434

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 4, JULY/AUGUST 2004

Interactive Visualization of Three-Dimensional
Vector Fields with Flexible Appearance Control

Han-Wei Shen, Guo-Shi Li, Student Member, IEEE Computer Society, and Udeepta D. Bordoloi

1

Abstract—In this paper, we present an interactive texture-based algorithm for visualizing three-dimensional steady and unsteady
vector fields. The goal of the algorithm is to provide a general volume rendering framework allowing the user to compute three-
dimensional flow textures interactively and to modify the appearance of the visualization on the fly. To achieve our goal, we decouple
the visualization pipeline into two disjoint stages. First, flow lines are generated from the 3D vector data. Various geometric properties
of the flow paths are extracted and converted into a volumetric form using a hardware-assisted slice sweeping algorithm. In the second
phase of the algorithm, the attributes stored in the volume are used as texture coordinates to look up an appearance texture to
generate both informative and aesthetic representations of the vector field. Our algorithm allows the user to interactively navigate
through different regions of interest in the underlying field and experiment with various appearance textures. With our algorithm,
visualizations with enhanced structural perception using various visual cues can be rendered in real time. A myriad of existing
geometry-based and texture-based visualization techniques can also be emulated.

Index Terms—Flow visualization, vector field visualization, texture synthesis, appearance control, line integral convolution, volume
rendering, graphics hardware.

<+

INTRODUCTION

E FFECTIVE analysis of vector fields plays an important role
in many scientific, engineering, and medical disciplines.
Various visualization techniques have been proposed in the
past to assist the scientist in comprehending the behavior of
the vector field. They can be loosely classified into two
categories: geometry-based and texture-based methods.
Geometry-based methods (such as glyph, hedgehog,
streamline, stream surface [1], flow volume [2], to name a
few) use shape, color, and motion of geometric primitives to
convey the directional information in the proximity of user-
supplied regions of interest in the vector field. Texture-
based methods, such as spot noise [3], line integral
convolution (LIC) [4], and IBFV [5], on the other hand,
attempt to create a continuous visual representation for the
vector field using synthetic textures to reveal the global
characteristics of the underlying physical phenomena.

In two-dimensional vector fields or flows across a
surface in three dimensions, the texture-based methods
are capable of offering a clear perception of the vector field
since the directions of the vector field can be seen globally
in the visualization. For three-dimensional vector fields,
however, the effectiveness is significantly diminished due
to the loss of information when the three-dimensional data
are projected onto a two-dimensional image plane. This
drawback can be mitigated to some extent by providing
additional visual cues. For example, lighting, animation,

e H.-W. Shen and U.D. Bordoloi are with the Department of Computer and
Information Science, The Ohio State University, 395 Dreese Lab, 2015 Neil
Awve., Columbus, OH 43210. E-mail: {hwshen, bordoloi}@cis.ohio-state.edu.

e G.-S. Li is with the Scientific Computing and Imaging Institute,
University of Utah, 50 South Central Campus Dr., Room 3490, Salt
Lake, City, UT 84112. E-mail: lig@sci.utah.edu.

Manuscript received 30 Sept. 2003; revised 10 Nov. 2003; accepted 18 Nowv.
2003.

For information on obtaining reprints of this article, please send e-mail to:
tveg@computer.org, and reference IEEECS Log Number TVCGSI-0094-0903.

1077-2626/04/$20.00 © 2004 IEEE

silhouettes, etc. can all provide valuable information about
the three-dimensional structure of the data set. Comparing
visualizations with different appearances also helps in
understanding the anatomy of the vector field. Unfortu-
nately, the high computational cost of 3D texture-based
algorithms impedes the interactive use of visual cues.
Another issue for 3D vector field renderings is occlusion,
which significantly hinders visualization of internal struc-
tures of the volume. Interactivity becomes very important
as a result: The user needs to be able to experiment freely
with textures of different patterns, shapes, colors, and
opacities and view the results at interactive speeds.
Recently, we proposed an interactive volume rendering
framework, called Chameleon, to facilitate flexible appearance
control when visualizing three-dimensional vector fields [6].
The relative inflexibility of existing texture-based methods is
a result of the tight coupling between the vector field
processing step and output texture generation step. We
addressed this issue by decoupling the visualization pipeline
into two disjoint stages. First, streamlines are generated from
the 3D vector data. Various geometric properties of the
streamlines are then extracted and converted into a volu-
metric form which we refer to as the trace volume. In the
second phase, the trace volume is combined with a desired
appearance texture at runtime to generate both informative
and aesthetic representations of the underlying vector field.
The two-phase method provides a general framework to
modify the appearance of the visualization intuitively and
interactively without having to reprocess the vector field
every time the rendering parameters are modified. Just by
varying the input appearance texture, we are able to create a
wide range of effects at runtime. A myriad of existing
visualization techniques, including geometry-based and
texture-based, can also be emulated. Using consumer-level
PC platform graphics hardware with dependent textures
and per-fragment shading functionality, visualizations with

Published by the IEEE Computer Society

SHEN ET AL.: INTERACTIVE VISUALIZATION OF THREE-DIMENSIONAL VECTOR FIELDS WITH FLEXIBLE APPEARANCE CONTROL 435

enhanced structural perception using various visual cues
can be rendered in real time.

In this paper, we extend the Chameleon algorithm with the
following features: First, the user can now incorporate
various procedural solid textures, such as cloud, fog, gas,
etc. [7], to create visualizations. Using solid textures to
visualize vector fields allows the user to focus on the global
structure of the underlying field. It can also emulate certain
experimental visualization techniques such as injecting dye
or smoke into a flow field. The second enhancement to the
Chameleon algorithm is to allow the user to update the trace
volume interactively. Although the trace volume only needs
to be created once and can be used for rendering different
appearance textures, sometimes the user may wish to update
the trace volume by inserting new flow lines or deleting
unwanted ones. This is particularly useful when the user is
navigating through a large data set and wants to explore
different regions of interest in the data set. The third
enhancement to the algorithm is the feature that allows the
Chameleon algorithm to handle time-varying vector fields.
Following the principal philosophy of decoupling the
advection and rendering stages, the time-varying Chameleon
algorithm creates the trace volume from a dense set of input
pathlines. The main difference between the processing of
steady state and unsteady vector fields comes from the fact
that pathlines can intersect with themselves or each other,
while streamlines donot. We address this issue by creating an
initial trace volume and multiple update volumes as a result
of the pathline voxelization. The time-varying data is
visualized by rendering the trace volume and dynamically
updating the trace volume. In addition to the above new
features, we have adopted the latest graphics hardware such
as nVIDIA GeForce FX and the high level shading language
Cg to implement the Chameleon algorithm.

2 REeLATED WORK

Researchers have proposed various vector field visualization
techniques in the past. In addition to the more traditional
techniques such as particle tracing or arrow plots, there are
algorithms that can provide a volumetric representation of
the underlying three-dimensional fields. Some research had
been directed toward integrating texture or icons into volume
rendering of flow data. Crawfis and Max [8] developed a
technique where the volume rendering was built up in sheets
oriented parallel to the image plane. These sheets were
composited [9] in a back-to-front order. The volume integral
was modified to include the rendering of a tiny cylinder
within a small neighborhood. A further refinement of this
concept was to embed the vector icons directly into the splat
footprint [10] used for volume rendering.

