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ABSTRACT

Temporal modeling frameworks often operate on scalar variables by
summarizing data at initial stages as statistical summaries of the un-
derlying distributions. For instance, DTI analysis often employs
summary statistics, like mean, for regions of interest and proper-
ties along fiber tracts for population studies and hypothesis testing.
This reduction via discarding of variability information may intro-
duce significant errors which propagate through the procedures. We
propose a novel framework which uses distribution-valued variables
to retain and utilize the local variability information. Classic linear
regression is adapted to employ these variables for model estimation.
The increased stability and reliability of our proposed method when
compared with regression using single-valued statistical summaries,
is demonstrated in a validation experiment with synthetic data. Our
driving application is the modeling of age-related changes along DTI
white matter tracts. Results are shown for the spatiotemporal popu-
lation trajectory of genu tract estimated from 45 healthy infants and
compared with a Krabbe’s patient.

Index Terms— linear regression, distribution-valued data, spa-
tiotemporal growth trajectory, DTI, early neurodevelopment.

1. INTRODUCTION

Understanding normal development in healthy individuals, along
with the natural population variability, is of critical clinical impor-
tance. It allows delineation of normative growth trends and a timely
identification of individuals deviating from them. These growth
curves may quantify evolutions of simple single-valued measures
(e.g weight along age) or complex observations (e.g. distribution
of the observed blood pressure range for each day in a month).
Consequently, a significant portion of medical imaging research
is focused on structural and morphological changes in the human
brain along time [1, 2, 3, 4]. On the same grounds, our driving ap-
plication is the characterization of DTI-derived diffusivity changes
along white matter tracts in infant neurodevelopment. Tract based
changes provide an insight into brain’s maturation and are likely to
correlate with characteristic cognitive functions. This makes them
better suited for assessment related to specific cognitive abnormal-
ities [3]. Previous work on DTI analysis includes parametric and
non-parametric methods to model temporal changes in properties
derived from spatial neighborhoods in 4D images [2, 3, 4]. These
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neighborhoods usually correspond to specific anatomical regions-
of-interest (ROI), white matter tracts or tissue classes. However,
the uncertainty associated with the measurement of the property is
often disregarded at early stages by discarding the accompanying
variability information observed in these neighborhoods. The anal-
ysis then proceeds with scalar statistical summaries representing the
central tendencies of the observed distributions of these properties.
Therefore, the associated variability information is neither utilized
nor recovered for further analysis.

Working with summary statistics is attractive as it simplifies sta-
tistical analysis via data reduction. However, it should not introduce
large errors at the initial stages of the framework. The choice of sta-
tistical summary can be reliable only if the underlying noise model is
either known or can be safely assumed, and is homogeneously appli-
cable to the complete data. This is often not the case, specially in im-
ages representing complex physiology, image acquisition methods
prone to low SNR and low sample size situations. Fig.1 depicts how
the choice of mean (red) versus median (green) to summarize and
interpolate between two observed distributions of a random variable
X can give significantly different results (considering that a linear
fit between two points should theoretically have a single solution).
Therefore, the reliability of the fit largely depends on the choice of
the statistical measure used to summarize the spread of values. Also,
the variability information is lost at all the intermediate interpolated
points. These are the key issues we address in this paper.

Fig. 1. Two synthetic distributions of a random variable X
(dist1:orange, dist2:purple, solid dots:observed values) with the cor-
responding frequency histograms. Linear interpolation via classic
summary statistics (mean(red) vs. median(green)) gives very differ-
ent results. Data variability (depicted via circles) is discarded and
hence lost at interpolated points along the fitted line.

We propose a framework which retains and utilizes the rich in-
formation embedded in the variability to estimate a linear regression
trend. Unlike classic regression, all observations of the depen-
dent and independent variables are distribution-valued with their
density functions represented empirically via histograms [5]. This
avoids early parametric assumptions regarding the underlying noise



model for the random variables and the need for scalar summaries.
Moreover, the method can statistically predict the expected value
as well as the variance of the dependent variable. To the best of
our knowledge, this is the first parametric tract-based DTI growth
model to incorporate the complete spatial information by employ-
ing distribution-valued observations. In contrast to our previous
nonparametric approach to the same application in [6], the current
method allows the growth trajectory to be compactly parametrized
by the regression coefficients (estimated as functions of arc length
along the tract), making further statistical inference much simpler.

