformation in a limited fashion because of the fixed

mesh topology the smoothing algorithms must maintain

while adjusting the conformation of one sheet with the

surrounding sheets. Some efforts involving mesh

topology reconfiguration (for instance, mesh-flipping

[26–28]) may aid our ability to untangle these meshes

by relaxing the fixed topology of the mesh enabling

sheet conformations with lower curvature to be

obtained.

• The surface mesh is important for high quality: The

boundary of a non-closed sheet in a hexahedral mesh is

defined by a dual cycle of chords in the quadrilateral

mesh on the boundary. Some of the dual cycles defined

by quadrilateral meshes imply complex geometric

definitions for any resulting sheet corresponding to

the defined dual cycle boundary. One such boundary is

shown in Fig. 14, where the dual cycle wraps around

itself several times in one area of the solid. Obvious

high curvature in the sheets and coarse interactions

between adjacent sheets, results in a mesh for which an

untangled solution is not currently known.

• The mesh approximates the sheet: Recent work done by

Suzuki et al. [29] has explicitly defined the sheets

interior to a solid. By generating an interior surface for

the dual cycle of Schneider’s pyramid [30] (see Fig.15)

and subsequently satisfying all necessary topological

constraints for a hex mesh, it was determined that a

reasonable quality mesh would result. However, the

resulting mesh had elements that were untangle-able.

Because the sheet was defined geometrically prior to

creating the mesh, we can compare the sheet defined by

the hex elements with the sheet created by the authors.

The differences between the two are significant and the

sheet defined by the mesh is a very rough approxima-

tion of the desired interior surface (see Fig. 16.

Increasing the number of elements can dramatically

improve some areas of quality, but all of resulting

meshes do not have a known untangled solution.

These case studies indicate that there is still a great deal of

information that is not currently understood with regards to

generation of quality (or, at least, non-inverted) hexahedral

meshes. We know that high sheet curvature is necessary for

producing inverted elements, but it is not sufficient. There

are obviously some additional sufficient conditions, respect

to how multiple sheets with high curvature interact with

each other in order to produce sets of inverted elements.

3.2 Constraint-satisfying methods

Over the years, several methods have been developed that

make it possible to improve the flexibility of existing

hexahedral meshing algorithms and aid in capturing con-

straints overlooked by the paradigm employed by a specific

Fig. 13 Two views of a sheet with a high curvature trough in a solid.

The high curvature at the trough of the sheet shown corresponds to

hex elements that cannot be untangled in the resulting mesh

Fig. 14 The surface mesh (shown on the left) has a dual cycle that

spirals up to the top of the image. The resulting hex mesh, generated

with WhiskerWeaving, cannot be untangled. The sheet generated by

WhiskerWeaving is shown on the right

Fig. 15 Schneider’s pyramid

Engineering with Computers

123

algorithm. In this section, we highlight some of these

methods and show how they help to satisfy some of the

fundamental constraints for hexahedral meshing of solid

models. In particular, we discuss methods for inserting and

extracting sheets in existing mesh topologies. The methods

we highlight are pillowing [32], dicing [31, 33], mesh-

cutting [34], grafting [35], and sheet extraction [36].

3.2.1 Inserting sheets

3.2.1.1 Pillowing During the development of the whisker

weaving algorithm [25, 37], Mitchell et al. consistently

encountered meshes where two neighboring hexes shared

two faces (or more basically, where two adjacent faces

shared two edges). Called a ‘doublet’ (see Fig. 17), this

situation is undesirable because of the impossibility of

moving the nodal locations in these elements such that both

elements have positive Jacobian determinant values. A

simple, but powerful, technique called ‘pillowing’ [32] was

developed to locate and place a mesh refinement that

effectively removed the doublets from the mesh.

In terms of the dual of the mesh, pillowing is essentially

a sheet insertion operation, where a new sheet is inserted

that effectively splits the doublet hexes into multiple hexes,

and eliminating the problematic mesh topology.

The pillowing method turns out to be powerful, not for

it’s ability to remove doublets, rather it provides a fairly

straight-forward approach to insert sheets into existing

meshes. The sheets can be inserted utilizing the primal

elements of an existing mesh, and without explicitly

creating a geometric definition for the sheet and calculating

the intersections with the other local sheets in the space.

The basic pillowing algorithm is as follows:

1. Define a shrink set: For our purposes, this step

involves dividing the existing mesh into two sets of

elements: one set for each of the half-spaces defined by

the sheet to be inserted. One of these two sets of

hexahedral elements comprises the shrink set. The

choice of which one should be the shrink set is

arbitrary, although the best algorithmic choice will be

the set with the fewest number of elements.

Fig. 16 The boundary and

interior surface, shown in a,

correspond to the boundary and

an interior surface for

Schneider’s pyramid [30]. The

resulting hex mesh has a sheet b
which approximates the surface

in a, but the facets tend to flatten

the intended sheet

conformation. By increasing the

resolution (via dicing [31]) the

approximation of the surface is

better and has fewer regions of

negative Jacobian elements

(some negative Jacobian

elements are shown in the

image)

Fig. 17 A quadrilateral doublet, where two adjacent quadrilaterals

share two edges. Similar types of doublets occur in 3D with adjacent

hexes sharing two or more quadrilaterals. The scaled Jacobian for

both elements, as shown, is zero, and while node movement strategies

can improve the Jacobian value for one of the two quadrilaterals,

simultaneous improvement of the Jacobian value for both quadrilat-

erals is not possible

Engineering with Computers

123

2. Shrink the shrink set: This step essentially creates a

gap region between the two previous element sets (see

Fig. 18. The difficulty in this step involves splitting the

shared nodes, edges, and quads in the existing mesh,

while maintaining the appropriate correspondence of

the mesh entities with the geometric topology.