Line Integral Convolution, or LIC [4], developed by
Cabral and Leedom, has been perhaps the most visible of
the recent flow visualization algorithms. The algorithm
takes a scalar field and a vector field as input and outputs
another scalar field. By providing a white noise image as the
scalar input, an output image is generated that correlates
this noise function along the directions of the input vector
field. While LIC is effective in visualizing 2D vector fields, it
is computationally quite expensive. Stalling and Hege [11]
proposed an extension to speed up the process. Shen at al.
[12] proposed the advection of dyes in LIC computation.
Kiu and Banks [13] used noises of different frequencies to

distinguish between regions with different velocity magni-
tudes. Shen and Kao [14] proposed UFLIC for unsteady
flow and a level of detail approach was proposed by
Bordoloi and Shen [15]. Interrante and Grosch [16] intro-
duced the use of halos to improve the perceptual effective-
ness when visualizing dense streamlines for 3D vector
fields. Rezk-Salama et al. [17] proposed a volume rendering
algorithm to make LIC more effective in three dimensions.
A volume slicing algorithm that utilizes 3D texture
mapping hardware is explored to quickly adjust slice
planes and opacity settings. More recently, Jobard et al.
[18] proposed a Lagrangian-Eulerian Advection technique
to visualize unsteady flows using hardware-assisted noise
blending. Weiskopf et al. [19] used programmable graphics
hardware to advect solid textures and animate moving
particles. Van Wijk proposed a highly interactive Image
Based Flow Visualization (IBFV) algorithm [5] for visualiz-
ing two-dimensional fluid flow using standard features of
graphics hardware.

3 THE CHAMELEON RENDERING FRAMEWORK

The primary goal of our research is to develop an algorithm
that has a high degree of interactivity and flexibility. The
traditional texture-based algorithm, such as LIC, is known
for its high computation cost when applied to three-
dimensional data. This high computational complexity
makes it difficult for the user to change the output’s visual
appearance, such as texture patterns and frequencies, at an
interactive speed. Although, in the past, researchers have
proposed various texture-based rendering techniques for
visualizing three-dimensional vector fields, there is no
common rendering framework that allows an interactive
mix-and-match of different visual appearances when
exploring three-dimensional vector data. In this paper, we
present our extended rendering framework to address this
issue. In the following, we first give an overview of our
approach and then present the details for the various stages
of the algorithm.

3.1 Algorithm Overview

In LIC or similar texture-based algorithms, texture synthesis
is performed to establish pixel or voxel value coherence
along the flow paths for depicting the vector directions. In
addition to the algorithms” high computational complexity,
one challenge for employing such texture synthesis meth-
ods is that the information about the vector field is difficult
to recover from the resulting textures once the computation
is complete. Consequently, if the user wants to alter the
visual appearance, such as the texture shape or distribution
pattern, the synthesis process needs to be performed all
over again.

To allow flexible runtime mapping of textures with user
desired visual characteristics, it will be beneficial if the
processing of the vector field and the synthesis of textures
can be decoupled. Specifically, if the processing of the
vector field can output an intermediate renderable form
which allows for a flexible mapping of different textures,
better appearance control in the visualization can be
achieved. In this paper, we present a novel visualization
algorithm based on this idea. The intermediate renderable
form produced by our algorithm is a volumetric object,
which will be referred to as the trace volume. The main

436 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 4, JULY/AUGUST 2004

Processing Stage Rendering Stage
Vector T on+ # Volume
field Volume Viz
Noise
| Dependent
Vector Advection + Trace
r‘ {-) h Texture Lookup [~)
field ‘Voxelization Volume Volume Rend J Viz i
- il
Appearance
Texture

Fig. 1. Visualization pipelines for LIC (above) and Chameleon (below).
The Chameleon decouples the advection and texture generation stages.
Once the trace volume is constructed, any suitable appearance texture
can be used to generate varied visualization of the same vector data set.

reason for choosing the volumetric form over other
geometric representations, such as surfaces, lines, or points,
is to display solid textures of various characteristics to
reveal the global structure of the vector field. Although
volume rendering used to be a computationally expensive
process, the recent advancement of graphics hardware has
made it possible to render volumes of moderate sizes at
interactive speeds.

To depict the flow directions in the field, we store, at
each voxel in the trace volume, a few attributes, called the
trace tuple, which are used to establish visual coherence
along the flow paths. Specifically, the attributes stored in
the trace tuple are used as the texture coordinates to look up
an input texture, which we will refer to as the appearance
texture. The appearance texture contains precomputed
2D/3D visual patterns, which will be warped and animated
along the flow directions to create the visualization. The
appearance texture can be freely specified by the user at
runtime. For instance, it can be a precomputed LIC image
from a straight flow or can be a texture with different
characteristics such as line bundles, particles, paint-brush
strokes, etc. Each of these can generate a unique visual
appearance. Our algorithm can alter the visual appearance
of the data interactively when the user explores the
underlying vector field and, hence, is given the name
Chameleon. Fig. 1 depicts the fundamental difference
between our algorithm and the more traditional texture-
based algorithm such as LIC.

Rendering of the trace volume requires a two-stage
texture lookup. Here, we give a conceptual view of how the
rendering is performed. Given the trace volume, we can cast
a ray from each pixel from the image plane into the trace
volume to sample the voxels. At each step of the ray, we
sample the volume attribute, which is a trace tuple. The
components of this sampled vector are used as the texture
coordinates to fetch the appearance texture. Visual attri-
butes such as colors and opacities are sampled from the
appearance texture and blended into the final image.
Although here we use the ray casting algorithm to illustrate
the idea, in our implementation, we use graphics hardware

with fragment shaders and dependent textures to achieve
interactivity.

In the following sections, we elaborate on each step of
our algorithm in detail. We focus on the topics of trace
volume construction and rendering, including voxelization,
trace tuple and appearance texture configurations, anti-
aliasing, incremental update of trace volumes, and inter-
active rendering. We then present the time-varying Cha-
meleon algorithm.

3.2 Hardware-Assisted Trace Volume Creation

In this section, we describe the process for constructing the
trace volume. We first assume that the underlying data set
is a steady state vector field. Later, in Section 4, we extend
our algorithm for time-varying fields.

In essence, the trace volume is created by voxelizing a
dense set of input streamlines. Since the trace volume will
be used as a texture input to 3D texture mapping hardware
for rendering, as will be described later, it is defined on a
3D regular Cartesian grid. We note that there is no
preferred grid type for our algorithm because the trace
volume is constructed from the input streamlines instead of
from the vector field itself. We use the method proposed by
Jobard and Lefer [20] to control the density and the length
of flow lines during the advection. The seeds are randomly
selected and the flow lines are generated by the fourth-
order Runge-Kutta method. An adaptive step size based on
curvature [21] is used in the advection.

To convert the input flow lines into the trace volume, a
hardware-assisted slice sweeping algorithm, inspired by the
CSG voxelization algorithm proposed by Fang and Liao [22]
is designed to achieve faster voxelization speed. The input
to our voxelization process is a set of streamlines S = {s;}.
Each streamline s; is represented as a line strip with a
sequence of vertices P = {p;}. Each vertex p; will be given a
three-dimensional vector, called the trace tuple, derived
from the streamline geometry as well as the type of flow
appearance to establish the visual coherence in the render-
ing. More specifically, the components of the trace tuple
will be used as the texture coordinates to look up the
appearance texture. In this section, we focus on the process
of voxelization and defer the discussion of the trace tuple
assignment to the next section.