In the context of our driving application, scalar diffusion val-
ues like FA (Fractional Anisotropy) along 3D DTI tract geometries
are available from healthy subjects scanned in age-groups centered
around 1 month, 1 and 2 years. Our aim is to characterize a continu-
ous spatiotemporal population trajectory of diffusivity changes from
birth to 2 years. Linear regression is performed with FA distributions
as the dependent variable and the age distributions within each age-
group as the independent predictor variables. Section 2.1 explains
the proposed model. However, prior to applying regression, two
application specific sources of variability need to be accounted for.
i) Measurement variability stemming from FA distributions along a
tract’s length in a single DTI scan (Fig.2). ii) The natural variability
of subjects within an age-group (Fig.3a, 3b). Section 2.2 describes
a kernel regression scheme and barycenter histogram estimation to
incorporate both of these. Section 3 includes validation using syn-
thetic data and results of application to pediatric DTI data.

Fig. 2. Left: 3D visualization of the genu white matter tract from a
single DTI scan. Right: Diffusion values (FA) assembled along genu
tract’s length (scatter points colored by FA) with the corresponding
cross-sectional average FA curve (black) [6]. Kernel weights are
applied to compute a histogram of the spatial FA distribution within
a kernel window centered at arc-length location si along the tract.

2. METHOD

2.1. Linear regression for distribution-valued data

We begin by representing the probability distribution associated with
a random variable Z as normalized histograms. Since histograms
summarize data variability empirically, they do not require prior in-
formation of the underlying distribution [5, 6]. Formally,

hlZ(z) = (πl, cl, rl), (1)

where l = [1 · · ·L] is the histogram bin index, L is the total number
of bins and z is the variable which the histogram represents (for e.g.
DTI diffusion property like FA). Each bin l is characterized by the
bin frequency πl, location of the bin’s center cl and half the bin width
as bin radius rl. rl can vary across l allowing unequal bin widths.

Classic linear regression for simple scalar-valued variables
X (independent) and Y (dependent) has the stochastic formulation
Y = β0+Xβ1+εwhere ε is the residual error defined as ε̂ = Y −Ŷ
and β1 (slope), β0 (intercept) are the two unknown regression co-
efficients. For N paired observations of (Xn, Yn), (n = 0, . . . N ),

the least squares estimate for the regression coefficients is obtained
by minimizing the sum of squared residuals ΣNn=1ε̂

2
n giving,

β̂1 =
Cov(X,Y )

V ar(X)
, β̂0 = Ȳ − β̂1X̄ . (2)

This closed form solution holds under certain assumptions: E(εn) =
0, homoscedasticity (V ar(εn) = σ2), Cov(εn, εm) = 0 for n 6= m
and X measured without error (where E() is the expectation).

To extend this regression model to work with distribution-valued
observations, basic descriptive statistics used in eq.(2) are adapted
appropriately [5]. Variables X and Y themselves are random vari-
ables now with each of their realizations being a probability distribu-
tion, instead of a single scalar value. Hence, the respective marginal
distributions of each observed joint distribution can be represented
as a paired histogram observation (hlXn

(x), hlYn
(y)). The variability

information of Xn and Yn is now embedded in their histogram rep-
resentations. Therefore, while keeping the assumptions and solution
framework of classic regression the same, the definitions of mean,
variance and covariance needed in eq.(2) can be adapted to deal with
histogram observations [5]. Assuming each histogram bin has a uni-
form distribution, bin’s interval boundaries and frequency are used
to incorporate the variability within each distribution-valued obser-
vation as well as variability across observations. Using eq.(1), let the
bin’s interval boundaries be al = cl − rl, bl = cl + rl. Then,

X̄ =
1

2N

N∑
n=1

L∑
l=1

πlXn
(alXn

+ blXn
).

V ar(X) = [
1

3N

N∑
n=1

[

L∑
l=1

((blXn
)2 + (blXn

alXn
)

+ (alXn
)2)πlXn

] ] − [X̄]2.

Cov(X,Y ) =
1

3N

N∑
n=1

LX∑
lX=1

LY∑
lY =1

πlXXn
πlYYn

GXnGYn

√
OXnOYn ,

OXn = (alXXn
− X̄)2+(alXXn

− X̄)(blXXn
− X̄) + (blXXn

− X̄)2,

GXn = −1 ifX̄n ≤ X̄ , 1 if X̄n > X̄.

Similar equations can be derived for Y . (For al = bl and πl =
1, they reduce to classic regression definitions). Now, by plugging
these into eq.(2), estimates of the scalar regression coefficients are
obtained. We can now statistically predict Y , given a new observa-
tionXm. IfXm is a scalar value, Ŷm is also scalar. IfXm is a distri-
bution, then the complete distribution of Ŷm can either be estimated
via Monte Carlo simulations or the first two statistical moments of
Ŷm can be estimated by applying the rules of random variable alge-
bra, E(Ym) = β0 + E(Xm)β1 , V ar(Ym) = β2

1V ar(Xm).

2.2. Setting up 4D DTI data for linear regression

Our paper is driven by a major limitation of the current ROI and
fiber-tract based analyses which reduce local regional and tract prop-
erties to mean values used for group statistics, thus discarding data
variability which is important for statistical testing and inference.
Moreover, taking the mean assumes normal distribution and uni-
modality, which is not a proper model for FA and tract locations
showing mixtures of fiber bundles. We now formulate 4D DTI tract
data in the context of a distribution-valued regression problem.