3. Connect with a layer of elements: This step results in a

fully-conformal mesh with the new sheet inserted

between the original two element sets. To complete

this step, an edge is inserted between each node that

was separated during the ‘shrinking’ operation. Utiliz-

ing the quadrilaterals on the boundary between the two

sets of hexes, along with these new edges, it is fairly

straight-forward to determine the connectivity of all of

the hexes in this new layer.

It is often desirable to perform a smoothing operation on

the resulting mesh after the new sheet has been inserted to

obtain better nodal placement and higher quality elements.

The speed of the pillowing algorithm is largely dependent

on the time needed to find the shrink set. The number of

new hexahedra created will be equal to the number of

quadrilaterals on the boundary of the shrink set.

A pillowing operation is nothing more than a sheet

insertion operation for an existing mesh. It is therefore a

useful multi-purpose, foundational tool for operations on

hexahedral meshes, including doublet removal, refinement,

grafting, and mesh-cutting (grafting and mesh-cutting will

be discussed in upcoming sections.)

3.2.1.2 Dicing The dicing algorithm [31, 33] was created

to very efficiently generate very large, refined meshes from

existing coarse meshes. The dicing method is an efficient

tool for duplicating sheets multiple times within an existing

mesh. The generation of these very large, refined meshes is

accomplished by copying each of the existing sheets and

placing them in a parallel configuration to the sheet being

copied. The basic method for dicing is as follows:

1. Define the sheet to be diced: An edge in a hexahedral

mesh can only correspond to a single sheet in the dual.

Utilizing one edge, the opposite edges of the

hexahedron can be deduced as belonging to the same

sheet via the definition of the dual of the hexahedral

mesh. It is then possible to iterate until all of the edges

associated with a single sheet in the dual are found.

2. Dice the edges: With the list of edges found in the

previous step, dicing then splits (dices) all of these

edges the specified number of times. If for instance, we

wish to copy the sheet one time, then each of the edges

is split once resulting in two new edges.

3. Form the new sheets: With each of the edges

associated with the hexahedral sheet split, we can

again utilise the idea that an edge can be associated

with a single sheet in the mesh and form a new layer of

hexahedra for each split in the original set of edges,

where the hexahedral connectivity is similar to the

original hexahedral layer before the edges were split.

Utilizing the dicing method, the number of elements

increases as the cube of the dicing value. For instance, if an

existing mesh is diced four times (i.e., each of the sheets in

the existing mesh is copied four times), the resulting mesh

would have 64 9 as many elements as the original mesh.

Because all search operations can be performed directly,

the dicing algorithm can produce large meshes at very

efficient speeds (see Fig. 19).

3.2.2 Geometric capture with sheets

3.2.2.1 Mesh cutting The mesh-cutting [34] method is an

effective approach for capturing geometric surfaces within

an existing mesh topology. The mesh-cutting method uti-

lizes the pillowing and dicing methods mentioned

previously to insert two sheets which are geometrically

similar to the surface to be captured. By utilizing two

sheets, the result is a layer of quadrilaterals, shared by the

hexes in the two sheets, which can be viewed as a set of

facets geometrically approximating the surface. The mesh-

cutting method entails the following steps:

1. Define the pillowing shrink set: Utilizing the surface

that is to be captured in the mesh, we divide the

existing mesh into two sets of elements. One of these

Fig. 18 A basic pillowing

operation starts with an initial

mesh (a) from which a subset of

elements is defined to create a

shrink set. The shrink set is

separated from the original

mesh and ‘shrunk’ (b), and a

new layer of elements (i.e., a

dual sheet) is inserted (c) to fill

the void left by the shrinking

process

Engineering with Computers

123

element sets will be the shrink set, and a sheet (pillow)

is inserted between the two sets of elements.

2. Dice the new sheet: We split the newly inserted sheet

into two sheets utilizing an approach similar to dicing.

3. Move the shared quadrilaterals to the surface: With

two new sheets defined in the mesh topology, we can

find all of the quadrilaterals that are shared by the

hexes between the two sheets. These quadrilaterals

become the mesh on the surface we are attempting to

capture (see Fig. 20).

A caveat with this method is that the existing mesh

topology must be fine enough to capture the detail of the

surface to be inserted. Because the resulting quadrilaterals

only approximate the inserted surface, if the resulting

quadrilateral mesh is too coarse, the surface may not be

approximated adequately enough to be resolved.

One other item to remember with this method is that

since a geometric surface is being utilized to define a sheet

within the mesh space it may be necessary to have the

ability to extend the geometric surface in some fashion

such that it meets the requirements on a sheet that it divide

the mesh space. If the geometric surface is trimmed, for

instance, the trimmed surface may not adequately divide

the space being meshed making it necessary to provide a

continuation to the surface definition to the boundary of the

mesh space.

3.2.2.2 Grafting The term ‘grafting’ is derived from the

process of grafting a branch from one tree into the stem, or

trunk, of another tree. In meshing, the grafting method was

initially to be utilized for allowing a branch mesh to be

inserted into the linking surface of a previously hexahed-

rally swept volume [35]. The grafting method would then

offer a reasonably generalized approach to multi-axis

sweeping.

