
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X 1

Multi-class Multi-scale Series Contextual Model for
Image Segmentation

Mojtaba Seyedhosseini, Tolga Tasdizen, Senior Member, IEEE

Abstract—Contextual information has been widely used as a

rich source of information to segment multiple objects in an

image. A contextual model utilizes the relationships between the

objects in a scene to facilitate object detection and segmentation.

However, using contextual information from different objects

in an effective way for object segmentation remains a difficult

problem. In this paper, we introduce a novel framework, called

multi-class multi-scale (MCMS) series contextual model, which

uses contextual information from multiple objects and at different

scales for learning discriminative models in a supervised setting.

The MCMS model incorporates cross-object and inter-object

information into one probabilistic framework and thus is able

to capture geometrical relationships and dependencies among

multiple objects in addition to local information from each single

object present in an image. We demonstrate that our MCMS

model improves object segmentation performance in electron

microscopy images and provides a coherent segmentation of

multiple objects. By speeding up the segmentation process, the

proposed method will allow neurobiologists to move beyond

individual specimens and analyze populations paving the way

for understanding neurodegenerative diseases at the microscopic

level.

Index Terms—Image segmentation, Contextual information,

Artificial neural networks, Series classifier, Electron microscopy

imaging, Neuroscience, Connectomics

I. INTRODUCTION

S
HAPE contexts are extremely rich descriptors [1] that have
been used widely for solving high-level vision problems.

Contextual information is interpreted as intra-object configura-
tions and inter-object relationships [2]. These attributes play an
important role in scene understanding [3], [4], [5]. For exam-
ple, the existence of a keyboard in an image suggests that there
is very likely a mouse near it [6]. To be precise, by contextual
information we refer to the probability image map of the target
object which can be used as prior information together with the
original image information to solve the maximum aposteriori
(MAP) pixel classification problem. Pixel classification is the
problem of assigning an object label to each pixel.

There have been many methods that employ context for
solving vision problems such as image segmentation or image
classification. Markov random fields (MRF) [7] is one of the
earliest and most widespread approaches. Lafferty et al. [8]
showed that better results for discrimination problems can be
obtained by modeling the conditional probability of labels
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given an observation sequence directly. This non-generative
approach is called the conditional random field (CRF). He
et al. [9] generalized the CRF approach for the pixel clas-
sification problem by learning features at different scales of
the image. Jain et al. [10] showed MRF and CRF algorithms
perform about the same as simple thresholding in pixel
classification for binary-like images. They proposed a new
single-scale version of the convolutional neural network [11]
strategy for restoring membranes in electron microscopic (EM)
images. Compared to other methods, convolutional networks
take advantage of context information from larger regions, but
need many hidden layers. In their model the back propagation
has to go over multiple hidden layers for the training, which
makes the training step computationally expensive. Tu and
Bai [2] proposed the auto-context algorithm which integrates
the original image features together with the contextual in-
formation by learning a series of classifiers. Similar to CRF,
auto-context targets the posterior distribution directly without
splitting it to likelihood and prior distributions. The advan-
tage of auto-context over convolutional networks is its easier
training due to treating each classifier in the series one at
a time in sequential order. Although they used probabilistic
boosting tree as classifier (PBT), auto-context is not restricted
to any particular classifier and different type of classifiers can
be used. Jurrus et al. [12] employed artificial neural networks
(ANN) in a series classifier structure which learns a set of
convolutional filters from the data instead of applying large
filter banks to the input image.

Even though all the aforementioned approaches use con-
textual information together with the input image information
to improve the accuracy of the achieved segmentation, they
do not take contextual information from multiple objects
into account and thus are not able to capture dependencies
between the objects. Torralba et al. [6] introduced boosted
random field (BRF) which uses boosting to learn the graph
structure of CRFs for multi-class object detection and region
labeling. Desai et al. [13] proposed a discriminative model
for multi-class object recognition that can learn intra-class
relationships between different categories. The cascaded clas-
sification model [14] is a scene understanding framework that
combines object detection, multi-class segmentation, and 3D
reconstruction. Choi et al. [15] introduced a tree-based context
model which exploits dependencies among objects together
with local features to improve the object detection accuracy.

While contextual models have been shown to be successful
in several computer vision tasks, we propose a more effec-
tive way of extracting information from the context image,
i.e., the classifier output. We develop a novel framework
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that exploits contextual information from different scales and
different objects to learn a discriminative model for object
segmentation. To our knowledge, multi-class and multi-scale
contextual information have not been previously used in a
unified framework for object segmentation. The combination
of multi-class and multi-scale schemes enables our method
to make extensive use of contextual information and thus
improves the segmentation accuracy.

We employ the series architecture in [12] and modify it in
two important ways to provide more informative contextual
information to the classifiers:

1) Multi-scale contextual model: We apply a series of
simple linear filters to the context image consecutively to
generate a scale-space representation of the context and give
the classifier access to samples of the scale space. The samples
of the coarser scales are more informative and robust against
noise due to the averaging. Therefore, this framework provides
more information from the context for the classifier in a similar
number of features.

