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Abstract

We present efficient sequential and parallel algo-
rithms for isosurface extraction. Based on the Span
Space data representation, new data subdivision and
searching methods are described. We also present a
parallel implementation with an emphasis on load bal-
ancing. The performance of our sequential algorithm
to locate the cell elements intersected by tsosurfaces
15 faster than the Kd-tree searching method originally
used for the Span Space algorithm. The parallel algo-
rithm can achieve high load balancing for massively
parallel machines with distributed memory architec-
tures.

1 Introduction

Scientific visualization has played an important role
in understanding three-dimensional scalar data. As
cost-effective high performance computers with large
amount of memory and disk space become more ac-
cessible, the sizes of these scalar data also continue to
increase. To visualize these large-scale data sets, gen-
erally two different paradigms are used. One paradigm
is to transfer the data onto graphics workstations and
perform the visualization as a postprocessing step.
Alternatively, visualization can be performed on the
same, typically parallel, machines that run the simula-
tion thereby providing the user faster feedback neces-
sary for computational steering. In this paper, we pro-
pose an efficient sequential isosurfacing algorithm and
a load balanced parallel isosurfacing algorithm to ful-
fill the requirements of both visualization paradigms.

Isosurfacing is an effective technique to explore
three-dimensional scalar fields. A simple and effec-
tive method is the Marching Cubes algorithm, pro-
posed by Lorensen and Cline [1]. The algorithm has
a complexity of O(N) since it is necessary to visit
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each cell* in the three-dimensional field. When the
data set 1s large, visiting each cell is too costly and
recent research efforts have investigated the acceler-
ation of the isosurfacing process, namely Wilhelms
and Van Gelder’s octree spatial subdivision [2], Gal-
lengher’s span filter [3], Ttoh and Koyamada’s extreme
graph method[4], Shen and Johnson’s sweeping sim-
plices algorithm [5],and Livnat et al.’s near optimal
isosurface extraction (NOISE) algorithm [6].

Among the above accelerating techniques, the
NOISE algorithm is near optimal. This algorithm has
a worst, case complexity of O(v/N + K) to locate the
cells that are intersected by the isosurfaces, where N
is the total number of cells in the scalar field, and K is
the number of isosurface cells. The crux of this algo-
rithm is a novel data representation, termed the Span
Space. Using this representation, the isosurface ex-
traction process can be reduced into a range searching
problem. Livnat et al. proposed a classical Kd-tree
searching method [7] to locate, in that space, the cells
that contain an isosurface.

In this paper, we use the Span Space as the under-
lying representation to design high performance iso-
surface extraction algorithms for both single proces-
sor workstations and massively parallel machines with
distributed memory architectures. Rather than using
the Kd-tree searching method, we subdivide the Span
Space into a two-dimensional regular lattice and pro-
pose a new searching method. Our new sequential
algorithm leads to a average case time complexity of
O(log(%) + @ + K) to locate the isosurface inter-
sected cell elements, where I is an user specified pa-
rameter, as explained in Section 3, with a value typi-

*In a uniform three-dimensional field, a cell is sometimes re-
ferred to as a vozel. We use the term cell to indicate elements of
a three-dimensional grid that may be a uniform or regular struc-
tured grid or an unstructured grid. The cells may be tetrahedra,
hexahedra, prisms or other polyhedra. The methods described
in this paper are useful for any type of grid.
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Figure 1: Span Space

cally between 200 to 500. In practice, this new method
is faster than the NOISE algorithm in locating the
isosurface cells. Our parallel isosurfacing algorithm
adopts a static load balancing scheme to distribute
the cells among Processing Elements (PFEs). Each PE
executes the sequential algorithm locally leading to
an average difference between the maximum and min-
imum workloads of lower than 2%.

We begin the paper by providing details of the Span
Space data representation. Next, we describe the new
lattice subdivision method with a fast searching algo-
rithm. We then discuss some implementation details.
Building upon this, we present the parallel algorithm
with an emphasis on the load balancing. Finally, we
conclude the paper with several experimental results.