We encode the trace tuples into the trace volume during
the voxelization process using graphics hardware. Given an
input streamline, we assign the trace tuple (u,v,w),
according to the appearance schemes described in the next
section as colors (red, green, blue) to the vertices of
streamline segments. Using graphics hardware, our algo-
rithm creates the trace volume by scan-converting the input
streamlines onto a sequence of slices with a pair of moving
clipping planes. For each of the X, Y, and Z dimensions, we
first scale the streamline vertices by V /L, where V is the
resolution of the trace volume in the dimension in question
and L is the length of the corresponding dimension in the
underlying vector field or a user-specified region of interest.
Then, we render the streamlines orthographically using a
sequence of clipping planes. The viewing direction is set to
be parallel to the z axis, and the distance between the near
and far planes of the view frustum is always one. Initially,
the near and far clipping planes are set at z =0 and z =1,
respectively. When each frame is rendered, the frame buffer
content is read back and copied to one slice of the trace

SHEN ET AL.: INTERACTIVE VISUALIZATION OF THREE-DIMENSIONAL VECTOR FIELDS WITH FLEXIBLE APPEARANCE CONTROL 437

(a) (b)

Fig. 2. (a) The slice sweeping voxelization algorithm. The near and far
clipping planes are translated along the Z axis. At each position of the
clipping planes, the streamlines are rendered to generate one slice of
the trace volume. (b) A trace volume containing a collection of
streamlines. The streamline parameterization is stored in the blue
channel, while the streamline identifiers are stored in the red and green
channels.

volume. As the algorithm progresses, the locations of the
clipping planes are shifted by 1 along the Z axis incremen-
tally until the entire vector field is swept. Fig. 2a illustrates
our algorithm. Positions for the near and far clipping planes
for two different slices are shown. Fig. 2b shows the
voxelization result generated from a bundle of input
streamlines, where different colors are used to encode the
different values of trace tuples.

Sometimes it is possible that some of the streamline
segments are perpendicular to the Z =0 plane. For
orthographic projection, these segments will degenerate
into a point. In certain graphics APIs, such as OpenGL, the
degenerate points are not drawn, which will create unfilled
voxels in the trace volume. To avoid this problem, such
segments are collected and processed separately in another
pass, where the viewing direction and the sweeping of the
clipping volume is set to be along the X-axis. The
voxelization results of the new segments are added
(logically OR’ed) into the trace volume using a method
similar to the updating technique mentioned in Section 3.5.

The performance of the voxelization depends on the
rendering speed of the graphics hardware for the input
streamline geometry. To reduce the amount of geometry to
render for each slice, streamline segments are placed into
bins according to their spans along the Z direction. During
the voxelization, only the segments that intersect with the
current clipping volume are sent to the graphics hardware.
The performance for constructing the trace volume can be
further increased by reading the slicing result directly from
the frame buffer to the 3D texture memory. This can be
done using OpenGL’s glCopyTexSublmage3D command.

3.3 Trace Tuple and Appearance Texture

As mentioned earlier, the set of attributes stored at each
voxel in the trace volume is referred to as the trace tuple. A
trace tuple is a three-dimensional vector which can be
divided into two main components: the streamline identi-
fier (u,v), which is used to differentiate individual flow
paths, and the streamline parameterization (w), which is to
parameterize the voxels along the flow line. Trace tuples are
used as the texture coordinates to look up a 3D appearance
texture. The values assigned to the trace tuple at each voxel
are determined based on the type of the underlying
appearance texture in use. In the following, we explain

(@) (b) (©)

Fig. 3. Different appearance textures. (a) LIC, (b) line bundle, (c) arrow.

the configurations of the trace volume and the appearance
textures in detail. Three types of appearances are currently
supported by our algorithm: 1) stochastic lines, 2) local
glyphs, and 3) global solid textures.

3.3.1 Stochastic Line Textures

LIC [4] or line bundles [23] are examples of stochastic line
textures. In essence, these textures consist of a collection of
1D lines. Correlated values of luminance or color are
assigned to each line for depicting the flow path, while
different lines receive different colors stochastically to
maintain the image contrast. To use this type of appearance
in the visualization, we can precompute a 3D solid
appearance texture from a straight flow using LIC or the
line bundle algorithm. Fig. 3a and Fig. 3b show two
examples of such 3D solid appearance textures. The
1D texture used to depict the flow direction is extended
along the w direction in the texture space, while different
(u,v) are used to represent different stochastic lines. To
construct the trace volume, a collection of dense flow lines
computed from the vector field are taken as the input. Each
flow line will be assigned a randomly selected (u,v) tuple.
Vertices that are on the same flow line will share the same
(u,v), while the w values of the vertices along the flow path
will be parameterized from 0 to 1 according to the arc
length. When using the trace tuple as the texture coordi-
nates to look up the appearance texture, the 1D straight line
textures will be warped along the actual flow directions to
create the visualization. It is worth mentioning that the trace
volume only needs to be created once and different
appearance textures of this type with various visual
characteristics can be used at runtime without the need to
recreate the trace volume. Fig. 4a and Fig. 4b show
examples of using LIC and line bundle textures to create
the visualization.

3.3.2 Local Glyph Textures

Graphical glyphs such as arrows, tubes, or spheres are
commonly used in vector field visualization. These glyphs
intuitively represent the vector directions and can also be
rendered with enhanced shading effects to provide better
depth cues. To display local glyphs in the vector field, we
can voxelize glyphs of various shapes into 3D appearance
textures. Fig. 3c shows an example of a voxelized arrow. For
this type of appearance textures, special care is needed to
compute the trace tuples. If we use a similar method as the
one used for the stochastic line textures described above,
i.e., randomly assigning the streamline identifier (u,v) to
the input streamlines, the shape of the glyphs will not be

438

(@)

Fig. 4. Visualization of a vortices data set using (a) LIC, (b) line bundle,

maintained in the final rendering since adjacent voxels may
not be mapped to the adjacent texels in the texture space. To
correctly map the appearance texture, we model each flow
line as a bundle of thin lines surrounding a central line. This
is done as follows: During advection, the streamlines are
generated as a set of line segments. After the advection
stage, each line segment is surrounded by a bundle of
satellite lines, denoted as B = {b.}, where b; is the
kth satellite line in the bundle. The line bundle is created
by extruding a mask M = {m;} along the streamline
during the advection process. Each point m;, on the mask
corresponds to a vertex of the satellite strip. The distance
between two adjacent strips should be small enough to
avoid any vacant voxels within the thick line in the trace
volume. Initially, the center of the mask is placed at the first
vertex of the streamline. Then, the mask is swept along the
streamline as the advection proceeds. During the sweep, the
mask is always positioned perpendicular to the tangential
direction of the streamline and the orientation of the mask is
calculated based on the local curl of the flow, similar to the
streamribbon construction algorithm used in [21] and [24].
When the advection of the central streamline completes, we
construct the line strip b, by connecting the vertices from
the corresponding points in the mask along the sweep trace.

To determine the trace tuples for the trace volume
voxels, all satellite lines in the bundle use the same w value
as the corresponding points in the central streamline. The u
and v coordinates of the satellite lines range from 0 to 1
according to their relative positions to the central line. The
points at the central line always have the (u, v) identifier as
(0.5, 0.5), which points to the central axis in the appearance
texture along the w direction. When the trace tuples are
organized this way, adjacent lines in the bundle are mapped
to the adjacent texels of the appearance texture. Hence, any
solid structure present in the appearance texture will be
preserved after the trace volume is texture mapped. Fig. 2b
shows the voxelization results for such a collection of lines
where (u,v) values are encoded in the red and green
channels and w is stored in the blue channel. Fig. 4c shows
an example of using arrows as the appearance.

3.3.3 Global Solid Texture

Previously, researchers have created realistic rendering of
nature phenomena such as cloud, fog, gas, etc. using

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 4, JULY/AUGUST 2004

(b) ()

(c) arrow glyph appearance textures.

procedural solid textures [7], where the intensity value of
each texel is evaluated using stochastic noise or turbulence
functions. To animate these fuzzy gaseous objects, a
precomputed vector field is used to advect points in the
solid texture space. The new positions of the points are
input to the procedural texture module to evaluate the noise
function at every frame to create the animation. Researchers
have also proposed animations of global textures by
advecting the texture coordinates defined at each grid node
[25]. Using solid textures to visualize vector fields allows
the user to focus on the global structure of the underlying
field. It can also emulate certain experimental visualization
techniques such as injecting dye or smoke into a flow field.