Grafting is a method that essentially captures geometric

curves on previously meshed surfaces. Because the

curve(s) already reside on a surface and the existing mesh

already captures that surface (i.e., there is a first sheet, or

set of sheets, that captures the surface into which the new

mesh will be grafted), it is possible to introduce a second

sheet to satisfy the curve constraint listed earlier. The

introduction of the new sheet will produce the necessary

mesh topology to enable the mesh to be compatible with

the boundary curve(s). The method for creating a graft (i.e.,

capturing the geometric curve) can be outlined as follows

(see also Fig. 21):

1. Create a pillowing shrink set: In the case of grafting,

the shrink set is typically defined as the set of hexes

which have one quadrilateral owned by the surface and

which are interior to the closed set of curves (with

respect to the surface).

2. Insert the pillow (sheet): By inserting the second sheet,

we have essentially satisfied the hexahedral constraint

for capturing a geometric curve. That is, we now have

two sheets which generate a chord in the mesh that is

offset from the set of curves which were the input to

the grafting algorithm.

Fig. 19 The original mesh

(left) contains 1,805 hex

elements before dicing. Each

sheet in the original mesh is

copied three times resulting in a

mesh that is 33 larger, with

48,735 hex elements

Fig. 20 Mesh cutting utilizes

an existing mesh and inserts

new sheets to capture a

geometric surface(the existing

mesh is shown in a where the

red, spherical surface is the

surface to be captured.) The

resulting mesh after mesh

cutting is shown in b, with a

close-up of the quadrilaterals on

the captured surface being

shown in c

Engineering with Computers

123

At this point, there is often some database adjustments also

necessary to ensure that the new mesh entities are

associated with the correct geometric entities, but the

curve is essentially captured when the second sheet is

inserted in conjunction with the initial set of sheets that

captured the geometric surface. A similar method can be

used to capture a single curve, rather than a set of curves,

but it is still necessary that the sheet that is inserted to

capture the curve satisfy the definition of a sheet. That is,

the sheet must completely divide the mesh space into two

regions.

There is one caveat with this method: Because there is

no explicit steps taken to capture the geometric vertices

associated with each of the curves being grafted, there is a

requirement that the resolution of the trunk mesh be fine

enough to be able to capture all of the curve’s endpoints by

moving existing nodes in the final mesh to the vertex

locations. The movement of the nodes to the vertex loca-

tions must be done intelligently to avoid destroying the

required mesh topology necessary to correctly capture the

curve. While other sheets may be added to avoid this

problem, the addition of more sheets to capture the vertices

may have the negative effect of locally refining the mesh

sizes and/or mesh topologies that are not as aesthetically

pleasing as may be desired.

3.2.3 Removing sheets

3.2.3.1 Sheet extraction One of the positive practical

benefits about working with the sheets in hexahedral

meshing, is that all of the processes are easily reversible.

Sheet extraction is the inverse operation to a sheet insertion

operation (i.e., pillowing or dicing). A method for

extracting a sheet is detailed in Borden et al. [36], where

the basic steps can be outlined as follows (see Fig. 22):

1. Define the sheet to be extracted: Because an edge in a

hexahedral mesh can only correspond to a single sheet

in the dual, this step can be easily accomplished by

specifying a single edge in the mesh. From this single

edge, the primal mesh can be iteratively traversed to

determine all of the edges which correspond to the

sheet to be extracted.

2. Collapse the edges: With the list of edges found in the

previous step, the nodes of each of the edges can be

merged, effectively removing the sheet from the mesh.

There are some special circumstances that must be avoided

when extracting sheets in order to avoid either degenerat-

ing the mesh or producing a mesh which is no longer

conformal with the geometric topology. These situations

can be avoided by checking to ensure that one of the edges

to be collapsed is not the only edge on a curve, or that the

nodes in an edge are not owned by different curves, etc.

4 Summary and application of constraints

In this section, we summarize the hexahedral mesh gen-

eration constraints detailed earlier and highlight how

knowledge of these constraints might be utilized to enable

faster, more robust, hexahedral mesh generation with

existing algorithms.

4.1 Summary of constraints

The constraints for hexahedral mesh generation as detailed

earlier can be summarized as follows:

Fig. 21 In grafting, a shrink set

on a existing meshed volume is

defined (a) and a new sheet is

inserted via a pillowing

operation (b). Once the new

sheet has been inserted, the

nodes are positioned along the

curve to be captured via a

smoothing operation (c).

Additional pillows can also be

inserted to remove any doublet

hexes that may have been

created (b). The resulting mesh

topology captures the geometric

curve (d)

Engineering with Computers

123

• Topologic:

1. Only three sheets can intersect at any given

centroid.

2. Sheets cannot be tangent with another sheet.

3. Sheets must span the space, or form a closed

surface within the space.

4. When traversing the centroids along a single chord,

consecutive instances of a single centroid are not

permitted.

• Boundary:

1. Each surface of the solid-to-be-meshed must have a

set of sheet patches which, collectively, are geo-

metrically similar to the surface but offset interior

to the solid. The minimal number of sheets to

which the collection of patches might belong is a

single sheet.

2. Each curve of the solid-to-be-meshed must have a

set of chord patches (resulting from the intersection

of pairs of sheet patches) which, collectively, are a

piecewise approximation to the curve offset inte-

rior to the solid.

3. Each vertex of the solid-to-be-meshed must have at

least one triple-sheet-pairing (i.e., centroid) which

corresponds to the vertex on the solid.