2 Span Space

For each cell element in the three-dimensional
scalar field, there exists an interval [a,b] represent-
ing the scalar range of the data at the cell’s vertices,
where a is the cell’s minimum value and b is the cell’s
maximum value. For a given isovalue v, the cell C;
that has interval [a;, b;] such that a; < v, and b; > v
is intersected by the isosurface. To accelerate the iso-
surfacing process, researchers have proposed different
methods to decompose the data domain such that for
each isovalue, there is only a small number of subdo-
mains that need to be examined [3, 5].

Livnat et al. provide an interesting perspective for
the isosurfacing problem [6]. For a cell with minimum
value ¢ and maximum value b, instead of treating the
[a,b] as an interval, they map the cell into an unique
point position, (a,b), in an R? value space, termed
the Span Space. Figure 1 illustrates the Span Space.
The horizontal axis X depicts a cell’s minimum value,
and the vertical axis Y depicts a cell’s maximum value.
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Figure 2: Lattice Subdivision

Note that cell elements can be mapped only to the half
space above the X = Y line because a cell’s maximum
value is always greater than or equal to its minimum
value. Using the Span Space data representation, the
isosurfacing problem is then reduced into a classical
range search problem. The problem is stated as follow:

o For a given isovalue v, the cell C; that has associ-
ated points (z;, ;) in the Span Space, such that
x; < v and y; > v is an isosurface cell.

In Figure 1, cells having points within the shaded
area are the isosurface cells.

Unlike the interval representation for a cell that
poses difficulties for subdividing the cells in the scalar
field, the point representation in the Span Space pro-
vide a much simpler way to subdivde the data domain.
This advantage lays down the basis for us to develop
an efficient searching algorithm.

3 New Searching Algorithm

In this section, we describe a data subdivision
scheme and a new searching algorithm to locate the
isosurface cells. Based on the Span Space representa-
tion, the new subdivision scheme organizes the cells
in such a way that the isosurface cells can be easily
located.

3.1 Lattice Subdivision

Our algorithm decomposes the data domain by sub-
dividing the Span Space into a two dimensional L x L
lattice. Assuming that the scalar field has a global
minimum value m, and a global maximum value M,
we define a set of dividing points {dz}zzg such that



dy=m, dp =00, di < diy1, and {d;}:=0 7" € (m, M].
A lattice element(é, j),i = 1..L and j = 1..L is defined
as a square region in the Span Space containing point
(z,y) such that x € [di_1,d;) and y € [d;_1,d;). Fig-
ure 2 shows a 8 x 8 lattice subdivision imposed upon
the Span Space. Note that the X = Y line crosses the
diagonals of lattice element(é,4),¢ = 1..L. Also, all the
lattice elements with indices (¢, j),¢ > j are empty be-
cause the minimum values can not be greater than the
maximum values.

3.2 Searching Algorithm

Using the lattice subdivision, we can quickly locate
the candidate lattice elements that contain the iso-
surface cells. Given an isovalue v, v € [d,_1,d,), we
classify the lattice elements in the Span Space into five
cases based on their indices (¢, j) as follows:

1. i > porj < p: All the cells in this region have ei-
ther a higher minimum value or lower maximum
value than the isovalue. Hence these lattice ele-
ments trivially do not contain any isosurface cells.

2.7 < p and j > p: All the cells in these lattice
elements are 1sosurface cells.

3.7 < pand j = p: All the cells in this region
have a lower minimum value than the i1sovalue.
Hence only those cells that have a higher maxi-
mum value than the isovalue are isosurface cells.

4. 1 =pand j > p: All the cells in this region have a
higher maximum value than the isovalue. Hence
only those cells that have a lower minimum value
than the isovalue are isosurface cells.

5.2 = p and 5 = p: This is the only lattice ele-
ment that requires a min-max search to locate
the isosurface cells. Any isosurfacing algorithm,
such as a Kd-tree searching method or sweeping
simplices, will do.

Figure 3 shows the five cases in the Span Space.
From the above description, the lattice elements in
case 1 can be immediately rejected. Locating isosur-
face cells from the case 2 region requires no searching
operation since every cell in the region is an isosurface
cell. The cells can be directly collected from the Lat-
tice Element data structures that contain cell indices.
To locate isosurface cells in the lattice elements of
case 3, we design a Row data structure. Row [R] con-
tains indices and maximum values of cells in lattice
elements (i,7), ¢ < R,j = R. The cell indices are
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Figure 3: Lattice Classification

sorted by their maximum values. To collect the iso-
surface cells, we apply a binary search to Row [p] and
find the cells with maximum values greater than the
isovalue v.