The Chameleon rendering framework supports the use
of 3D solid textures as the appearance input to visualize the
vector field. The main difference between this appearance
and the previous two is that, when using stochastic lines or
local glyphs, the same texture pattern is repeated every-
where to depict the flow paths. There is no attempt to create
a global solid appearance covering the entire trace volume
in the final visualization. To render and animate global
solid texture appearances, the process for creating the
appearance texture in the Chameleon framework needs to
be modified. This is done as follows: Initially, a solid texture
with the desired visual appearance that covers the entire
trace volume domain is created. While it is straightforward
to volume render this solid texture, the crux of the problem
is how to advect the solid texture along the flow direction in
the Chameleon framework. As mentioned previously, the
input to the voxelization algorithm for creating the trace
volume is a collection of dense flow lines. We assign each
flow line a randomly selected (u, v), with its w ranging from
0 to 1 for the vertices along the line. With this arrangement,
when the flow lines are voxelized, the voxels in the trace
volume along each flow path correspond to a 1D array of
texels in the 3D appearance texture space, which have a
unique pair of (u,v) with w parameterized from 0 to 1. To
correctly advect the input solid texture, we need to convert
the solid texture to the appearance texture used by the
Chameleon framework according to this trace volume
configuration so that the global texture can advect along
the flow paths when we shift the texture coordinate w using
the animation technique described later.

To achieve this goal, we now describe how to configure
and animate the appearance texture. First, we use the

SHEN ET AL.: INTERACTIVE VISUALIZATION OF THREE-DIMENSIONAL VECTOR FIELDS WITH FLEXIBLE APPEARANCE CONTROL 439

(@) (b)

Fig. 5. Visualization of a tornado data set using: (a) a 3D turbulence
function as the global texture, (b) dye advection.

positions of the input flow line vertices as the texture
coordinates to sample the input 3D solid texture. This will
result in one-dimensional line samples of the solid texture
for each streamline. Then, we need to write these
1D samples to the corresponding 1D texels in the
3D appearance texture according to the flow line’s (u,v)
coordinates. This process can be implemented efficiently
using graphics hardware as follows: For each input stream-
line, we treat the v component of the trace tuple assigned to
each vertex as the y coordinate and the w component of the
trace tuple as the x coordinate and then render the texture
mapped line onto an orthographic 2D window. Since all the
vertices on an input streamline have the same v component,
the streamline will be drawn as a horizontal scanline onto
the frame buffer. We can render all the input streamlines
with the same u component onto the 2D window and then
read back the frame buffer to the uth slice in the appearance
texture using the OpenGL function glCopyTexSublmage3D.
We repeat this process for all the u values until all the input
streamlines are processed. Once this is done, the appear-
ance texture has been successfully configured. We can then
animate the procedural solid texture along the flow line
directions by simply shifting the appearance texture
coordinate w at each time step, as described in Section 3.6.
Fig. 5 shows examples of (a) using a 3D turbulence function
texture to render the trace volume and (b) advecting dye in
the global texture.

3.4 Trace Tuple Precision and Anti-Aliasing

When we slice the streamlines during voxelization, the
graphics hardware will interpolate the colors and, thus, the
trace tuples for the intermediate voxels between the
streamline vertices. Since all vertices along the same
streamline share the same streamline identifier (u,v), the
interpolation will result in the same values for all
intermediate voxels. The graphics hardware will interpolate
the streamline parameterization (w) linearly, which allows
the appearance texture to map evenly across the streamline.
It is worth mentioning that the precision limitation in the
graphics hardware can pose a problem when using a color
channel to parameterize the streamline, i.e., representing
the w coordinate. Until recently, colors and alpha values
were represented by fixed-point numbers in most graphics
hardware. This can be problematic when representing the
w coordinate of the trace tuple using a color channel since
the quality of the texture lookup result can suffer from

quantization artifacts. Although one can utilize the floating-
point texture support by modern graphics hardware to
alleviate this problem, the inflated texture memory require-
ment and the performance penalty make this option
undesirable. To handle the limited precision problem when
using a color channel to represent w, we can divide the
streamline into multiple shorter segments and then map the
full range of the texture coordinate, i.e., [0,1] onto each
segment. In addition, we can have the appearance texture
wrap around in the dimension that corresponds to the flow
direction. We have found that this solution produces
satisfactory rendering results.

When the resolution of the trace volume is limited, the
above voxelization algorithm may produce jaggy results. In
2D, antialiasing lines can be achieved by drawing thick lines
[26]. The opacities of the pixels occupied by the thick lines
correspond to the coverage of their pixel squares. Since line
antialiasing is widely supported by graphics hardware, one
might attempt to use it when slicing through the stream-
lines during our hardware-accelerated voxelization process.
However, we have found that this doesn’t generate the
desired effect since no antialiasing is performed across the
slices of the trace volume. Hence, to achieve streamline
antialiasing in the voxelization process, we need to model
the thick lines and properly assign the opacities.

We model the 3D thick line using the method described
previously for rendering local glyphs, i.e., by extruding a
mask along the flow line to create a bundle of satellite lines.
The mask is always perpendicular to the central flow line and
the orientation of the mask s calculated based on the local curl
of the flow, similar to the streamribbon construction algo-
rithm used in [21] and [24]. All the lines in the bundle receive
the same streamline parameterization as the central stream-
line and the streamline identifiers of the lines are assigned ina
way that maps them to texels of the appearance texture in a
close vicinity. We assign an opacity value to each vertex on the
line bundle so that antialiasing can be performed in the
rendering stage (Section 3.6). It is stored in the alpha channel
of the vertex attribute. The opacity value is assigned in a way
that the vertices near the surface and the endpoints of the
thick line receive lower values to simulate the weighted area
sampling algorithm [27].

3.5 Incremental Trace Volume Updates

Although the trace volume only needs to be created once
and can be used for rendering different appearance
textures, sometimes the user may wish to update the trace
volume by inserting new flow lines or deleting unwanted
ones. This is particularly useful when the user is navigating
through a large data set and wants to incrementally explore
different regions of interest. Although trace volume updates
can be done in a straightforward manner, such as creating a
different set of input flow lines and performing the
voxelization algorithm again to generate a new trace
volume, an incremental algorithm that allows the user to
dynamically modify the trace volume and receive immedi-
ate visual feedback is more desirable. This way, the users
can either start with an empty trace volume and incremen-
tally “populate” it till the visualization is satisfactory or
have the Chameleon algorithm generate an initial trace
volume and then refine it.

To achieve the above goal, we devise an incremental
trace volume update algorithm which works as follows: To

440 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,

augment the trace volume, the user specifies new seeds,
which will be used to advect additional flow lines. To
render these flowlines into the trace volume, since there is
already a trace volume residing in the texture memory, we
need to make sure that the trace volume is only updated but
not overwritten. To do so, when processing each slice of the
trace volume during voxelization, a quadrilateral is first
rendered which covers the entire viewport and texture-
mapped using the corresponding slice from the existing
trace volume. Then, we render the new flow lines using the
texture mapped polygon as the background. After the
rendering is completed, OpenGL function gICopyTexSub
Image3D is called to copy the content of the frame buffer
back to the trace volume slice.

Removing flow lines from the trace volume is very
similar to augmenting the trace volume. First, the user picks
the flow lines that are to be removed. Then, we perform the
slice sweeping algorithm to process the relevant slices
intersected by the selected flow lines. For each slice, we first
render a polygon using the existing trace volume slice as the
texture to fill the viewport. We then render the user selected
flow lines. Since now those flow lines need to be removed
from the trace volume, we turn on OpenGL blending
function and utilize the GL_FUNC_REVERSE_SUBTRACT
_EXT blending mode (defined in OpenGL extension
EXT_blend_subtract) to cancel the trace tuples previously
written by the flow lines. Fig. 6 shows an example of
updating the trace volume.