Nonparametric kernel regression along DTI tracts: To obtain
histogram descriptions of diffusion-value distributions, we use a ker-
nel based weighting function within a moving kernel window along a



Fig. 3. Left to right: a) Distribution of ages of 15 healthy subjects within each age-group:neonate(green), 1 year(orange), 2 year(purple).
b) Average FA curves from subjects within each age group with two inherent sources of variability highlighted. First, circles on each curve
depict the local spatial FA distribution. Second, within each age-group, FA curves vary amongst subjects due to natural population variability.
c) A barycenter histogram (topmost-red) calculated as an ‘average’ of the bottom four synthetic histograms. d) At each arc length location
along the tract, FA histograms of all subjects within an age-group are averaged to create a barycenter histogram (only a few locations shown).

tract’s length (Fig.2). Within a given kernel window, the unweighted
bin frequencies πlZ of the diffusion histogram are weighted by a nor-
malized Gaussian kernel with standard deviation σ, Kσ(s, si) ∝
exp[−(s−si)2

2σ2 ]. The weights account for the inherent functional cor-
relation of diffusion along tracts related to the fiber bundle geome-
try. These diffusion histograms are estimated at each tract location
si where s is a continuous spatial variable and i indexes discrete
arc-length parameterized locations along the tract’s total length [6].

Barycenter histogram estimation: To account for the natural
population variability within an age group, we create an ‘average’
of diffusion histograms from all subjects within that age-group, for
each tract location si. (DTI scans from all subjects and age-groups
are already co-registered and spatially normalized prior to this step
[6]). For this, we use the concept of a barycenter histogram which
minimizes the Mallow’s distance metric between itself and other his-
tograms [6] and reflects translation, changing width and shape of the
individual histograms (Fig.3c). Mallow’s distance is the L2 norm of
the difference between u-quantiles of two distributions. This mini-
mization problem can be conveniently expressed in terms of the bin
centers and radii of the participating histograms. For more details,
refer to [6]. Kernel regression followed by barycenter histogram es-
timation creates barycenter FA histograms along the tract’s length
for each age-group in the population (Fig.3d). These can now be
regressed on the corresponding age-distributions (Fig.3a).

3. EXPERIMENTS

3.1. Validation using synthetic data

A linear regression experiment is conducted using two synthetic
samples of bivariate distributions of random variables X and Y
(Fig.4). To simulate the scenario of an unknown underlying joint
distribution, we instead generate two observed marginal distributions
for each: (X1 ∼ N (1, 0.3), X2 ∼ N (2, 0.3), Y1 ∼ N (3, 0.7),
Y2 ∼ N (5, 0.7)). Each marginal distribution has ten observations
creating 20 pairs representing the two bivariate distribution sam-
ples ((x1i, y1i):orange, (x2i, y2i):purple, i = 1, . . . , 10). A linear
regression fit is estimated between the two distribution-valued sam-
ples using four methods. a) All Observations (Black): Uses all
20 scalar observation pairs (xji, yji), j=[1,2] to fit a line without
applying any statistical summarization at early stages. In the ab-
sence of known underlying noise models, this scenario is as close
to ‘true’ as may be possible. b) Distribution-valued (Blue): Uses
the proposed framework for regression on histograms of marginal
distributions as summary statistics. c) Mean (Red): Uses means of
the two distribution-valued samples as a scalar summary. d) Median
(Green): Uses medians as a summary. RMSE is calculated with
respect to all observations (xji, yji) to allow comparison between

different methods. Fig.4 shows that due to high amount of noise
and small sample size per joint distribution, mean and median fits
don’t agree with each other and have higher RMSE values. The
estimated correlation coefficient is a perfect 1, because regression is
now exposed to two scalar points only owing to an early discarding
of variability information. Our proposed method’s performance
closely matches the all-observations’ result. They both incorporate
the variability and accordingly lower the correlation value.

However, since a single random experiment is inconclusive, we
repeat it 10,000 times (Fig.5). The linear fits with means and medi-
ans have a much larger variability with the fit swinging wildly with
some extremely off results. In contrast, despite summarizing data
as marginal histograms, our method performs comparable to ‘All-
Observations’, exhibiting robustness to noise and low sample size.
The spread of regression coefficients (β0, β1) is also considerably
smaller indicating smaller standard errors (even when extreme out-
liers with mean/median methods have been omitted from the plot).

