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ABSTRACT

This paper proposes a novel method that extends spatiotemporal
growth modeling to distribution-valued data. The method relaxes
assumptions on the underlying noise models by considering the data
to be represented by the complete probability distributions rather
than a representative, single-valued summary statistics like the mean.
When summarizing by the latter method, information on the un-
derlying variability of data is lost early in the process and is not
available at later stages of statistical analysis. The concept of ’dis-
tance’ between distributions and an ’average’ of distributions is em-
ployed. The framework quantifies growth trajectories for individuals
and populations in terms of the complete data variability estimated
along time and space. Concept is demonstrated in the context of our
driving application which is modeling of age-related changes along
white matter tracts in early neurodevelopment. Results are shown
for a single subject with Krabbe’s disease in comparison with a nor-
mative trend estimated from 15 healthy controls.

Index Terms— spatiotemporal growth trajectory, distribution-
valued data, diffusion tensor imaging, early neurodevelopment, Mal-
low’s distance

1. INTRODUCTION

The field of medical imaging has led to an improved understanding
of dynamic anatomical and physiological changes. Characterizing
normative growth patterns together with the natural population vari-
ability is one of the key challenges it addresses. This knowledge is
crucial for clinical researchers as it enables a timely identification of
deviations from expected trends enabling early diagnosis and ther-
apy for altered trajectories. In this regard, extensive work has been
done in the area of human brain development. Morphometric brain
changes along time and white matter maturation have been studied
using cumulative volume measurements, scalar functional data and
3D image data [1, 2, 3, 4]. However, most of these methods work
with classic single-valued observations at each point in space and
time for an individual subject. These methods work under the as-
sumption that the probability distribution generating the data is well
represented using scalar central tendencies like averages and quan-
tiles. Note that this is different from encoding the population vari-
ability in an atlas model (for instance, capturing the complete data
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statistics in terms of a shape atlas together with individual subject
variability evolving along time [1, 2]).

Data variability comes from the assumption that our data are
observed random samples of an underlying probability distribution.
For example, due to low image resolution or mis-registration of im-
ages, information within a voxel may not necessarily be Gaussian
distributed or even unimodal. Similarly, summarizing scalar diffu-
sion values from brain’s white matter as averages within regions im-
poses a homogeneous and known parametric probability distribution
within each region. Less samples could also result in violations of
the central limit theorem’s applicability. Ashburner et al. [5] explore
the effect of non-Gaussian data on the accuracy of parametric statis-
tical tests used for voxel based morphometry. HARDI imaging also
highlights the presence of complex intra voxel distributions [6].

Working with data summaries and disregarding the underlying
variability offers advantages in terms of simplifying the analysis.
This works well if a parametric probability distribution which is con-
sistent across all samples is either known or can be safely assumed.
Otherwise, this approach poses severe limitations and can introduce
errors in the framework at very early stages. This is the key issue we
address in this paper. See Fig 1 for an illustration. We have two data
distributions observed along time (blue:t0, orange:t1). A simple lin-
ear interpolation between these via their respective means (red) and
medians(blue) is also shown. Since the distributions are skewed in
opposite directions, the fit with mean and median are significantly
different. Moreover, we have lost the data variability information at
all the intermediate interpolated times.

Fig. 1. Left:Two synthetically generated distributions along time
(blue:t0, orange:t1) with translated locations and opposite skews.
Right: Simple linear interpolation using classic single-valued sum-
mary statistics (means: red, medians: blue) and ignoring data vari-
ability (shown as error bars) at t0 and t1.

As a solution, we propose a novel nonparametric framework of
spatiotemporal analysis which considers all observed data as prob-
ability distributions rather than a single scalar value. We estimate
a continuous temporal growth trajectory of distribution-valued data
from a discrete-time set of observations of the same. The frame-



work is applicable to individual subjects as well as for delineating
normative population trends. This is important because it allows
designing and administering of individualized medical treatments
via systematic comparisons of patient specific patterns with norma-
tive trajectories. Our driving application is the characterization of
DTI- derived diffusivity changes along white matter tracts in infant
neurodevelopment. Tract based changes provide an insight into the
brain’s maturation process and correlate with characteristic cognitive
functions. This makes them better suited for assessment related to
specific cognitive abnormalities [4]. Section 2 details the proposed
method, section 3 includes validation using synthetic data and results
of application to pediatric DTI data.