3.6 Real-Time Rendering and Animation

Today, volumetric data sets can be rendered at interactive
speeds using texture mapping hardware. When using
hardware-based volume rendering methods, the volume
data is stored as a solid texture in the graphics hardware. A
stack of polygons, serving as proxy geometries, are used to
sample the volume and blended together in a back-to-front
order to create the final image. If the graphics hardware
only supports 2D textures, the volume data set can be
represented as three stacks of 2D textures and the slice
polygons are axis-aligned. If 3D texture-mapping is
supported, the data set is represented as a single 3D texture
and view-aligned slicing polygons can be rendered.

Recently, we have seen a drastic change in the design of
PC graphics processing units (GPUs). They have evolved
from being a fixed-function state-based pipeline to being
highly programmable and are capable of producing
sophisticated rendering effects at interactive speeds. In the
latest GPUs such as nVidia GeforceFX or ATI Radeon 9800,
the programmable vertex and fragment stages of the
graphics pipeline, usually referred to as vertex shader and
fragment shader, are exposed to the user as streaming
processors with general purpose registers and SIMD
instructions. Each of the programmable stages can execute
user-defined programs on a per-vertex or per-fragment
basis. The vertex or fragment program can be specified
using either assembly-like opcodes (such as ARB_fragment
_program, [28]) or via high-level shading languages (such
as Cg [29] or DirectX HLSL [30]) which can be translated
into assembly code.

Our algorithm utilizes programmable graphics hard-
ware to facilitate runtime appearance control at
interactive speeds. Specifically, the trace volume is
rendered using a two-step texture lookup performed
in real time by employing the dependent texture read
instruction in the fragment shader. The first texture

VOL. 10, NO. 4, JULY/AUGUST 2004

(@) (b)

Fig. 6. The Chameleon algorithm allows the user to interactively update
the trace volume. (a) Initial trace volume. (b) A 3D cursor (the sphere in
the center) is used to augment the trace volume.

lookup involves the wusual slicing through the trace
volume. When a slice polygon is rendered, each of its
vertices is accompanied by texture coordinates, which
in turn are the locations of the intersection between
the slice polygon and the bounding box of the trace
volume. These texture coordinates are interpolated
using the nearest neighbor scheme when the slice
polygon is rasterized and then fed to the fragment
shader. The inputs to the fragment shader also
include the trace volume and the appearance texture,
which are both represented as RGBA 3D texture
objects trace_volume_tex and appearance_tex, respectively.
Suppose the interpolated texture coordinates for a
given fragment is iTexCoord = (s,t,r), the dependent
texture read can be performed by first fetching
trace_volume_tex with iTexCoord, which returns the
trace tuple trace_tuple = (u,v,w), then using trace_tuple
as the texture coordinate to index appearance_tex to get the
final color (RGB portion) of the fragment. The antialiasing is
done by modulating the « value from trace_volume_tex with
the opacity value from appearance_tex. These operations can
be implemented in Cg as the following code fragments,
where tex3D denotes the texture sampling instruction. For
more information about Cg, please refer to [29].

fixed4 trace_tuple

= tex3D(trace_volume_tex,
fixed4 oColor

= tex3D (appearance_tex, trace_tuple.rgb);
oColor.a = oColor.a*trace_tuple.a;
return oColor;

iTexCoord);

Using the dependent texture reads, the Chameleon
algorithm can easily generate animations to assist the viewer
to comprehend flow directions. This can be done by shifting
the appearance texture along the straight flow direction in the
texture space, which effectively equals translating the w
component of the trace tuple before using it to index the
appearance texture in the fragment program. When using Cg,
this can be done as the following code segment, where delta is
the translation amount along the streamline direction and is
updated at each animation frame.

fixed4 trace_tuple

= tex3D (trace_volume_tex, iTexCoord);
trace_tuple.b += delta;
fixed4 oColor

= tex3D (appearance tex, trace tuple.rgb);

SHEN ET AL.: INTERACTIVE VISUALIZATION OF THREE-DIMENSIONAL VECTOR FIELDS WITH FLEXIBLE APPEARANCE CONTROL 441

4 TIME-VARYING CHAMELEON ALGORITHM

Following the principal philosophy of decoupling the
advection and rendering stages, we now present an
extension of the Chameleon algorithm to unsteady flow.
The algorithmic pipeline for time-varying fields remains
similar to the one shown in Fig. 1 and, as such, Chameleon
retains the feature of interactive appearance control as in
the steady state case. In our time-varying algorithm,
pathlines which describe the trajectories of massless
particles moving in an unsteady flow [14] are voxelized to
form a trace volume in the offline stage of the pipeline.
Voxels in the trace volume store a three-component trace
tuple: the pathline identifier (u,v) and the time-stamp (w).
During the rendering phase, the trace volume is displayed
using dependent texturing with a user-selected appearance
texture. This texture is designed such that, when it is
mapped to the trace volume, only those voxels in the trace
volume whose timestamp equals the time of the current
frame are visible. The texture in the volume rendered trace
volume is animated along the pathlines by shifting the
w component of the trace tuple, as described in Section 3.6.

For our algorithm, the main difference between the
processing of steady state and unsteady flows comes from
the fact that pathlines can intersect with themselves or each
other, while streamlines do not. As a result, for time-
varying data sets, there can be voxels in the trace volume
that intersect pathlines more than once and thus need to
store more than one trace tuple. We will explain this
situation with the help of an example, shown in Fig. 7a. The
pathlines starting from both A and B pass through the voxel
shown. The pathline with identifier (u;,v;) passes through
the voxel at time ¢ = 3, while the pathline (us, v») intersects
the voxel at time ¢t = 10. Thus, the voxel needs to store both
(u1,v1,3) and (ug,v2,10). For a correct rendering, the voxel
should contain the first tuple at the time step ¢ = 3 and then
switch to the second one when the time step equals 10. To
achieve this, our time-varying algorithm will perform
interactive trace tuple updates during rendering. Initially,
this voxel contains the trace tuple with the smallest time-
stamp, ie., (u1,v1,3). At t = 3, the voxel is rendered with
these values. This trace tuple is not needed after t = 3 and
the voxel should contain the tuple (uy,v;,10) while
rendering the frame for ¢ = 10. So, the voxel is updated
with the second trace tuple information after rendering
t = 3, but before ¢t = 10.

The visualization pipeline of the Chameleon framework
is modified for time-varying data to handle multiple trace
tuples in the following manner: In a preprocessing stage,
pathlines are advected and the voxel contention informa-
tion (i.e., which voxel to replace at what time step) is
collected. A bookkeeping operation is performed to
organize the voxels that will intersect the pathlines multiple
times. Since those voxels require runtime updates during
rendering, if neighboring voxels need to be updated at the
same time step, then it is more efficient to update all of
them in one go instead of using multiple texture writes for
each individual voxel. To do this, the bookkeeping opera-
tion stores each group of such neighboring voxels into a
single update volume. Bookkeeping is followed by a
voxelization stage, which scan-converts pathlines and
creates the trace volume. The trace tuple values that will
go into each of the update volumes will be stored separately

WV, 10 o)
(upv,,10) (:‘V)

A 0,3
t=3

(u,.v,.3)

(u,,v,,0)

(@) (b)

Fig. 7. Time-Varying Chameleon: example of voxel update. (a) Two
pathlines pass through the voxel shown, at ¢ =3 and ¢ = 10. (b) The
trace-tuples corresponding to the pathlines should be written to the voxel
before the voxel is rendered using those values. (u;,v1,3) is written
when creating the initial trace volume and (us,vs,10) is written after
rendering the frame for ¢t = 3, but before rendering ¢t = 10.

and there can be multiple update volumes for each time
step. After the preprocessing stages complete, the data is
visualized by rendering the trace volume and dynamically
updating the trace volume texture with update volumes as
necessary. In the remainder of this section, we discuss in
greater detail the stages of bookkeeping and voxelization.