• Geometric or quality:

1. Maximize the orthogonality of the sheet

intersections.

2. Minimize curvature of the sheets.

3. Maximize a regular topologic arrangement of sheet

intersections.

4. Maintain uniform density of sheets throughout the

solid (with exceptions where mesh anisotropy is

desired).

4.2 Application of constraints

Owen [11] categorized the classes of hexahedral mesh

generation algorithms as follows: Mapped Meshing, Direct

Methods, and Indirect Methods. In this section, we briefly

examine a few algorithms in each category and suggest

how better knowledge or incorporation of the constraints

detailed above may extend the class of geometries that the

algorithm can successfully mesh.

4.2.1 Mapped meshing

Mapped meshing algorithms include the octree approaches

[38–41], mapping [42], multi-block [43–46], submapping

[47, 48], and sweeping algorithms [49–55]. These algo-

rithms are also categorized as structured, or semi-structured

methods because of the regularity of the meshes that they

typically produce.

These methods work well for a well-defined set of

geometric topologies. For instance, mapping algorithms

require geometric topologies conforming to a cuboid (i.e.,

six square-ish surfaces composed of four curves each form

the boundary of the solid), and sweeping algorithms require

cylindrical topologies. Algorithms that automatically detect

or enforce the pre-defined topologies have significantly

improved the time required to generate hexahedral meshes

[56–60].

The most popular, and commonly displayed, types of

hexahedral meshes are those utilizing a multiblock method

for generating a hexahedral grid [44–46]. The major

advantages of these methods are related to the size of the

meshes and relative speed with which large meshes can be

constructed once the block decompositions have been

defined. An individual skilled in generating multiblock-

type grids can generate complex meshes with exceptional

quality. Because of the control that is available in the

creation and layering of the mesh, this method is the

common choice for hexahedral decompositions in fluid

dynamic simulations where fine control of the mesh near

geometric boundaries is required.

The major disadvantage associated with these algorithms

is their seeming inflexibility to incorporate additional geo-

metric topologies to the pre-defined geometric topology

written for the algorithm. Therefore, hexahedral meshing of

non-conforming geometric topologies results in decompo-

sition of the solid into the pre-defined topologies [12, 61,

62], suppression of incompatible topology [63], pre-defined

Fig. 22 Original mesh, shown

on left, with 1,805 hex

elements. After removing

approximately half of the sheets

in the original mesh, the

resulting mesh (right) has 342

hex elements

Engineering with Computers

123

topology overlays (used extensively in multi-block meth-

ods), refinement [64], or massaging the elements to fit the

geometry [65, 66].

With these algorithms, satisfaction of the boundary

constraints is only guaranteed if the geometric topology

matches a pre-defined geometric topology. Potentially, all

of these algorithms could be augmented for larger-classes

of geometric topologies by enabling the algorithms to

capture additional boundary details. Mesh cutting and

grafting algorithms have been utilized as a post-meshing

method to capture additional curves and surfaces in meshes

created by the structured methods cited above [34, 35]. It

would also be possible to incorporate some additional

paradigms directly into these methods that allow the

hexahedral boundary constraints to be satisfied during the

course of the initial mesh generation phase.

4.2.2 Direct methods

The direct methods include the following classes of algo-

rithms: grid-based, medial axis, plastering and whisker

weaving. The grid-based algorithms suffer from the same

boundary constraint problems identified in the structured

and semi-structured methods above. The medial-axis

algorithms define decompositions of the volume into sim-

pler primitives that can be meshed with a structured

scheme. These methods ultimately have difficulty satisfy-

ing the boundary constraints for a hexahedral mesh.

The plastering [67] and Whisker Weaving [25, 37, 68,

69] algorithms both start with a quadrilaterally meshed

boundary, which effectively enables easy satisfaction of the

boundary constraints. However, because a boundary mesh

also defines the boundaries of the sheets that will be placed

on the interior of the volume, the pre-meshed boundaries

are also the cause of the poor quality, or subsequent failure

of these algorithms. As was previously shown in Fig. 14, it

is quite common for quadrilateral meshes on the boundary

to define sheets with high geometric complexity. Assuming

the algorithm is sophisticated enough to solve the topologic

requirements to define the sheets, the interactions of these

high curvature sheets often prevents reasonable quality

hexes from being realized.

Some success has been found by removing the prob-

lematic sheets with a sheet extraction algorithm, or placing

additional constraints on the quadrilateral mesh placed on

the boundary (in particular, Hannemann [68] was able to

generate some relatively complex hexahedral meshes by

utilizing quadrangular patches and reasonably structured

surface meshes as the input to a dual creation algorithm.)

However, the complexity of these algorithms often make

incorporation of sheet quality criteria difficult.

More recent approaches, that take into account a better

understanding of hexahedral constraints, offer a more

realistic chance of success. The method proposed by Staten

et al. [70] inserts sheets directly based on boundary defi-

nitions building on some of the paradigms advanced in the

plastering and H-morph [71] algorithms, but advancing

entire sheets rather than single elements to avoid closure

problems.

4.2.3 Indirect methods

The indirect methods are methods that generate a hexa-

hedral mesh by first generating a tetrahedral mesh and then

converting that mesh into a hexahedral mesh by either

combining the tetrahedra into hexahedra, or decomposing

the tetrahedra into hexahedra. Combining tetrahedra into

hexahedra is ultimately very similar to the plastering

method, which we discussed previously.