Fig. 4. Linear regression between two synthetically generated sam-
ples (orange, purple) of a bivariate distribution of random variables
X and Y. Line color:: a)Black- Uses all observations (solid dots) for
a linear fit. b)Blue- Proposed distribution-valued regression using
marginal distributions (shown as histograms). c)Red- Using means
as scalar summary statistics and d)Green- Using medians. Corre-
sponding estimates of Correlation(X,Y) and RMSE also shown.

3.2. Application to pediatric DTI data

We apply our method to pediatric DTI data (FA values for the genu
tract (Fig.2) from 45 healthy infants registered to a common atlas
space. Subjects’ ages at the time of scan fall into age-distributions
grouped as neonates, 1 year and 2 years (15 subjects per age-group).
These age distributions are the independent variables used for re-
gression (Fig.3a). The dependent variables are the corresponding
barycenter FA histograms estimated along the length of the genu
tract (Fig.3d, Section 2.2). Regression is performed at each tract lo-
cation, with the three pairs of age-histograms and location-specific
FA barycenter histograms (with one pair per age-group). This pro-
vides a growth trajectory for FA continuously in space and time,



Fig. 5. 10,000 repetitions of synthetic regression experiment (Fig.4). Regression results: All Observations (black), Distribution-valued (blue),
mean (red), median (green). Left to right: a) Linear fits obtained from 10,000 repetitions. b) Estimated regression coefficients β1:slope,
β0:intercept (extreme outlier coefficients from mean/median regression omitted in the plot). c) Average of 10,000 RMSE estimates.

parametrized by regression coefficients estimated at each tract lo-
cation. Note that most of the barycenters (Fig.3d) do not follow a
Gaussian trend, thereby highlighting the need for our framework to
avoid early, uninformed and possibly inaccurate assumptions.

Fig.6 shows the estimated normative growth surface (mean FA).
Standard deviation bounds (also estimated for each point on the sur-
face) are also shown for the three age-groups where DTI scans were
originally available (neonate, 1 and 2 years). Overall, FA increases
over time as a result of the expected brain maturation in early neu-
rodevelopment which agrees with clinically observed patterns [2, 6].
The surface also exhibits localized temporal trends along the length
of the genu tract. To further exhibit the clinical relevance of this
framework, we compare the normative trend with a Krabbe’s patient
(with serial DTI scans at 14 days, 6 months and 1 year mapped into
the common atlas space). Krabbe’s disease is degenerative in nature
affecting the myelin of the nervous system and is often fatal without
early diagnosis and intervention in infants. Comparison at 14 days
and 1 year is straightforward as control data is already available at
these timepoints (Fig.3). For comparison at 6 months, we generate
a gaussian age distribution for 6 months ± 2 weeks and estimate the
corresponding FA mean and variance. Fig.6 shows the comparison
of normative estimates with the mean FA curves of the Krabbe’s sub-
ject at matched timepoints. The FA values from the latter are close to
the expected temporal trend till 6 months but then show significant
reduction towards 1 year. This scenario highlights the clinical need
to enable comparison of individual patients with population models
at timepoints where the control data is not available. In such cases,
our method allows straightforward statistical predictions of FA mean
and variance continuously along space and time.

4. DISCUSSION AND CONCLUSION

The synthetic experiments validate the increased stability of our
method when compared with regression based on scalar measures
like mean and median. In the case of well-behaved white noise
with high SNR, they exhibit similar performances. At the same
time, our method increases reliability by avoiding possible errors
introduced early in the process due to parametric assumptions and
over-simplified summary statistics. Moreover, despite using a com-
pact summary measure (histogram representations of data distribu-
tions), the performance of our method closely agrees with the results
achieved by using all observations which serve as a benchmark in
the absence of ground truth. This is an advantage because even if
all observations are available to the framework, it is often necessary
to reduce data size when working with complex, high dimensional
data (e.g. 4D DTI tract data) in order to make downstream statistical
analysis more manageable. For DTI analysis, the method allows
comparison at timepoints where no original scans were available
by providing a smooth spatiotemporal trajectory. It also inher-
ently accounts for naturally accelerated or delayed growth trends

by providing mean and variance estimates in a given age window
(e.g. 6 months ± 2 weeks). To conclude, the proposed method uses
distribution-valued measurements in a closed-form, linear regression
model leading to improved robustness. Observed distributions are
summarized as histograms of marginal distributions instead of clas-
sic scalar statistical summaries like mean and median. Future work
would involve an evaluation of the method’s bias-variance trade-off,
improvement in sensitivity to identify statistically significant group
differences and application to large clinical studies.

Fig. 6. Left: Continuous spatiotemporal normative FA evolution
(genu tract). Estimated mean FA: gray, standard deviation bounds:
neonate (green), 1 year (orange), 2 year (purple). Right: Krabbe’s
subject’s average FA curves (solid lines) at 14 days, 6 month (blue),
1 year. Corresponding population mean (dashed line) and standard
deviation shown for matched age-groups (blue: 6 month± 2 weeks).
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