4.1 Pathline Advection and Bookkeeping

The algorithm starts with a set of seed points, which are
placed randomly throughout the volume. Any other
placement strategy can be used as it is independent of the
proposed visualization technique. The advection of each
seed point returns a set of line segments representing the
pathline originating from the seed. The entire vector field
volume is divided into bins using a low resolution grid and
the pathline segments are placed in respective bins, sorted
by time. If the two vertices of a segment lie across bin
boundaries, the segment is placed in the bin corresponding
to the vertex with the larger timestamp. The grid helps
reduce the number of tests for intersection of pathline
segments. Additionally, due to efficiency reasons, a bin will
be used as the smallest unit for volume updates. Advection
is followed by a bookkeeping stage, which has two main
functions. First, it creates a history of updates required for
each bin. Second, it merges neighboring (in both space and
time) bins that need to be updated so as to minimize the
number of texture updates required.

During bookkeeping, pathline segments are tested for
intersections with segments from all previous timesteps and
a history of intersections is recorded for each bin. During
rendering, the trace volume voxels inside a bin will be
updated once for every intersection within that bin. To
reduce the number of OpenGL calls to update the trace
volume, the bins which need to be updated are collected
together—first in the space neighborhood and then in time.
For the grouping in the spatial neighborhood, we super-
impose an octree structure on the trace-volume. The root
node of the octree represents the whole volume. A child
node represents one of eight subvolumes obtained by
dividing the parent node’s volume. The leaf nodes
correspond to the bins. For a given time step ¢, if enough
(more than a threshold) of the bins within a nonleaf node
(subvolume) need to be overwritten, then the bookkeeping
stage decides that the whole subvolume should be updated

442 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 4, JULY/AUGUST 2004

Fig. 8. Four snapshots from an animation of the vortices data set using the time-varying Chameleon algorithm. The images were generated using a

line bundle texture with lighting.

using a single call. This test is done in a top-down manner,
so the highest octree nodes (largest subvolumes) satisfying
the condition are selected for updating. Within a subvolume
that has been selected for update, there can be bins which
do not need an update at time ¢ and whose voxels contain
timestamps (w) less than ¢. These bins can be written with
the values of their next update at a future time step. At the
end of the bookkeeping stage, the updating information for
every time step is known (which subvolumes need to be
updated with which pathline segments). If a vertex of a
pathline segment lies outside of a subcube to be updated (as
can happen when vertices lie across bin boundaries), the
cube is expanded to enclose the vertex.

4.2 Voxelization and Rendering

The bookkeeping stage generates information about the
subvolumes that need to be updated for each time step,
which is fed to the voxelization stage. The voxelizer scan
converts the pathlines associated with each of these
subvolumes to create the update volumes, in order of time
steps. Within the same time step, the order does not matter.
An update volume is generated by a voxelization procedure
similar to the steady flow voxelization. An important
consideration for time-varying voxelization is that only
those voxels which have new trace tuples should be
updated. For example, consider a subvolume with multiple
bins which is being voxelized to generate an update
volume. The subvolume might contain a bin that does not
need to be updated because the voxels in the trace volume
corresponding to this bin are already up-to-date. These
trace volume voxels should remain intact after the
subvolume is used to update the trace volume; otherwise,
incorrect results will be generated. To achieve this, during
each scan conversion, the trace volume contents of all the
previous voxelizations are used as a background, similar to
our trace volume update algorithm described in Section 3.5.
Thus, only voxels with new trace tuples are updated and
voxels with no new information retain their previous
values. After each subvolume is voxelized, it is read back
from the graphics hardware and stored as an update
volume to be used later during rendering.

During the rendering phase, the initial trace volume is
used to visualize the first time step of the unsteady flow. For
each of the subsequent time steps, the bookkeeping data
structureis used torecall corresponding update volumes. The
size and number of update volumes for each time step can
vary and there can be time steps without any updates. Using
glTexSublmage3D, we overwrite regions of the current trace
volume with corresponding update volumes in the same

order that was used for voxelization. After the updates for
each time step, the trace volume is rendered to display the
current time step. Fig. 8 shows four snapshots from a vortices
animation using the time-varying Chameleon algorithm. A
real-time animation of 50 time steps of the same data set
accompanying this paper can be found in the IEEE digital
library. Before rendering each time step, the trace volume
texture is modified using update volumes, which are stored
in main memory. The size of the texture updates depends on
the number of pathlines used in the animation. For the
accompanying animation, a total of 178,000 pathlines were
used over time. On average, 70 percent of the trace volume
texture was updated for each frame.

In order to shade only those voxels belonging to the current
time step during the flow animation, the appearance texture
must be configured with care. The user supplies a temporal
window At which specifies that, at any time step ¢, the
pathline segments corresponding to the time range
(t —4t,t+4!) should be visible. This can be done by
designating a fixed length (derived from At) of the appear-
ance texture along the w direction to be visible and shifting the
texture coordinates accordingly to make sure that the current
time step falls into the nontransparent window.

5 ENHANCED DEPTH CUES

Previously, researchers have proposed various techniques
to enhance the perception of spatial features in volumetric
data. Examples include the volume illustration techniques
proposed by Ebert and Rheingans [31], a point-based
volume stippling technique by Lu et al. [32], a 2D
incompressible flow visualization technique using concepts
from oil painting by Kirby et al. [33], and an enhanced LIC
technique using halos by Interrante and Grosch [16]. In this
section, we discuss the generation and use of various
enhanced depth cues in our algorithm. Several related
implementation details that are not described in the
previous sections will also be described.

Additional depth cues can be used to enhance the
perception of the spatial relationship between flow traces.
Fig. 9 illustrates the effect of having enhanced depth cues,
where the image on the right was produced with lighting
on while the one on the left was not. In our rendering
framework, we can incorporate various depth cues such as
lighting, silhouette, and tone shading.

To achieve these effects, we need to supplement the trace
volume with anormal vector for each voxel. Although normal
vectors are typically associated with surfaces and not

SHEN ET AL.: INTERACTIVE VISUALIZATION OF THREE-DIMENSIONAL VECTOR FIELDS WITH FLEXIBLE APPEARANCE CONTROL 443

(a) (b)

Fig. 9. Rendering of the vortices data set: (a) without lighting, (b) with
lighting.

uniquely defined for line primitives, when using 3D thick
lines for.antialiasing as described in Section 3.4, the normal
vector nj = (n,,7,,n.) for the jth vertex m; on strip i can be
defined as m{ — vj, where v; is the center of the extruding
mask. Alternatively, when the light vector L is fixed, the
normal vector can be defined as the one lying on the L — T
plane, where T is the tangential vector. This is the technique
used by the illuminated streamline algorithm [34].

Like trace tuples, normal vectors are assigned to vertices
along the thick lines as colors and scan-converted during the
voxelization process. Since a normal vector is a 3-tuple and
the number of color channels is not sufficient to represent
both the trace tuple and the normal vector simultaneously, we
employ a second voxelization pass to process the streamlines
with normal vectors as the colors. Because each component of
a normalized normal vector nf is in the range of [—1, 1], they
are shifted and scaled into the [0, 1] range in order to be
represented as OpenGL vertex colors.