4.2.3.1 Indirect decomposition The major advantage of

tetrahedral decomposition into hexes that it is very easy to

satisfy the boundary and topologic constraints of hexahe-

dral meshes. The disadvantage of this method is that the

decomposition produces sheets that are small and spherical,

resulting in relatively high curvature of all sheets within the

solid.

To augment an indirect decomposition algorithm,

methods that reduce the curvature of each of the sheets in

the volume will improve the quality of the existing mesh,

and also reduce the high nodal valence that often accom-

pany a tetrahedral mesh. Some ideas for accomplishing this

could include combining adjacent sheets into single sheets,

which elongates the sheets reducing curvature and locally

coarsening the mesh (i.e., combining two slightly offset

spheres produces an elliptical sheet). Iterative and strategic

combinations of sheets could ultimately produce a mesh

whose sheets are much more planar in nature, resulting in a

higher quality mesh.

Another approach to this problem is to begin with a very

coarse tetrahedral mesh, split each tetrahedra into four

hexahedra, and then apply the dicing algorithm to mesh

(see [72, 73]). The resulting mesh has few very large

spherical sheets whose local curvature is relatively low,

and the sheets produced via dicing are copies of this sheet

still maintaining the relatively low curvature of the large

spherical sheet.

5 Open problems

In the course of preparing this survey of hexahedral

meshing constraints and evaluating existing algorithms

based on these constraints, several questions arose that

remain open problems in hexahedral mesh generation. We

list some of these questions below:

Engineering with Computers

123

• Is it possible to develop an algorithm which rearranges

mesh topology to improve geometric quality of the

sheets? Current smoothing algorithms modify the

placement of nodes within a mesh in order to improve

the quality of the mesh without altering the mesh

topology (that is, smoothing algorithms do not change

the connectivity of an element with adjacent elements).

Mesh flipping algorithms exist which rearrange hexa-

hedral mesh topology [26–28]. Typically, these

algorithms perform a ‘flip’ operation, and then compare

the quality of the meshes before and after the operation

[21]. If the operation tends to reduce curvature of the

sheet, for example, then several flip operations strate-

gically performed in succession may possibly improve

the quality of the mesh beyond what is possible with

normal smoothing operations. Is it possible to ‘drive’

these flip operations utilizing geometric information

from the sheets to realize dramatic improvements in

overall mesh quality?

• Assuming all topologic constraints are satisfied within

a mesh, does there always exist an untangled solution

for that mesh? Current mesh smoothing and optimiza-

tion algorithms, including mesh untangling algorithms

are based on optimization algorithms for finding local

extrema. Assuming that all topologic criteria for a

hexahedral mesh have been satisfied, what are the

conditions which prevent a mesh from being untan-

gled? Is it possible to prove that only tangled solutions

exist for some mesh topologies and geometries using

global optimization algorithms? Assuming that a mesh

with a tangled solution exists, is it possible to show that

the tangling is caused by boundary effects? Can the

boundary effects be mitigated with additional algo-

rithms which may change the mesh topology but

improve the geometry of the sheets?

• Assuming all topologic constraints are satisfied within

a mesh, does there always exist an untangled solution

for that mesh? Current mesh smoothing and optimiza-

tion algorithms, including mesh untangling algorithms

are based on optimization algorithms for finding local

extrema. Assuming that all topologic criteria for a

hexahedral mesh have been satisfied, what are the

conditions which prevent a mesh from being untan-

gled? Is it possible to prove that only tangled solutions

exist for some mesh topologies and geometries using

global optimization algorithms? Assuming that a mesh

with a tangled solution exists, is it possible to show that

the tangling is caused by boundary effects? Can the

boundary effects be mitigated with additional algo-

rithms which may change the mesh topology but

improve the geometry of the sheets?

• Is it possible to calculate ranges of potential element

quality for a mesh given a mesh topology and a fixed

boundary? Or, in other words, given two mesh

topologies for a given geometry, is it possible to show

that one mesh topology is likely to have higher quality

after optimization than the other mesh topology?

• Is it possible to extend any current hexahedral meshing

algorithm to incorporate more implicitly constraint-

satisfying methods to mesh a significantly larger

collection of geometric models? In the previous section,

we discussed possible extensions to existing algorithms

which could be incorporated to dramatically extend the

class of geometries to which these algorithms apply.

Extension of these algorithms remains an open area for

development.

• For a given hexahedrally meshed geometry, is it

possible to identify elements contained within this

mesh that will be present in any hexahedral mesh

applied to that same geometry? Assuming that each

mesh for a given geometry must satisfy the hexahedral

mesh constraints outlined in this paper, can we identify

the elements that must be present in all meshes of that

same geometry?

6 Conclusion

A thorough understanding of the constraints associated

with hexahedral mesh generation may provide the insight

necessary to dramatically reduce the time required to

generate hexahedral meshes for use in numerical analyses.

Due to the difficulty and complexity of generating hexa-

hedral meshes, however, tetrahedral meshes are often the

only practical means available when performing numerical

analysis.

In this paper, we have outlined many of the necessary

constraints for generating a hexahedral mesh as derived

from the dual representation of a hexahedral mesh. The

constraints were classified as topology, boundary, and

geometric, or quality, constraints, where topology defines

how sheets are allowed to interact with one another,

boundary defines how sheets capture geometric features of

the geometry, and geometric, or quality, defines interac-

tions and conformationsthat are necessary to avoid element

inversions and maintain high hexahedral element quality.