To collect 1sosurface cells in the lattice elements of
case 4, we design a Column data structure. Column
[C] contains indices and minimum values of cells in
lattice elements (¢, j), i = C,j > C. The cells in each
column structure are sorted by their minimum values.
Those cells in Column [p] with minimum values lower
than the isovalue v are isosurface cells and can be lo-
cated with a binary search.

The lattice element in case 5 is the only region that
we need to employ regular isosurface searching, i.e.,
finding cells with minimum values lower, and max-
imum values higher than the isovalue. To achieve
this, we can use any efficient isosurface extraction al-
gorithm. For instance, we can build a Kd-tree struc-
ture for lattice element (p, p) and apply Kd-tree search
to locate the isosurface cells or we could employ the
Sweeping Simplices algorithm [5].

The search phase of our isosurfacing algorithm in-
cludes two binary searches in the regions of case 3 and
case 4, and one min-max search in the lattice element

of case 5. Since the entire Span Space contains L

(L+1)
2

Lx .
rows, L columns, and lattice elements above

the X =Y half space, the average number of cells in

each row and column is %, and the average number
of cells in each lattice element is L(ZL—J\_If_l) The binary
search for each row and column requires O(log(%)),

and the Kd-tree mix-max search for the lattice ele-

ment in case b requires O(@) Hence, the overall av-

erage case performance for our new algorithm is then
O(log(%) + \/L—N + K), where K is the number of the

1sosurface cells.
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Figure 4: Sparse Manipulation

3.3 Implementation Details

In this section, we provide important implemen-
tation details of our searching algorithm. First, we
describe how to determine the dividing points {d;}.
Second, we describe a sparse manipulation method to
avoid visiting the empty lattice elements when collect-
ing the isosurface cells.

From the earlier description, we know that a lat-
tice element (4, j) is a region in the Span Space con-
taining points (z,y) such that # € [d;_1,d;) and
y € [dj—1,d;). Assuming that the value range of the
field is [m, M], m, M € R, and that the Span Space is
subdivided into an L x L lattice, a straightforward way
to determine {d;} is to evenly cut the interval [m, M],

that is, {d; = m+1 x (Mzm) }2:5—1 and d;, = oo.
However, this method does not produce a uniform
data point distribution at each interval [d;, d;11] which
results in an uneven cell distribution among the lat-
tice elements. To avoid this, we find {di}zzé_l in such
a way that the number of data points at each inter-
val [d;, d;j+1] is approximately the same. We achieve
this by sorting all data points into a list and dividing
the list into L sublists having approximately the same
lengths. The scalar values which bound those sublists

are the dividing points.

As mentioned earlier, only lattice elements in cases
3, 4, and b require searching operations to locate the
isosurface cells. The finer we subdivide the Span
Space, the smaller the areas of the regions defined by
those cases. This results in a greater number of cells
which are located in the case 2 region and therefore
can immediately be collected. However, as we more
finely subdivide the Span Space, there can be a larger

number of empty lattice elements. This has the poten-
tial to degrade the algorithm’s performance since time
would be spent checking those empty lattice elements
when we collect the isosurface cells. To overcome this
limitation, we use a sparse manipulation method on
the lattice. As we pre-process the data field and dis-
tribute the cells into the lattice, the non-empty lattice
elements are marked. The lattice elements at each row
are then connected together with pointers. Figure 4
illustrates the sparse manipulation method. We note
that using sparse manipulation, the number of non-
empty lattice elements is bounded by the number of
cells in the 3D scalar field no matter how fine we sub-
divide the Span Space. In the results section, we show
the relationship between the resolution of the lattice
subdivision and the performance of the searching al-
gorithm.

4 Parallel Algorithm

In this section, we present a parallel isosurfacing
algorithm. The underlying architecture model is mas-
sively parallel machines with distributed memory such
as the Cray T3D. The algorithm can be divided into
three phases: cell distribution, initialization, and iso-
surface extraction. In the cell distribution phase, cells
are partitioned into several subsets and distributed to
the processing elements (PEs). In the initialization
phase, each PE builds lattice, row, and column data
structures based on the local data. In the isosurface
extraction phase, each PE locally employs our search-
ing algorithm to extract the isosurfaces.