Similar to the trace volume, the normal volume is also
represented as a 3D RGBA texture object in the graphics
hardware and used as one of the inputs to the fragment
shader. The same trace tuple used to look up the
appearance texture is also used as the texture coordinates
to sample the normal volume. After being remapped to the
range of [—1,1], it can be used by subsequent fragment
program statements to perform various depth cue opera-
tions. In the following, we provide some details about
creating the depth cues, such as lighting, silhouette, and
tone shading, as well interactive volume culling.

5.1 Lighting

We use the Phong illumination model [27] to calculate
lighting on each voxel. The lighting equation for each voxel
in the trace volume is defined as:

C = Cuecal X kaifg X (N - L) + Cypee X (N - H)™),

where N, L, H are the normal vector, light vector, and
halfway vector, respectively. Cye.r and Cgy.. are the colors
fetched from the appearance texture and the color of the
specular light. kq;fs is a constant to control the intensity of
the diffuse light. The intensity of the specular light is
controlled by the magnitude of C,.. and k; is the shininess
of the specular reflection. For simplicity and performance
reasons, we assume parallel lights and nonlocal viewer.
Hence, all these parameters except N remain constants for

(@) (b)

Fig. 10. Visualization of a tornado data set using different depth cues:
(a) lighting, (b) tone shading.

all fragments and are placed in the registers of the fragment
shader. Note that, since the per-voxel normal N is defined
in the object space, L and H need to be transformed
accordingly. The transformation of L and H can be done by
either the application or by using the vertex shader. Fig. 10a
shows a rendering of the tornado data set with lighting.

5.2 Tone Shading

Unlike lighting, which only modulates the pixel intensity,
tone shading varies the colors of the pixels to depict the
spatial structure of the scene. Objects facing toward the
light source are colored with warmer tones, while the
opposite are in cooler tones. We achieve the tone shading
effect with the following formula:

C=Cy X Ceeas X (N - L) +C. x (1 — (N - L)),

where C,, is the warmer color, such as red or yellow, and C,
is the cooler color, such as blue or purple. Fig. 10b shows
the rendering supplemented by tone shading.

5.3 Silhouette

The spatial relationship between flow lines in the trace
volume can be enhanced by using silhouettes to emphasize
the depth discontinuity between distinct streamlines. They
are depicted by assigning the silhouette color to those
voxels which satisfy £ - N < p, where E is the eye vector,
N is the normal vector, and p is the parameter to control the
thickness of the silhouette. An example of silhouette-
enhanced rendering is shown in Fig. 11a.

5.4 Interactive Volume Culling

Clipping planes and opacity functions can be used to
remove uninteresting regions from the trace volume. In our
algorithm, since the trace volume is rendered using
textured slicing polygons, we can easily utilize OpenGL’s
clipping planes to remove polygon slices outside the region
of interest. We can also employ a transfer function based on
some scalar quantities (such as pressure or velocity
magnitude) associated with the vector field to modulate
the opacity of the trace volume. An example of interactive
clipping is shown in Fig. 11b.

6 PERFORMANCE

We implemented our Chameleon algorithm on a standard
PC using OpenGL (for rendering) and MFC (for creating

444

(a) (b)

Fig. 11. (a) Silhouette rendering of the Argon Bubble data set, (b)
interactive culling using transfer function and OpenGL clipping planes.

user interface) libraries. The fragment programs were
written in the Cg shading language and compiled with
the nVidia Cg runtime compiler (version 1.1). The machine
is equipped with a single Pentium4 2.66GHz PC with
1024MB RAM and nVidia GeforceFX 5900Ultra GPU
(256MB video RAM). The table in Fig. 13 shows the
performance of constructing and rendering 256° static trace
volumes and normal volumes for three data sets—tornado,
moving vortices, and argon bubble data sets. The table in
Fig. 12 provides the performance measurements for the
time-varying Chameleon algorithm using the moving
vortices data set for 50 time steps. For the time-varying
data, the resolutions of the trace volume and the normal
volume were both set to 128 x 128 x 32. In both tables, we
list the timings for advection and rendering of the flow
lines, as well as transferring the voxelization results from
the frame buffer to the 3D texture memory for all volume
slices. The construction time increased as we increased the
number of streamlines. However, rendering and frame
buffer transfer are all done using graphics hardware.
Therefore, we were able to construct the trace volumes
very efficiently.

Once the construction of the trace volume is completed,
the rendering speed is independent from the size of input
streamline geometry. Since Chameleon performs hardware
texture-based volume rendering, the rendering speed is
only dependent on the resolution of the trace/normal
volume, the number of fragments in the viewport, and the
complexity of the fragment programs. Using the modern
graphics hardware, we are able to perform interactive
rendering of the trace volumes with various shading effects
at a speed from eight to 18 frames per second. This allows
the user to explore the vector field interactively.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,

VOL. 10, NO. 4, JULY/AUGUST 2004

Dataset Vortices (50 steps)

of lines 89000 | 178000 | 267000
Advection (sec.) 442 9.27 11.29
Voxelization (sec.) 41.01 7278 | 85.57
Plain (frame/sec.) 29.10 14.75 11.34
Lighting (frame/sec.) 18.33 10.32 9.75
Silhouette (frame/sec.) 15.76 10.01 7.82
Tone Shading (frame/sec.) 19.40 11.60 9.49

Fig. 12. Performance measurements for the time-varying Chameleon
algorithm.

7 CoNcLUSION AND FUTURE WORK

We have presented an interactive texture-based technique
for visualizing three-dimensional vector fields. By decou-
pling the computation of streamlines and the mapping of
visual attributes to two disjoint stages in the visualization
pipeline, we allow the user to use various appearance
textures to visualize the vector field with enhanced visual
cues. We plan to extend our work to achieve level of detail
by using multiresolution trace volumes. Flow topology
analysis can be incorporated to assist better seed placement
strategy, as well as use of nonuniform resolution trace
volumes. Various existing and upcoming volume rendering
techniques, originally devised for visualizing scalar
volumes, can also be incorporated into the Chameleon
framework.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation grant ACR 0222903, NASA grant NCC-1261, US
Department of Energy Early Career Principal Investigator
Award, Ameritech Faculty Fellowship, and Ohio State Seed
Grant. The authors thank Roger Crawfis, Milan Ikits, Miriah
Meyer, and J. Dean Brederson for their generous help. The
Argon Bubble data set is provided courtesy of John Bell and
Vince Beckner, Center for Computational Sciences and
Engineering, Lawrence Berkeley National Laboratory. The
authors also thank anonymous reviewers for their valuable
comments.

REFERENCES

[1] J. Hultquist, “Constructing Stream Surfaces in Steady 3D Vector
Fields,” Proc. Visualization ‘92, pp. 171-178, 1992.

[2] N. Max, B. Becker, and R. Crawfis, “Flow Volumes for Interactive
Vector Field Visualization,” Proc. Visualization '93, pp. 19-24, 1993.

[3] J. van Wijk, “Spot Noise: Texture Synthesis for Data Visualiza-
tion,” Computer Graphics, vol. 25, no. 4, pp. 309-318, 1991.