2. METHOD

2.1. Framework

As a general representation, we have spatially parametrized 3D data
collected at discrete time points for a number of subjects. Let si
be a spatial variable (i = [0, 1, · · ·NS ]), tj a time variable (j =
[0, 1, · · ·NT ]) and qk an individual subject (k = [0, 1, · · ·NQ]).
NS , NT and NQ are the discrete number of parametrized spatial
locations, serial time points per subject and the total number of sub-
jects respectively. Data indexed by each (si, tj , qk) vector is a prob-
ability distribution. In this paper, we follow [7, 8] and choose to
represent these distributions as histograms. The reasoning lies in the
fact that histograms are intuitive, computationally easy to handle and
summarize the variability in the data empirically without requiring
prior information of the underlying distribution. Following the nota-
tions by [7], we define a histogram random variable X such that our
data is an observed sample Xijk of this variable at spatial location
si, at time tj for subject qk. The histogram is formally defined as

hlXijk (x) = (πl, cl, rl), (1)

where l = [1 · · ·L] is the histogram bin index with L as the total
number of bins and x is the variable which the histogram represents
(for e.g. DTI diffusion property like FA). Each bin l is character-
ized by the bin frequency πl, location of the bin’s center cl and half
the bin width as bin radius rl. rl can vary across l allowing un-
equal bin widths. Histograms are normalized such that πl ≥ 0 and∑L
l=1 π

l = 1. The corresponding cumulative distribution function
(CDF) is defined asHl

Xijk
(x) and the inverse CDF or quantile func-

tion as [Hz
Xijk

]−1(u), u ∈ [0, 1] and z as the bin index for quantile
functions. Assuming hlXijk (x) represents the underlying probability
density function within an acceptable margin of error, [7] provide a
formulation for an empirical estimation of the corresponding CDF
and quantile functions from it. For simplicity, we will refer to the
histogram as hXijk from here on.

In the context of our driving application, scalar diffusion infor-
mation from 3D white matter tracts is available at discrete times
via Diffusion Tensor Imaging from serial scans of multiple subjects.
We utilize the atlas based registration and arc length parametriza-
tion framework by [3] to achieve spatial normalization across time
points and subjects (Fig 2). We extend the method by characterizing
cross-sections of fiber tract bundles by distributions of diffusion val-
ues such as FA, and by representing this data as histogram variables
along space and time attributed with 4D image properties. This pro-
cedure is motivated by a major limitation of the current fiber tract-
based analysis which reduces local tract properties to mean values
used for group statistics, thus discarding information on data vari-
ability which is important for statistical testing and inference. More-

Fig. 2. Left: 3D visualization of the genu white matter tract. Right:
Diffusion values along tract bundles (colored data) and cross sec-
tional means (black) of diffusion property (FA) at discrete time
points along genu tract for a single subject (based on [3]).

Fig. 3. Aggregating spatial information. Left: Aggregation of FA
values by application of kernel weights within a kernel window to
compute a histogram. Right: Computed FA histogram at location si.

over, taking the mean assumes normal distribution and unimodality,
which is not a proper model for FA and tract locations showing mix-
tures of fiber bundles.

2.2. Methodology

To obtain histogram descriptions from diffusion values along tract
bundles, we use a kernel based weighting function within a moving
kernel window along s (Fig 3). The weights account for the inherent
functional correlation along s owing to the underlying brain anatomy
and allow the distributions to represent any spatially continuous in-
formation in the absence of known priors and constraints. For an arc
length parametrized tract location si at time tj for subject qk,

πlXijk = π́lXijkKσ(s, si), Kσ(s, si) ∝ e
−(s−si)

2

2σ2 .

Kσ(s, si) is a Gaussian kernel with standard deviation σ (which
governs the amount of spatial smoothing achieved) and π́lXijk are
the unweighted histogram bin frequencies within the kernel window
centered at si. The weights within each kernel window Kσ(s, si)
are normalized to 1.

We now apply a weighted average scheme based on Shepard’s
inverse distance weighting function applied along time where

wjk(t) =
1

(abs(t− tj) + ε)α
, (2)

and ε < 0.00001 to avoid division by zero. Considering a single
subject qk, wjk(t) assigns weights to each time point tj of qk for all
locations si. The power parameter α decides the relative influence
of interpolating points located far-off with weights decreasing with
increasing distance. We use α = 2 to allow closer time points to
have the most dominating effect. When considering multiple sub-
jects for assessment of an average population trend, each subject
qk gets equal weights (assuming a homogeneous population) while
each time point of qk follows eq. (2) with total weights per subject
normalized to 1. Finally, total weights across NQ subjects are also
normalized to 1. Fig 4 shows the weight allocation for 15 subjects