Our emphasis is on paradigms of cell distribution
achieving load balancing. For any given isovalue, we
want the PEs to spend a balanced amount of time in
isosurfacing and to produce balanced amount of trian-
gles. In this way, not only does our isosurfacing algo-
rithm exhibit good scalability, it can also be directly
connected to a parallel rendering process, which re-
quires an even distribution of primitives for the initial
geometry processing[8].

We achieve the load balancing by carefully design-
ing a cell distribution scheme. Ideally, if cells within
any scalar range [a,b] are evenly scattered, each PE
would have approximately the same number of isosur-
face cells for any isovalue. To achieve this, we use a cell
distribution method built on top of the lattice subdivi-
sion of the Span Space. Assuming that there are L x L
lattice elements in the Span Space, and that there are
N PEs available, numbering from PE[0] to PE[N —1],
we unfold the lattice elements in the half space above
the X =Y line column by column into a 1D list and



Figure 5: Lattice Distribution

distribute these ﬂzLil elements into the PEs using
a round-robin method. Figure 5 shows a lattice distri-
bution of 8 x 8 lattice with 4 available PEs. To express
our round-robin method in terms of indices of lattice
elements and PEs, our method distributes the cells in
the lattice(7, j) into PE[(j — 1 + %)modlﬂ.
As a result, each PE receives a balanced work load be-
cause the lattice elements in cases 2,3,4,5 are evenly
distributed.

The resolution of the lattice subdivision is crucial to
the load-balance of the algorithm since a finer subdi-
vision exhibits better cell scattering. However, in the
isosurfacing algorithm, creating a fine subdivision im-
plies that we have to create more lattice data objects,
which would incur higher memory overhead. To over-
come this, we decouple the lattice subdivision used for
the cell distribution from the one used for isosurfac-
ing algorithm. Initially, a finer lattice subdivision is
used for the round-robin distribution scheme. After
each PE receives its local data, a coarser lattice sub-
division is used to create the lattice, row, and column
data structures. In this way, we can exploit a fine sub-
division which achieves good cell scattering, but not
invoke excessive memory overhead in performing iso-
surfacing. We refer to the elements of this subdivision
for the cell distribution as buckets to distinguish from
lattice elements used for the isosurfacing algorithm.

5 Results and Discussion

In this section, we present empirical results to eval-
uate our algorithms. The sequential algorithm was
tested on a 150 MHz MIPS R4400 processor. The

Data Set | Vertices Cells
Heart 11,504 69,892
Torso 201,142 | 1,290,072
Brain 74,217 471,770

Table 1: Data Sets

Method | Heart | Torso | Brain
Lattice | 0.017 | 0.129 | 0.052
Kd-tree 0.4 2.2 1.5

Table 2: Comparison of the lattice method with the
Kd-tree method in locating the isosurface cells.(in
msecs)

parallel algorithm was tested on a Cray T3D paral-
lel machine. All the results presented were obtained
by averaging one thousand executions with randomly
assigned isovalues.

5.1 Sequential Algorithm

We used three unstructured grid data sets to test
our sequential algorithm. These data were generated
from bioelectric field problems solved using finite ele-
ment methods. The data sizes range from 69 thousand
to 1.3 million elements. Table 1 gives a summary of
the data sets.

The performance of the searching phase of the al-
gorithm is affected by the resolution of the lattice sub-
division. The finer we subdivide the Span Space, the
smaller the area of the regions covered by case 3,4,5
while the greater the area of the region covered by
case 2. However, This is mitigated by the overhead
of constructing the necessary data structures. Fig-
ure 6 demonstrates the relationship between the time
to search for isosurface cells and the resolution of the
lattice subdivision. We can see that the search time
dramatically decreases as we increase the number lat-
tice elements up to 256 x 256. After that, the per-
formance degraded slightly due the overhead incurred
by using a very fine lattice structure. Figure 7 shows
the total 1sosurfacing time, including the time for tri-
angulation, verses the resolution of the lattice sub-
division. Because we used the sparse manipulation
method mentioned in the section 3.3, the overhead in-
cured by a very fine subdivision is not overwhelming.