By incorporating methods to satisfy ignored, or over-

looked, constraints in existing hexahedral mesh generation

algorithms, it is possible to extend the class of geometries

for which these algorithms may be applied. Several exist-

ing algorithms for satisfying individual constraints are also

highlighted, and it is shown how these algorithms satisfy

individual constraints to compatibly mesh a solid with

hexahedral elements. We have also listed a series of open

problems in relation to these constraints for which future

Engineering with Computers

123

research may provide valuable insights for hexahedral

mesh generation.

References

1. Means S, Smith AJ, Shepherd JF, Shadid J, Fowler J, Wo-

jcikiewicz R, Mazel T, Smith GD, Wilson BS (2006) Reaction

modeling of calcium dynamics with realistic ER geometry.

Biophys J 91(2):537–557

2. Milton KA (1996) Finite-element quantum field theory. In: Pro-

ceedings of the XIVth international symposium on lattice field

theory, Nucl Phys B (Proc. Suppl.) 53 (1997): 847–849

3. Meier DL (1999) Multidimensional astrophysical structural and

dynamical analysis. I. Development of a nonlinear finite element

approach. Astrophys J 518:788–813

4. Loriot M (2006) Tetmesh-ghs3d v3.1 the fast, reliable, high

quality tetrahedral mesh generator and optimiser (see

http://www.simulog.fr/mesh/tetmesh3p1d-wp.pdf).

5. White DR, Leland RW, Saigal S, Owen SJ (2001) The meshing

complexity of a solid: an introduction. In: Proceedings, 10th

international meshing roundtable. Sandia National Laboratories,

pp 373–384

6. White DR, Saigal S, Owen SJ (2003) Meshing complexity of

single part CAD models. In: Proceedings, 12th international

meshing roundtable. Sandia National Laboratories, pp 121–134

7. Weingarten VI (1994) The controversy over hex or tet meshing.

Mach Des 66:74–78

8. Cifuentes AO, Kalbag A (1992) A performance study of tetra-

hedral and hexahedral elements in 3-D finite element structural

analysis. Finite Elem Anal Des 12(3–4):313–318

9. Steven E. Benzley, Ernest Perry, Karl Merkley, Brett Clark

(1995) A comparison of all hexagonal and all tetrahedral finite

element meshes for elastic and elasto-plastic analysis. In: Pro-

ceedings, 4th international meshing roundtable. Sandia National

Laboratories, pp 179–191

10. Bussler ML, Ramesh A (1993) The eight-node hexahedral ele-

ments in FEA of part designs. Foundry Manag Technol 121 (11):

26–28

11. Steven J. Owen (1998) A survey of unstructured mesh generation

technology (available at http://www.andrew.cmu.edu/user/

sowen/survey/index.html). Accessed Sep

12. Blacker TD, Mitchiner JL, Phillips LR, Lin YT (1988) Knowl-

edge system approach to automated two-dimensional

quadrilateral mesh generation. Comput Eng 3:153–162

13. Bill Thurston (1993) Geometry in action: Hexahedral decompo-

sition of polyhedra (available from http://www.ics.uci.edu/

eppstein/gina/thurston-hexahedra.html). Accessed Oct

14. Peter J. Murdoch (1995) The spatial twist continuum: a dual

representation of the all hexahedral finite element mesh. Published

Doctoral Dissertation, Brigham Young University, December

15. Peter J. Murdoch, Steven E. Benzley (1995) The spatial twist

continuum. In: Proceedings, 4th international meshing roundta-

ble. Sandia National Laboratories, pp 243–251, October

16. Scott A. Mitchell (1996) A characterization of the quadrilateral

meshes of a surface which admit a compatible hexahedral mesh

of the enclosed volumes. In: 13th Annual symposium on theo-

retical aspects of computer science, vol 1046. Lecture notes in

computer science, pp 465–476

17. David Eppstein (1996) Linear complexity hexahedral mesh

generation. In: 12th ACM symposium on computational geome-

try. ACM Press, New York, pp 58–67

18. Schwartz A, Ziegler GM (2004) Construction techniques for

cubical complexes, odd cubical 4-polytopes, and prescribed dual

manifolds. Exp Math 13(4):385–413

19. Jonathan Richard Shewchuk (2002) What is a good linear ele-

ment? Interpolation, conditioning, and quality measures. In

Proceedings, 11th international meshing roundtable. Sandia

National Laboratories, pp 115–126

20. Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci

Comput 23(1):193–218

21. Knupp P, Mitchell SA (1999) Integration of mesh optimization

with 3D all-hex mesh generation, LDRD subcase 3504340000,

final report. SAND 99-2852, October

22. VP Garimella RV, Shashkov MJ Mesh untangling. LAU-UR-02-

7271, T-7 Summer Report 2002

23. Knupp PM (2000) Hexahedral mesh untangling and algebraic

mesh quality metrics. In: Proceedings, 9th international meshing

roundtable. Sandia National Laboratories, pp 173–183, October

24. Freitag LA, Plassmann P (2000) Local optimization-based sim-

plicial mesh untangling and improvement. Int J Numer Methods

Eng 49(1):109–125

25. Folwell NT, Mitchell SA (1999) Reliable whisker weaving via

curve contraction. Eng Comput 15:292–302

26. Bern M, Eppstein D (2001) Flipping cubical meshes. In: Pro-

ceedings, 10th international meshing roundtable. Sandia National

Laboratories, pp 19–29

27. Bern M, Eppstein D, Erickson J (2002) Flipping cubical meshes.

Eng Comput 18(3):173–187

28. Tautges TJ, Knoop S (2003) Topology modification of hexahe-

dral meshes using atomic dual-based operations. In: Proceedings,

12th international meshing roundtable. Sandia National Labora-

tories, pp 415–423

29. Suzuki T, Takahashi S, Shepherd JF (2005) Practical interior

surface generation method for all-hexahedral meshing. In: Pro-

ceedings, 14th international meshing roundtable. Sandia National

Laboratories, pp 377–397

30. Schneiders pyramid open problem, http://www-users.informatik.

rwth-aachen.de/ roberts/open.html

31. Melander DJ, Tautges TJ, Benzley SE (1997) Generation of

multi-million element meshes for solid model-based geometries:

The dicer algorithm. AMD Trends Unstructured Mesh Generation

220:131–135

32. Mitchell SA, Tautges TJ (1995) Pillowing doublets: refining a

mesh to ensure that faces share at most one edge. In: Proceedings,

4th international meshing roundtable. Sandia National Labora-

tories, pp 231–240

33. Melander DJ (1997) Generation of multi-million element meshes

for solid model-based geometries: The Dicer Algorithm. Pub-

lished Master’s Thesis, Brigham Young University, April

34. Borden MJ, Shepherd JF, Benzley SE (2002) Mesh cutting: fitting

simple all-hexahedral meshes to complex geometries. In: Pro-

ceedings, 8th International society of grid generation conference

35. Jankovich SR, Benzley SE, Shepherd JF, Mitchell SA (1999) The

graft tool: an all-hexahedral transition algorithm for creating multi-

directional swept volume mesh. In: Proceedings, 8th international

meshing roundtable. Sandia National Laboratories, pp 387–392

36. Borden MJ, Benzley SE, Shepherd JF (2002) Coarsening and
sheet extraction for all-hexahedral meshes. In: Proceedings, 11th

international meshing roundtable. Sandia National Laboratories,

pp 147–152

37. Tautges TJ, Blacker TD, Mitchell SA (1996) Whisker weaving: a

connectivity-based method for constructing all-hexahedral finite

element meshes. Int J Numer Methods Eng 39:3327–3349

38. Schneiders R (1997) An algorithm for the generation of hexa-

hedral element meshes based on an octree technique. In:

Proceedings, 6th international meshing roundtable. Sandia

National Laboratories, pp 183–194

39. Yerry MA, Shephard MS (1984) Three-dimensional mesh gen-

eration by modified octree technique. Int J Numer Methods Eng

20:1965–1990

Engineering with Computers

123

http://www.simulog.fr/mesh/tetmesh3p1d-wp.pdf
http://www.andrew.cmu.edu/user/sowen/survey/index.html
http://www.andrew.cmu.edu/user/sowen/survey/index.html
http://www.ics.uci.edu/ eppstein/gina/thurston-hexahedra.html
http://www.ics.uci.edu/ eppstein/gina/thurston-hexahedra.html
http://www-users.informatik.rwth-aachen.de/ roberts/open.html
http://www-users.informatik.rwth-aachen.de/ roberts/open.html