Fig. 4. Left: Weights applied to three time points (tj approximately
1 month (blue), 1 year (green) and 2 years (maroon)) for 15 sub-
jects. Increasing time t (0.28, 0.88, 1.68 years) shows changing rel-
ative weights with more weights given to closer time points. Center:
For location si, NT discrete histogram samples from each of NQ
subjects are used to find a barycentric histogram at t using weights
as shown to the left (see eq. (2)). Right: Barycentric histogram
hX̄i

(x, t) evaluated continuously along time at si.

scanned approximately at 1 month, 1 year and 2 years, calculated
and displayed at t = 0.28, 0.88, 1.68 years. Note that tj is not re-
quired to be the same across subjects. Using eq. (2), we compute
a weighted ’average’ histogram response (called a barycentric his-
togram hX̄i

(x, t)) from hXijk continuously along t for each spatial
location si (t = [0, δt, 2δt · · ·T ]). For a single subject this becomes
an interpolation problem while for multiple subjects, the ’average’
is computed in a least square sense. Fig 4 visually explains this esti-
mation approach.

This brings us to the notion of ’distance’ between two distribu-
tions. For this purpose, we use the Mallow’s distance D2

M as our
distance metric (eq. (3)). [8] decompose D2

M in components re-
flecting translation, changing width and shape of the distributions
being considered. Moreover, for distributions with the same mass
(e.g. normalized probability density functions), D2

M is conceptually
the same as Earth Mover’s distance which quantifies the dissimi-
larity between two piles of earth as the amount of work needed to
transform one into another [9]. Unlike divergence based measures
like KL and Hellinger, Mallow’s distance is a positive L2 norm and
follows desirable properties like symmetry, triangle inequality and
allows proportional contribution via weights. These reasons make it
an optimal choice for barycenter estimation given that a barycenter
histogram minimizes the distance between itself and all other his-
tograms [7, 8]. Mallow’s distance D2

M (hlXijk (x), hl′Xi′j′k′(x)) is
expressed as L2 norm of the difference between u-quantiles of two
distributions with u ∈ [0, 1],√√√√√ 1∫

0

([Hz
Xijk

]−1(u)− [Hz′
Xi′j′k′

]−1(u))2du. (3)

For computing it, the probability range u ∈ [0, 1] is divided into
zM = [1 · · ·ZM ] equi-probable intervals by combining the set of
cumulative frequencies for Hl

Xijk
(x) and Hl′

Xi′j′k′(x). The quan-
tiles corresponding to u’s intervals are computed for each distribu-
tion. Assuming a uniform distribution within individual bins, each
of these quantiles can be represented using their respective interval
centers czM , radii rzM and frequencies πzM = uzM − uzM−1. To
summarize, all normalized density functions are mapped to a com-
mon reference frame of u ∈ [0, 1] using the CDF’s and then com-
pared with respect to the bin location and width for the correspond-
ing quantiles. Mallow’s distance D2

M (hlXijk (x), hl′Xi′j′k′(x)) can
then be expressed in terms of this new representation as,

ΣZMzM=1 πzM [(czMXijk − c
zM
Xi′j′k′

)2 +
1

3
(rzMXijk − r

zM
Xi′j′k′

)2]. (4)

Based on eq (2) and (4), a barycentric histogram hX̄i
(x, t) at si

is defined as a weighted mean which minimizes

ΣNTj=0Σ
NQ
k=0wjk(t)D2

M (hX̄i
(x, t), hXijk (x)). (5)

Solving this minimization problem gives z̄ = [1 · · · Z̄] barycentric
histogram bins centered at the average of cz̄Xijk with bin radii as an
average of rz̄Xijk and bin frequencies πz̄ . For more details, refer to
[7]. Solving this for all spatial locations si for increasing value of
t = [0, δt, 2δt · · ·T ] gives a continuous time evolution of distribu-
tions in space.

3. EXPERIMENTS

3.1. Validation using synthetic data

We go back to our example from Fig 1 for validation of the proposed
method. This scenario is the same as having a single subject and a
single spatial location (i = k = 0) with distribution data observed
at two discrete time points (t0, t1). Results are shown in Fig 5 (top
row, left to right). The first plot shows the intermediate estimated
distributions represented as histograms between t0 (blue) and t1 (or-
ange). The weights are calculated at each t using eq.(2). Barycen-
tric histograms hX̄0

(x, t) at t = [0.2, 0.4, 0.6, 0.8] are displayed.
The location, width and shape of hX000 gradually transforms over
t to match hX010 at t1. The skew slowly shifts from right to left
adjusting the bin width and frequency.The CDF plots for each cor-
responding barycenter highlight the ’averaging’ along time. This
also illustrates that the barycenter computed using D2

M is a convex
solution of the minimization problem. The third plot shows the em-
pirically calculated mean (red) and median (blue) values using the
barycenters along time. Comparing the standard deviation (red er-
ror bars) and the interquartile range (blue error bars), the skew along
time becomes obvious.