512x512 lattice elements were used in our experi-
ments. Table 2 shows the times for locating which cells



Method | Heart | Torso | Brain
Lattice 4.65 | 33.47 | 41.33
Kd-tree 7.0 43.8 53.9

Table 3: Comparison of the lattice method with the
Kd-tree method in total isosurfacing time.(in msecs)
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Figure 6: Searching Time v.s. K x K Lattice Subdivi-
sion

contain an isosurface for both the Lattice based algo-
rithm and the Kd-tree algorithm. Note that the time
to locate the isosurface cells is an order of magnitude
faster. Table 3 compares the total isosufacing time:
locating which cells contain an isosurface, traversing
those cells to perform triangulation, and the triangu-
lation time. It can be seen that the Lattice based
search improves the overall performance by approxi-
matly 25%. The triangulation time begins to dom-
inate which is why the time to locate the isosurface
cells is an order of magnitude faster but overall the
system exhibits only a 25% increase in performance.

5.2 Parallel Algorithm

We have implemented our parallel algorithm using
C++ on a Cray T3D supercomputer in the Advanced
Computing Laboratory at Los Alamos National Labo-
ratory. The Cray T3D is a massively parallel computer
with a distributed memory architecture. Each pro-
cessing element has a 64 bit DEC Alpha microproces-
sor and 8M words local memory. Qur implementation
uses the message passing paradigm by employing the
ACLMPL message passing library [9] which is a high
throughput, low latency communications library.t In

tWe used ACLMPL since the MPI implementation on the
T3D is not yet mature. The message passing library employed
will effect the performance but is independent of the isosurfacing
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Figure 7: Total Isosurfacing Time v.s. K x K Lattice
Subdivision
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Figure 8: Load Imbalance for K x K Bucket Subdivi-
sion

this section, we show the load balancing characteristics
of our parallel algorithm and give the speedup factors
obtained from executions using 4 to 64 processing ele-
ments. We used the brain data set which has 471,770
cell elements.

To measure the load balance of our parallel algo-

rithm, we use two different metrics. One 1s a formula
of load imbalance used by Ma [10]:

loadaverage

o Load Imbalance = 1 — Toadas

The other 1s a load difference formula:

o Load Difference = (100 x M)%
loadr otal

Two different measurements are used to define the
workload for each PE. One is the isosurfacing times
for each PE, the other is the number of triangles pro-
duced by each PE. We present both of the workload
measurements to evaluate our algorithm.

From our earlier discussion, we know that the load
balance is affected by the resolution of bucket subdi-

algorithm.
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vision. Figure 8 and Figure 9 show the load imbal-
ance and load difference, for both workload measure-
ments, using 32 PEs. We increased the resolution of
the bucket subdivision from 16 x 16 to 1024 x 1024.
The results show that we can obtain a highly balanced
load, namely under 0.2 of load imbalance and 2% of
load difference for a 1024 x 1024 bucket subdivision.
Remember that the bucket subdivision is a subdivision
of the Span Space used to distribute the cell elements,
which is different from the lattice subdivision used to
perform the isosurfacing algorithm.

Figure 10 gives the speedup factors for T3D parti-
tions with 4 to 64 PEs. The test was performed with
a 256 x 256 lattice subdivision.

6 Conclusion and Summary

We have presented a high performance isosurfacing
algorithm using a regular L x L lattice subdivision of
the Span Space. The algorithm has a average case
time complexity of O(log(%) + @ + K), where the
N 1s the total number of cells in the scalar field, K is

the number of 1sosurface cells, and L is a user speci-
fied parameter. In pratice, it is faster than the Kd-tree
searching method. Empirically, the algorithm has its
best performance when the value of L is about 200 to
500 for scalar data sets with sizes ranging from hun-
dreds of thousands to millions of cell elements. We
have also presented a load balanced parallel isosurfac-
ing algorithm. In addition to the lattice subdivision,
we use a bucket subdivision of the Span Space and
a round-robin method to distribute the cell elements.
Our experimental results show that the higher the res-
olution of the bucket subdivision, the better the load
balance. Our sequential and parallel isosurfacing al-
gorithm can satisfy the needs of both post-processing
and computational steering visualization.
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