Dataset Vortices (100x100x50) | Bubble (256x256x256) Tornado (96x96x96)

of lines 34250 68500 102750 34250 68500 102750 34250 68500 102750
Advection (sec.) 2.11 3.66 5.18 1.72 3.82 4.82 3.46 4.67 5.49
Voxelization (sec.) 471 6.10 7.11 7.40 16.34 21.67 531 6.72 771
Plain (frame/sec.) 18.23 17.40 16.11 10.40 9.11 .90 11.30 10.70 10.37
Lighting (frame/sec.) 11.30 10.11 10.03 6.60 6.23 6.02 7.84 7.41 7.34
Silhouette (frame/sec.) 14.11 11.30 11.20 791 7.30 7.14 8.21 8.10 793
Tone Shading (frame/sec.) 11.70 12.76 12.30 8.10 7.89 7.40 9.11 8.91 8.22

Fig. 13. Performance measurements for the static Chameleon algorithm. The resolution for the trace volume and normal volume are both 256

SHEN ET AL.: INTERACTIVE VISUALIZATION OF THREE-DIMENSIONAL VECTOR FIELDS WITH FLEXIBLE APPEARANCE CONTROL

(4
[5]

o]

(71

8]

]
[10]

(1]

[12]

[13]

[14]

[15]

[1o]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[20]

(27]

(28]

[29]

(30]

B. Cabral and C. Leedom, “Imaging Vector Fields Using Line
Integral Convolution,” Proc. SIGGRAPH 93, pp. 263-270, 1993.

J. van Wijk, “Image Based Flow Visualization,” ACM Trans.
Graphics (Proc. ACM SIGGRAPH 2002), vol. 21, no. 3, pp. 745-754,
2002.

G.-S. Li, U. Bordoloi, and H.-W. Shen, “Chameleon: An Interactive
Texture-Based Rendering Framework for Visualizing Three-
Dimensional Vector Fields,” Proc. Visualization '03, pp. 241-248,
2003.

D. Ebert, F. Musgrave, D. Peachey, K. Perlin, and S. Worley,
Texturing and Modeling, A Procedural Approach, third ed. Morgan
Kaufmann, 2002.

R. Crawfis and N. Max, “Direct Volume Visualization of Three-
Dimensional Vector Fields,” Proc. 1992 Workshop Volume Visualiza-
tion, pp. 55-60, 1992.

T. Porter and T. Duff, “Compositing Digital Images,” Proc. ACM
SIGGRAPH 84, pp. 253-259, 1984.

R. Crawfis and N. Max, “Texture Splats for 3D Vector and Scalar
Field Visualization,” Proc. Visualization '93, pp. 261-266, 1993.

D. Stalling and H.-C. Hege, “Fast and Resolution Independent
Line Integral Convolution,” Proc. SIGGRAPH 95, pp. 249-256,
1995.

H.-W. Shen, C. Johnson, and K.-L. Ma, “Visualizing Vector Fields
Using Line Integral Convolution and Dye Advection,” Proc. 1996
Symp. Volume Visualization, pp. 63-70, 1996.

M.-H. Kiu and D.C. Banks, “Multi-Frequency Noise for LIC,”
Proc. Conf. Visualization 96, pp. 121-126, 1996.

H.-W. Shen and D. Kao, “A New Line Integral Convolution
Algorithm for Visualizing Time-Varying Flow Fields,” IEEE Trans.
Visualization and Computer Graphics, vol. 4, no. 2, Apr.-June 1998.
U.D. Bordoloi and H.-W. Shen, “Hardware Accelerated Interactive
Vector Field Visualization: A Level of Detail Approach,” Computer
Graphics Forum, vol. 21, no. 3, pp. 605-614, 2002.

V. Interrante and C. Grosch, “Strategies for Effectively Visualizing
3D Flow with Volume LIC,” Proc. Visualization '97, pp. 421-424,
1997.

C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl, “Interactive
Exploration of Volume Line Integral Convolution Based on 3D-
Texture Mapping,” Proc. IEEE Visualization '99, pp. 233-240, 1999.
B. Jobard, G. Erlebacher, and Y. Hussaini, “Lagrangian-Eulerian
Advection for Unsteady Flow Visualization,” Proc. Visualization
01, pp. 53-60, 2001.

D. Weiskopf, M. Hoph, and T. Ertl, “Hardware-Accelerated
Visualization of Time-Varying 2D and 3D Vector Fields by
Texture Advection via Programmable Per-Pixel Operations,” Proc.
Vision, Modeling, and Visualization '01, pp. 439-446, 2001.

B. Jobard and W. Lefer, “Creating Evenly-Spaced Streamlines of
Arbitrary Density,” Proc. Eighth Eurographics Workshop Visualiza-
tion in Scientific Computing, pp. 57-66, 1997.

D. Darmofal and R. Haimes, “Visualization of 3-D Vector Fields:
Variations on a Stream,” AIAA 30th Aerospace Science Meeting and
Exhibit, 1992.

S. Fang and D. Liao, “Fast CSG Voxelization by Frame Buffer Pixel
Mapping,” Proc. 2000 IEEE Symp. Volume Visualization, pp. 43-48,
2000.

R. Crawfis, N. Max, and B. Becker, “Vector Field Visualization,”
IEEE Computer Graphics and Applications, pp. 50-56, 1994.

S. Ueng, K. Sikorski, and K. Ma, “Fast Algorithms for Visualize
Fluid Motion in Steady Flow on Unstructured Grids,” Proc.
Visualization '95, pp. 313-320, 1995.

N. Max and B. Becker, “Flow Visualization Using Moving
Textures,” Proc. ICASE/LaRC Symp. Visualizing Time-Varying Data,
pp. 77-87, 1995.

M. Segal and K. Akeley, The OpenGL Graphics System: A
Specification (Version 1.3). Reference Board, 2001.

J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, Computer
Graphics: Principles and Practice, second ed. Addison-Wesley
Longman Publishing, 1990.

“OpenGL Extension Registry,” http://oss.sgi. com/projects/ogl-
sample/registry/, 2003.

W.R. Mark, R.S. Glanville, K. Akeley, and M.]. Kilgard, “Cg: A
System for Programming Graphics Hardware in a C-Like
Language,” ACM Trans. Graphics, vol. 22, no. 3, pp. 896-907, 2003.
“Microsoft directx High-Level Shader Language,” http://msdn.
microsoft.com/library/, 2003.

(31]

(32]

(33]

(34]

445

D. Ebert and P. Rheingans, “Volume Illustration: Non-Photo-
realistic Tendering of Volume Models,” Proc. Visualization '00,
pp. 195-202, 2000.

A. Lu, C. Morris, D. Ebert, P. Rheingans, and C. Hansen, “Non-
Photorealistic Volume Rendering Using Stippling Techniques,”
Proc. Visualization 02, pp. 211-218, 2002.

R. Kirby, H. Marmanis, and D. Laidlaw, “Visualizing Multivalued
Data from 2D Incompressible Flows Using Concepts from
Painting,” Proc. Visualization '99, pp. 333-340, 1999.

M. Zockler, D. Stalling, and H.-C. Hege, “Interactive Visualization
of 3D-Vector Fields Using Illuminated Stream Lines,” Proc. Conf.
Visualization '96, pp. 107-114, 1996.

Han-Wei Shen received the BS degree from
National Taiwan University in 1988, the MS
degree in computer science from the State
University of New York at Stony Brook in 1992,
and the PhD degree in computer science from
the University of Utah in 1998. From 1996 to
1999, he was a research scientist with MRJ
Technology Solutions at NASA Ames Research
Center. He is currently an assistant professor at
The Ohio State University. His primary research

interests are scientific visualization and computer graphics. In particular,
his current research and publications are focused on topics in flow
visualization, time-varying data visualization, isosurface extraction,
volume rendering, and parallel rendering.

Guo-Shi Li received the BS degree from
National Taiwan University in 1999 and the MS
degree in computer science from The Ohio State
University in 2003. He is currently a PhD student
in computer science at the University of Utah
and a member of the Scientific Computing and
Imaging Institute. His research interests include
computer graphics and interactive scientific
visualization techniques. He is a student mem-
ber of the IEEE Computer Society.

Udeepta D. Bordoloi received the BEng degree
(1997) from Delhi University, Delhi, India, and
the MS degree (1999) in electrical engineering
from Washington University, St. Louis, Missouri.
He is currently a PhD student in computer
science at The Ohio State University. His
research interests include computer graphics
and scientific visualization.

> For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