40. Shephard MS, Georges MK (1991) Three-dimensional mesh

generation by finite octree technique. Int J Numer Meth Eng

32:709–749

41. Zhang Y, Bajaj C (2005) Adaptive and quality quadrilateral/

hexahedral meshing from volumetric imaging data. In: Proceed-

ings, 13th international meshing roundtable. Sandia National

Laboratories, pp 365–376

42. Cook WA, Oakes WR (1982) Mapping methods for generating

three-dimensional meshes. Comput Mech Eng CIME Res Sup-

pl:67–72

43. Dannenhoffer JF (III) (1991) A block-structuring technique for

general geometries. In: 29th Aerospace sciences meeting and

exhibit, vol AIAA-91-0145, January

44. XYZ Scientific Applications, Inc. (2006) Truegrid: High quality

hexahedral grid and mesh generation for fluids and structures

(available from http://www.truegrid.com). Accessed Oct

45. Pointwise (2006) Gridgen—reliable CFD meshing (available

from http://www.pointwise.com/gridgen/), Accessed Oct

46. ANSYS (2006) ANSYS ICEM CFD (available from http://www.

ansys.com/products/icemcfd.asp), October

47. White DR (1996) Automatic quadrilateral and hexahedral meshing

of Pseudo-Cartesian geometries using virtual subdivision. Pub-

lished Master’s Thesis, Brigham Young University, June

48. White DR, Lai M, Benzley SE, Sjaardema GD (1995) Automated

hexahedral mesh generation by virtual decomposition. In: Pro-

ceedings, 4th international meshing roundtable. Sandia National

Laboratories, pp 165–176, October

49. Knupp P (1998) Next-generation sweep tool: a method for gen-

erating all-hex meshes on two-and-one-half dimensional

geometries. In: Proceedings, 7th international meshing roundta-

ble. Sandia National Laboratories, pp 505–513, October

50. Staten ML, Canann SA, Owen SJ (1998) BMSWEEP: locating

interior nodes during sweeping. In: Proceedings, 7th international

meshing roundtable. Sandia National Laboratories, pp 7–18,

October

51. Roca X, Sarrate J, Huerta A (2004) Surface mesh projection for

hexahedral mesh generation by sweeping. In: Proceedings, 13th

international meshing roundtable, vol SAND 2004-3765C. Sandia

National Laboratories, pp 169–180, September

52. Lai M, Benzley SE, White DR (2000) Automated hexahedral

mesh generation by generalized multiple source to multiple target

sweeping. Int J Numer Methods Eng 49(1):261–275

53. Lai M, Benzley SE, Sjaardema GD, Tautges TJ (1996) A multiple

source and target sweeping method for generating all-hexahedral

finite element meshes. In: Proceedings, 5th international meshing

roundtable. Sandia National Laboratories, pp 217–228, October

54. Shepherd JF, Mitchell SA, Knupp P, White DR (2000) Methods for

multisweep automation. In: Proceedings, 9th international meshing

roundtable. Sandia National Laboratories, pp 77–87, October

55. Blacker TD (1996) The cooper tool. In: Proceedings, 5th inter-

national meshing roundtable. Sandia National Laboratories, pp

13–30, October

56. Whitely M, White DR, Benzley SE, Blacker TD (1996) Two and

three-quarter dimensional meshing facilitators. Eng Comput

12:155–167

57. Mitchell SA (1997) Choosing corners of rectangles for mapped

meshing. In: 13th Annual symposium on computational geome-

try. ACM Press, New York, pp 87–93

58. Mitchell SA (1997) High fidelity interval assignment. In: Pro-

ceedings, 6th international meshing roundtable. Sandia National

Laboratories, pp 33–44, October

59. Shepherd JF, Benzley SE, Mitchell SA (2000) Interval assign-

ment for volumes with holes. Int J Numer Methods Eng

49(1):277–288

60. White DR, Tautges TJ (2000) Automatic scheme selection for

toolkit hex meshing. Int J Numer Methods Eng 49(1):127–144

61. Lu Y, Gadh R, Tautges TJ (1999) Volume decomposition and

feature recognition for hexahedral mesh generation. In: Pro-

ceedings, 8th international meshing roundtable. Sandia National

Laboratories, pp 269–280, October

62. Tautges TJ, Liu SSs, Lu Y, Kraftcheck J, Gadh R (1997) Feature

recognition applications in mesh generation. AMD Trends

Unstructured Mesh Generation 220:117–121

63. Kraftcheck J (2000) Virtual geometry: a mechanism for modifi-

cation of CAD model topology for improved meshability.

Published Master’s Thesis, Department of Mechanical Engi-

neering, University of Wisconsin, December

64. Schindler Weiler FR, Schneiders R (1996) Automatic geometry-

adaptive generation of quadrilateral and hexahedral element

meshes for FEM. In: Proceedings, 5th international conference on

numerical grid generation in computational field simulations.

Mississippi State University, pp 689–697, April

65. Walton KS, Benzley SE, Shepherd JF (2002) Sculpting: an

improved inside-out scheme for all-hexahedral meshing. In:

Proceedings, 11th international meshing roundtable. Sandia

National Laboratories, pp 153–159, September

66. Zhang Y, Bajaj C, Xu G (2005) Surface smoothing and quality

improvement of quadrilateral/hexahedral meshes with geometric

flow. In: Proceedings, 14th international meshing roundtable.

Sandia National Laboratories, pp 449–468, September

67. Blacker TD, Meyers RJ (1993) Seams and wedges in plastering: a

3D hexahedral mesh generation algorithm. Eng Comput 2(9):83–

93

68. Muller-Hannemann M (1998) Hexahedral mesh generation by

successive dual cycle elimination. In: Proceedings, 7th interna-

tional meshing roundtable. Sandia National Laboratories, pp 365–

378, October

69. Calvo NA, Idelsohn SR (2000) All-hexahedral element meshing:

generation of the dual mesh by recurrent subdivision. Comput

Methods Appl Mech Eng 182:371–378

70. Staten ML, Owen SJ, Blacker TD (2005) Unconstrained paving

and plastering: a new idea for all hexahedral mesh generation. In:

Proceedings, 14th international meshing roundtable. Sandia

National Laboratories, pp 399–416, September

71. Owen SJ, Saigal S (2000) H-morph an indirect approach to

advancing front hex meshing. Int J Numer Methods Eng

49(1):289–312

72. Richards S, Benzley SE, Shepherd JF, Stephenson MB (2005)

DTH exing: creation of semi-structured all-hexahedral meshes

based on coarse tetrahedral primitives. Sandia Doc Num

5237908, November

73. Richards S, Benzley SE, Shepherd JF, Stephenson MB (2003)

DTH exing: an improved all-hexahedral meshing scheme using

general coarsening tools. SAND2003-2724A and SAND2003-

2818P

Engineering with Computers

123

http://www.truegrid.com
http://www.pointwise.com/gridgen/
http://www.ansys.com/products/icemcfd.asp
http://www.ansys.com/products/icemcfd.asp

	Hexahedral mesh generation constraints
	Abstract
	Introduction
	Background
	The dual of a hexahedral mesh

	Methods
	Hexahedral mesh constraints
	Topological constraints
	Boundary constraints
	Geometric surface constraints
	Geometric curve constraints
	Geometric vertex constraints
	Geometric, or quality, constraints
	Quality considerations
	Mesh untangling
	Additional quality observations

	Constraint-satisfying methods
	Inserting sheets
	Pillowing
	Dicing

	Geometric capture with sheets
	Mesh cutting
	Grafting

	Removing sheets
	Sheet extraction

	Summary and application of constraints
	Summary of constraints
	Application of constraints
	Mapped meshing
	Direct methods
	Indirect methods
	Indirect decomposition

	Open problems
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