3.2. Application to pediatric data

For concept demonstration, we apply our method to pediatric DTI
data (FA values for the genu tract, see Fig 2) from 15 healthy infants
registered to a common atlas space. Subjects are scanned around 1
month, 1 year and 2 years with scan times not in perfect correspon-
dence. An average normative growth trajectory is estimated using
all control subjects (NQ = 15), time points (NT = 3) and tract’s
locations (NS = 25) to represent population trend and summarize
FA’s variability (see Fig. 5 (bottom row, left to right)).

The growth surface in the first plot exhibits localized temporal
trends along the length of the genu tract. Overall, FA increases along
time owing to the expected brain maturation in early neurodevelop-
ment. While these agree with clinically observed patterns, interest-
ing results show up when we zoom in on the trajectory of a single
location (marked by red). The second plot draws our attention to
the complete distribution associated with each point on the trajec-
tory at this location. The quantiles immediately make it clear that
the FA values do not follow a Gaussian distribution along time. The
interquartile region (25th to 75th percentile) is not symmetrically
placed in the center of 0th and 100th percentiles with the skew more
prominent after 1 year. Without the complete variability information
captured here, a simple average based growth modeling would be
inaccurate. With such mixed patterns, methods to utilize distribution
valued variables hold the key to more robust and reliable modeling
procedures. For further illustrating the potential of this approach,
we similarly estimate personalized FA evolution profile for the genu



Fig. 5. TOP ROW: Evolution of synthetic distribution data continuously along time. Left: Barycenter histograms evaluated along time
show translation and changing shape (increasingly lighter grayscale color from t0(blue) to t1(orange)). Center: Corresponding CDF plots
show an ’averaging’ effect between t0 and t1. Right: Means, standard deviations (red) and quantiles Q50, Q25 and Q75 (blue) estimated
from barycentric histograms evaluated along t. BOTTOM ROW: Application to pediatric data (15 healthy controls and a single subject with
Krabbe’s disease) Left: Normative growth surface represented via median values estimated from barycentric histograms along s, t. Center:
Quantiles (Q0, Q25, Q50, Q75, Q100) estimated for a single spatial location marked in red (left plot). Right: Comparison of spatiotemporal
trajectory (median values shown) for a single subject with Krabbe’s disease (blue) and a normative healthy trend (red).

tract from a subject with Krabbe’s disease with only two serial scans
mapped into the same atlas space. The disease is degenerative in
nature affecting the myelin of the nervous system. It is often fatal
without a very early diagnosis and medical intervention in infants.
The third plot compares the typical growth surface obtained using
controls with that of the subject with Krabbe’s disease where FA
values of the latter lag behind.

3.3. Discussion

The above examples provide a proof of concept for the ability of the
method to model the complete data variability along time, with mea-
surements given at only a few discrete time points. Our approach
offers a two-fold advantage. First, without imposing any parametric
assumptions on the underlying noise model, we estimate spatiotem-
poral trends utilizing the complete distribution-valued information.
The Mallow’s distance metric can be utilized for further data ex-
ploration like goodness-of-fit evaluation via RMSE and Pseudo R2

and classification using clustering algorithms customized for distri-
bution valued data [8]. Second, even if we decide to summarize data
further to scalar numbers, our method facilitates a more informed
decision by retaining the data variability till the last stages of sta-
tistical analysis. This increases accuracy of estimation methods and
provides increased flexibility via relaxation of assumptions on noise
models. Our method uses a weighted average smoothing and there-
fore benefits from a dense sampling of data along time. There are no
constraints in terms of scan time correspondence across subjects.

4. CONCLUSION

We present a new framework for estimation of smooth temporal
trends for spatially correlated distribution-valued data. Spatial ag-
gregation employs a nonparametric kernel weighting function. A
weighted average of distributions is evaluated continuously along
time where weights are based on inverse distance weighting. Mal-
low’s distance which is conceptually the same as Earth Mover’s dis-
tance for equal mass distributions, is applied as the distance met-
ric. The results illustrate the method’s feasibility and its potential
application to large clinical studies for comparing personalized pro-

files to normative data. Future work will include advanced statisti-
cal analysis schemes to utilize the complex variability information
encoded in growth trajectories characterized by probability distri-
butions. We would also like to evaluate improvements in diagnostic
accuracy when compared with conventional methods based on scalar
summary statistics.
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