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Abstract

We present e�cient sequential and parallel algo�

rithms for isosurface extraction� Based on the Span

Space data representation� new data subdivision and

searching methods are described� We also present a

parallel implementation with an emphasis on load bal�

ancing� The performance of our sequential algorithm

to locate the cell elements intersected by isosurfaces

is faster than the Kd�tree searching method originally

used for the Span Space algorithm� The parallel algo�

rithm can achieve high load balancing for massively

parallel machines with distributed memory architec�

tures�

� Introduction

Scienti�c visualization has played an important role
in understanding three�dimensional scalar data� As
cost�e�ective high performance computers with large
amount of memory and disk space become more ac�
cessible� the sizes of these scalar data also continue to
increase� To visualize these large�scale data sets� gen�
erally two di�erent paradigms are used� One paradigm
is to transfer the data onto graphics workstations and
perform the visualization as a postprocessing step�
Alternatively� visualization can be performed on the
same� typically parallel� machines that run the simula�
tion thereby providing the user faster feedback neces�
sary for computational steering� In this paper� we pro�
pose an e�cient sequential isosurfacing algorithm and
a load balanced parallel isosurfacing algorithm to ful�
�ll the requirements of both visualization paradigms�

Isosurfacing is an e�ective technique to explore
three�dimensional scalar �elds� A simple and e�ec�
tive method is the Marching Cubes algorithm� pro�
posed by Lorensen and Cline ��	� The algorithm has
a complexity of O
N � since it is necessary to visit

each cell� in the three�dimensional �eld� When the
data set is large� visiting each cell is too costly and
recent research e�orts have investigated the acceler�
ation of the isosurfacing process� namely Wilhelms
and Van Gelder�s octree spatial subdivision �	� Gal�
lengher�s span �lter ��	� Itoh and Koyamada�s extreme
graph method��	� Shen and Johnson�s sweeping sim�

plices algorithm ��	�and Livnat et al��s near optimal

isosurface extraction 
NOISE� algorithm ��	�

Among the above accelerating techniques� the
NOISE algorithm is near optimal� This algorithm has
a worst case complexity of O


p
N �K� to locate the

cells that are intersected by the isosurfaces� where N
is the total number of cells in the scalar �eld� and K is
the number of isosurface cells� The crux of this algo�
rithm is a novel data representation� termed the Span
Space� Using this representation� the isosurface ex�
traction process can be reduced into a range searching
problem� Livnat et al� proposed a classical Kd�tree
searching method ��	 to locate� in that space� the cells
that contain an isosurface�

In this paper� we use the Span Space as the under�
lying representation to design high performance iso�
surface extraction algorithms for both single proces�
sor workstations and massively parallel machines with
distributed memory architectures� Rather than using
the Kd�tree searching method� we subdivide the Span
Space into a two�dimensional regular lattice and pro�
pose a new searching method� Our new sequential
algorithm leads to a average case time complexity of

O
log
N
L
� �

p
N
L

� K� to locate the isosurface inter�
sected cell elements� where L is an user speci�ed pa�
rameter� as explained in Section �� with a value typi�

�In a uniform three�dimensional �eld� a cell is sometimes re�

ferred to as a voxel� We use the term cell to indicate elements of

a three�dimensional grid that may be a uniform or regular struc�

tured grid or an unstructuredgrid� The cells may be tetrahedra�

hexahedra� prisms or other polyhedra� The methods described

in this paper are useful for any type of grid�
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Figure �� Span Space

cally between �� to ���� In practice� this new method
is faster than the NOISE algorithm in locating the
isosurface cells� Our parallel isosurfacing algorithm
adopts a static load balancing scheme to distribute
the cells among Processing Elements 
PEs�� Each PE
executes the sequential algorithm locally leading to
an average di�erence between the maximum and min�
imum workloads of lower than ��

We begin the paper by providing details of the Span
Space data representation� Next� we describe the new
lattice subdivision method with a fast searching algo�
rithm� We then discuss some implementation details�
Building upon this� we present the parallel algorithm
with an emphasis on the load balancing� Finally� we
conclude the paper with several experimental results�

� Span Space

For each cell element in the three�dimensional
scalar �eld� there exists an interval �a� b	 represent�
ing the scalar range of the data at the cell�s vertices�
where a is the cell�s minimum value and b is the cell�s
maximum value� For a given isovalue v� the cell Ci
that has interval �ai� bi	 such that ai � v� and bi � v

is intersected by the isosurface� To accelerate the iso�
surfacing process� researchers have proposed di�erent
methods to decompose the data domain such that for
each isovalue� there is only a small number of subdo�
mains that need to be examined ��� �	�

Livnat et al� provide an interesting perspective for
the isosurfacing problem ��	� For a cell with minimum
value a and maximum value b� instead of treating the
�a� b	 as an interval� they map the cell into an unique
point position� 
a� b�� in an R� value space� termed
the Span Space� Figure � illustrates the Span Space�
The horizontal axis X depicts a cell�s minimum value�
and the vertical axis Y depicts a cell�s maximumvalue�
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Figure � Lattice Subdivision

Note that cell elements can be mapped only to the half
space above the X � Y line because a cell�s maximum
value is always greater than or equal to its minimum
value� Using the Span Space data representation� the
isosurfacing problem is then reduced into a classical
range search problem� The problem is stated as follow�

� For a given isovalue v� the cell Ci that has associ�
ated points 
xi� yi� in the Span Space� such that
xi � v and yi � v is an isosurface cell�

In Figure �� cells having points within the shaded
area are the isosurface cells�

Unlike the interval representation for a cell that
poses di�culties for subdividing the cells in the scalar
�eld� the point representation in the Span Space pro�
vide a much simpler way to subdivde the data domain�
This advantage lays down the basis for us to develop
an e�cient searching algorithm�

� New Searching Algorithm

In this section� we describe a data subdivision
scheme and a new searching algorithm to locate the
isosurface cells� Based on the Span Space representa�
tion� the new subdivision scheme organizes the cells
in such a way that the isosurface cells can be easily
located�

��� Lattice Subdivision

Our algorithm decomposes the data domain by sub�
dividing the Span Space into a two dimensional L�L

lattice� Assuming that the scalar �eld has a global
minimum value m� and a global maximum value M �
we de�ne a set of dividing points fdigi�Li�� such that



d� � m� dL ��� di � di��� and fdigi�L��i�� � 
m�M 	�
A lattice element
i� j�� i � ���L and j � ���L is de�ned
as a square region in the Span Space containing point

x� y� such that x � �di��� di� and y � �dj��� dj�� Fig�
ure  shows a �� � lattice subdivision imposed upon
the Span Space� Note that the X � Y line crosses the
diagonals of lattice element
i� i�� i � ���L� Also� all the
lattice elements with indices 
i� j�� i � j are empty be�
cause the minimumvalues can not be greater than the
maximum values�

��� Searching Algorithm

Using the lattice subdivision� we can quickly locate
the candidate lattice elements that contain the iso�
surface cells� Given an isovalue v� v � �dp��� dp�� we
classify the lattice elements in the Span Space into �ve
cases based on their indices 
i� j� as follows�

�� i � p or j � p� All the cells in this region have ei�
ther a higher minimum value or lower maximum
value than the isovalue� Hence these lattice ele�
ments trivially do not contain any isosurface cells�

� i � p and j � p� All the cells in these lattice
elements are isosurface cells�

�� i � p and j � p� All the cells in this region
have a lower minimum value than the isovalue�
Hence only those cells that have a higher maxi�
mum value than the isovalue are isosurface cells�

�� i � p and j � p� All the cells in this region have a
higher maximum value than the isovalue� Hence
only those cells that have a lower minimum value
than the isovalue are isosurface cells�

�� i � p and j � p� This is the only lattice ele�
ment that requires a min�max search to locate
the isosurface cells� Any isosurfacing algorithm�
such as a Kd�tree searching method or sweeping
simplices� will do�

Figure � shows the �ve cases in the Span Space�
From the above description� the lattice elements in

case � can be immediately rejected� Locating isosur�
face cells from the case  region requires no searching
operation since every cell in the region is an isosurface
cell� The cells can be directly collected from the Lat�
tice Element data structures that contain cell indices�

To locate isosurface cells in the lattice elements of
case �� we design a Row data structure� Row �R	 con�
tains indices and maximum values of cells in lattice
elements 
i� j�� i � R� j � R� The cell indices are
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Figure �� Lattice Classi�cation

sorted by their maximum values� To collect the iso�
surface cells� we apply a binary search to Row �p	 and
�nd the cells with maximum values greater than the
isovalue v�

To collect isosurface cells in the lattice elements of
case �� we design a Column data structure� Column
�C	 contains indices and minimum values of cells in
lattice elements 
i� j�� i � C� j � C� The cells in each
column structure are sorted by their minimum values�
Those cells in Column �p	 with minimum values lower
than the isovalue v are isosurface cells and can be lo�
cated with a binary search�

The lattice element in case � is the only region that
we need to employ regular isosurface searching� i�e��
�nding cells with minimum values lower� and max�
imum values higher than the isovalue� To achieve
this� we can use any e�cient isosurface extraction al�
gorithm� For instance� we can build a Kd�tree struc�
ture for lattice element 
p� p� and apply Kd�tree search
to locate the isosurface cells or we could employ the
Sweeping Simplices algorithm ��	�

The search phase of our isosurfacing algorithm in�
cludes two binary searches in the regions of case � and
case �� and one min�max search in the lattice element
of case �� Since the entire Span Space contains L

rows� L columns� and L��L���
� lattice elements above

the X � Y half space� the average number of cells in
each row and column is N

L
� and the average number

of cells in each lattice element is �N
L�L��� � The binary

search for each row and column requires O
log
N
L
���

and the Kd�tree mix�max search for the lattice ele�
ment in case � requires O


p
N
L
�� Hence� the overall av�

erage case performance for our new algorithm is then

O
log
N
L
� �

p
N
L

�K�� where K is the number of the
isosurface cells�
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Figure �� Sparse Manipulation

��� Implementation Details

In this section� we provide important implemen�
tation details of our searching algorithm� First� we
describe how to determine the dividing points fdig�
Second� we describe a sparse manipulation method to
avoid visiting the empty lattice elements when collect�
ing the isosurface cells�

From the earlier description� we know that a lat�
tice element 
i� j� is a region in the Span Space con�
taining points 
x� y� such that x � �di��� di� and
y � �dj��� dj�� Assuming that the value range of the
�eld is �m�M 	�m�M � R� and that the Span Space is
subdivided into an L�L lattice� a straightforward way
to determine fdig is to evenly cut the interval �m�M 	�

that is� fdi � m � i � �M�m�
L

gi�L��
i��

and dL � ��
However� this method does not produce a uniform
data point distribution at each interval �di� di��	 which
results in an uneven cell distribution among the lat�
tice elements� To avoid this� we �nd fdigi�L��i�� in such
a way that the number of data points at each inter�
val �di� di��	 is approximately the same� We achieve
this by sorting all data points into a list and dividing
the list into L sublists having approximately the same
lengths� The scalar values which bound those sublists
are the dividing points�

As mentioned earlier� only lattice elements in cases
�� �� and � require searching operations to locate the
isosurface cells� The �ner we subdivide the Span
Space� the smaller the areas of the regions de�ned by
those cases� This results in a greater number of cells
which are located in the case  region and therefore
can immediately be collected� However� as we more
�nely subdivide the Span Space� there can be a larger

number of empty lattice elements� This has the poten�
tial to degrade the algorithm�s performance since time
would be spent checking those empty lattice elements
when we collect the isosurface cells� To overcome this
limitation� we use a sparse manipulation method on
the lattice� As we pre�process the data �eld and dis�
tribute the cells into the lattice� the non�empty lattice
elements are marked� The lattice elements at each row
are then connected together with pointers� Figure �
illustrates the sparse manipulation method� We note
that using sparse manipulation� the number of non�
empty lattice elements is bounded by the number of
cells in the �D scalar �eld no matter how �ne we sub�
divide the Span Space� In the results section� we show
the relationship between the resolution of the lattice
subdivision and the performance of the searching al�
gorithm�

� Parallel Algorithm

In this section� we present a parallel isosurfacing
algorithm� The underlying architecture model is mas�
sively parallel machines with distributed memory such
as the Cray T�D� The algorithm can be divided into
three phases� cell distribution� initialization� and iso�
surface extraction� In the cell distribution phase� cells
are partitioned into several subsets and distributed to
the processing elements 
PEs�� In the initialization
phase� each PE builds lattice� row� and column data
structures based on the local data� In the isosurface
extraction phase� each PE locally employs our search�
ing algorithm to extract the isosurfaces�

Our emphasis is on paradigms of cell distribution
achieving load balancing� For any given isovalue� we
want the PEs to spend a balanced amount of time in
isosurfacing and to produce balanced amount of trian�
gles� In this way� not only does our isosurfacing algo�
rithm exhibit good scalability� it can also be directly
connected to a parallel rendering process� which re�
quires an even distribution of primitives for the initial
geometry processing��	�

We achieve the load balancing by carefully design�
ing a cell distribution scheme� Ideally� if cells within
any scalar range �a� b	 are evenly scattered� each PE
would have approximately the same number of isosur�
face cells for any isovalue� To achieve this� we use a cell
distribution method built on top of the lattice subdivi�
sion of the Span Space� Assuming that there are L�L
lattice elements in the Span Space� and that there are
N PEs available� numbering from PE��	 to PE�N ��	�
we unfold the lattice elements in the half space above
the X � Y line column by column into a �D list and
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Figure �� Lattice Distribution

distribute these L��L���
� elements into the PEs using

a round�robin method� Figure � shows a lattice distri�
bution of ��� lattice with � available PEs� To express
our round�robin method in terms of indices of lattice
elements and PEs� our method distributes the cells in

the lattice
i� j� into PE�
j � � � ��L�i���i���
� �modN 	�

As a result� each PE receives a balanced work load be�
cause the lattice elements in cases ������ are evenly
distributed�

The resolution of the lattice subdivision is crucial to
the load�balance of the algorithm since a �ner subdi�
vision exhibits better cell scattering� However� in the
isosurfacing algorithm� creating a �ne subdivision im�
plies that we have to create more lattice data objects�
which would incur higher memory overhead� To over�
come this� we decouple the lattice subdivision used for
the cell distribution from the one used for isosurfac�
ing algorithm� Initially� a �ner lattice subdivision is
used for the round�robin distribution scheme� After
each PE receives its local data� a coarser lattice sub�
division is used to create the lattice� row� and column
data structures� In this way� we can exploit a �ne sub�
division which achieves good cell scattering� but not
invoke excessive memory overhead in performing iso�
surfacing� We refer to the elements of this subdivision
for the cell distribution as buckets to distinguish from
lattice elements used for the isosurfacing algorithm�

� Results and Discussion

In this section� we present empirical results to eval�
uate our algorithms� The sequential algorithm was
tested on a ��� MHz MIPS R���� processor� The

Data Set Vertices Cells
Heart ������ �����
Torso ����� �������
Brain ����� �������

Table �� Data Sets

Method Heart Torso Brain
Lattice ����� ���� ����
Kd�tree ��� � ���

Table � Comparison of the lattice method with the
Kd�tree method in locating the isosurface cells�
in
msecs�

parallel algorithm was tested on a Cray T�D paral�
lel machine� All the results presented were obtained
by averaging one thousand executions with randomly
assigned isovalues�

��� Sequential Algorithm

We used three unstructured grid data sets to test
our sequential algorithm� These data were generated
from bioelectric �eld problems solved using �nite ele�
ment methods� The data sizes range from �� thousand
to ��� million elements� Table � gives a summary of
the data sets�

The performance of the searching phase of the al�
gorithm is a�ected by the resolution of the lattice sub�
division� The �ner we subdivide the Span Space� the
smaller the area of the regions covered by case �����
while the greater the area of the region covered by
case � However� This is mitigated by the overhead
of constructing the necessary data structures� Fig�
ure � demonstrates the relationship between the time
to search for isosurface cells and the resolution of the
lattice subdivision� We can see that the search time
dramatically decreases as we increase the number lat�
tice elements up to �� � ��� After that� the per�
formance degraded slightly due the overhead incurred
by using a very �ne lattice structure� Figure � shows
the total isosurfacing time� including the time for tri�
angulation� verses the resolution of the lattice sub�
division� Because we used the sparse manipulation
method mentioned in the section ���� the overhead in�
cured by a very �ne subdivision is not overwhelming�

��x�� lattice elements were used in our experi�
ments� Table  shows the times for locating which cells



Method Heart Torso Brain
Lattice ���� ����� �����
Kd�tree ��� ���� ����

Table �� Comparison of the lattice method with the
Kd�tree method in total isosurfacing time�
in msecs�
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contain an isosurface for both the Lattice based algo�
rithm and the Kd�tree algorithm� Note that the time
to locate the isosurface cells is an order of magnitude
faster� Table � compares the total isosufacing time�
locating which cells contain an isosurface� traversing
those cells to perform triangulation� and the triangu�
lation time� It can be seen that the Lattice based
search improves the overall performance by approxi�
matly ��� The triangulation time begins to dom�
inate which is why the time to locate the isosurface
cells is an order of magnitude faster but overall the
system exhibits only a �� increase in performance�

��� Parallel Algorithm

We have implemented our parallel algorithm using
C�� on a Cray T�D supercomputer in the Advanced
Computing Laboratory at Los Alamos National Labo�
ratory� The Cray T�D is a massively parallel computer
with a distributed memory architecture� Each pro�
cessing element has a �� bit DEC Alpha microproces�
sor and �M words local memory� Our implementation
uses the message passing paradigm by employing the
ACLMPL message passing library ��	 which is a high
throughput� low latency communications library�y In

yWe used ACLMPL since the MPI implementation on the

T�D is not yet mature� The message passing library employed

will e�ect the performancebut is independentof the isosurfacing
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this section� we show the load balancing characteristics
of our parallel algorithm and give the speedup factors
obtained from executions using � to �� processing ele�
ments� We used the brain data set which has �������
cell elements�

To measure the load balance of our parallel algo�
rithm� we use two di�erent metrics� One is a formula
of load imbalance used by Ma ���	�

� Load Imbalance � �� loadAverage
loadMax

The other is a load di�erence formula�

� Load Di�erence � 
���� loadMax�loadMin

loadT otal
��

Two di�erent measurements are used to de�ne the
workload for each PE� One is the isosurfacing times
for each PE� the other is the number of triangles pro�
duced by each PE� We present both of the workload
measurements to evaluate our algorithm�

From our earlier discussion� we know that the load
balance is a�ected by the resolution of bucket subdi�

algorithm�
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vision� Figure � and Figure � show the load imbal�
ance and load di�erence� for both workload measure�
ments� using � PEs� We increased the resolution of
the bucket subdivision from �� � �� to ��� � ����
The results show that we can obtain a highly balanced
load� namely under �� of load imbalance and � of
load di�erence for a ��� � ��� bucket subdivision�
Remember that the bucket subdivision is a subdivision
of the Span Space used to distribute the cell elements�
which is di�erent from the lattice subdivision used to
perform the isosurfacing algorithm�

Figure �� gives the speedup factors for T�D parti�
tions with � to �� PEs� The test was performed with
a ��� �� lattice subdivision�

� Conclusion and Summary

We have presented a high performance isosurfacing
algorithm using a regular L� L lattice subdivision of
the Span Space� The algorithm has a average case

time complexity of O
log
N
L
� �

p
N
L

� K�� where the
N is the total number of cells in the scalar �eld� K is

the number of isosurface cells� and L is a user speci�
�ed parameter� In pratice� it is faster than the Kd�tree
searching method� Empirically� the algorithm has its
best performance when the value of L is about �� to
��� for scalar data sets with sizes ranging from hun�
dreds of thousands to millions of cell elements� We
have also presented a load balanced parallel isosurfac�
ing algorithm� In addition to the lattice subdivision�
we use a bucket subdivision of the Span Space and
a round�robin method to distribute the cell elements�
Our experimental results show that the higher the res�
olution of the bucket subdivision� the better the load
balance� Our sequential and parallel isosurfacing al�
gorithm can satisfy the needs of both post�processing
and computational steering visualization�
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