2) Multi-class contextual model: We also introduce the
multi-class series architecture by allowing the classifier for
each object type access to the contextual information from
each object type of the previous stage. This flow of cross-
object information is achieved by feeding neighborhoods from
the output of each classifier in the current stage to each clas-
sifier in the next stage. The proposed multi-class framework
is able to capture geometric relationships of objects and their
dependencies which can be an important clue to their identity.
For instance, the existence of mitochondria, i.e., the objects
with green boundary in Figure 1, at a certain position in
an electron microscopy image is a strong evidence that the
existence of synapses, i.e. the objects with yellow boundary
in Figure 1, is unlikely. Synapses are more likely in certain
configurations and distances to cell membranes, i.e., the red
objects in Figure 1.

We introduce a novel and powerful segmentation framework
by employing multi-scale and multi-class contextual model
in a series classifier architecture. The multi-class multi-scale
(MCMS) series contextual model is able to leverage both
the cross-object and the inter-object contextual information at
multiple scales to give a coherent segmentation of multiple
objects present in an image. The rich contextual information
that the MCMS model extracts from the image helps the later
classifiers to correct the mistakes of the early stages and thus
improves the overall performance.

Our model is motivated by the problem of reconstruction of
the connectome, i.e., the map of connectivity of all neurons
in the mammalian nervous system [18], which is a challenge
facing neuroscientists [12]. Electron microscopy (EM) is an
image acquisition technique that can generate high resolution
images with enough details for this problem [19]. However,
the reconstruction of the connectome remains a challeng-
ing problem because of the noisy texture, irregular shapes,
complex structures, and the large variations in the physical
topologies of cells [10], [20]. Moreover, the sheer size of a
typical EM dataset, often approaching tens of terabytes [21],
makes manual analysis infeasible [22]. Hence, automated
segmentation methods are required.

Fig. 1. Different objects appear in certain configurations to each other. For
example synapses, i.e., objects with yellow boundary, are close to membrane,
i.e., red objects, and usually overlap with them. Mitochondria, i.e., objects with
green boundary, are far from membranes and never overlap with synapses.
Using this information can improve the segmentation results for each of
these objects. The images are from a serial section Transmission Electron
Microscopy (ssTEM) dataset of the Drosophila first instar larva ventral nerve
cord [16], [17].

General segmentation methods which have been proposed
for natural image datasets yield poor results when applied
to EM images [20]. Jain et.al. [23] showed that multi-scale
normalized cut [24], boosted edge learning [25], and global
probability boundary [26], which result in outstanding seg-
mentation performance on natural images, perform poorly on
EM datasets. Therefore, a powerful method for segmenting
specific structures in EM images is required.

Many unsupervised techniques have been proposed to ad-
dress this problem. Vu and Manjunath [27] proposed a graph-
cut method that minimizes an energy function over the pixel
intensity and flux of the gradient field for cell segmentation.
However, their model might be confused by the complex
intracellular structures and requires user interaction to correct
segmentation errors. The contour propagation model [28] that
minimizes an energy function for contour tracing of cell
membranes can also get stuck in local minima due to complex
intracellular structures. Kumar et al. [29] introduced a set of
so-called Radon-like features (RLF), which take into account
both texture and geometric information and overcome the
problem of complex intracellular structures but only achieve
modest accuracy levels due to the lack of a supervised classi-
fication scheme.

Several supervised methods also have been proposed for
object segmentation in EM images such as convolutional
neural networks [10] and series of ANN [12] for membrane
detection or [20], [30] for mitochondria segmentation or [31],
[32] for synapse segmentation. However, these frameworks
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target only one object of interest and to our knowledge, they do
not use intra-class information to give a coherent segmentation
of multiple objects. One of the advantages of our proposed
model is that it can segment multiple objects simultaneously.
We show that the coherent segmentation improves the segmen-
tation accuracy.

II. MULTI-SCALE CONTEXTUAL MODEL1

Let X = (x(i, j)) be the input image that comes with a
ground truth Y = (y(i, j)) where y(i, j) ∈ {−1, 1} is the class
label for pixel (i, j). The training set is T = {(Xk, Yk); k =
1, . . . ,M} where M denotes the number of training images.
Given an input image X , the MAP estimation of Y for each
pixel is given by:

ŷMAP (i, j) = argmax
y(i,j)

P (y(i, j)|X). (1)

The local Markovianity assumption can be used to obtain a
typical approximation of equation (1):

ŷMAP (i, j) = argmax
y(i,j)

P (y(i, j)|XN(i,j)), (2)

where N(i, j) denotes all the pixels in the neighborhood
of pixel (i, j). N(i, j) can be any arbitrary neighborhood
lattice like 4-connected or 8-connected or sparse stencil [12]
neighbors. This approximation decreases the computational
complexity by giving the classifier access to a limited number
of neighborhood pixels instead of the entire input image.

In auto-context [2] and series-ANN [12], a classifier is
trained based on the neighborhood features at each pixel. We
call the output image of this classifier the context image, i.e.,
C = (c(i, j)). The next classifier is trained not only on the
neighborhood features of X but also on the neighborhood
features of C. The MAP estimation formula for this classifier
can be written as:

ŷMAP (i, j) = argmax
y(i,j)

P (y(i, j)|XN(i,j), CN � (i,j)), (3)

where N
�
(i, j) is the set of all neighborhood pixels of pixel

(i, j) in the context image. Note that N and N
� can be dif-

ferent neighborhood systems. The same procedure is repeated
through several stages of the series classifier until convergence.
It is worth mentioning that equation (3) is closely related
to the CRF model; however, multiple models in series are
learned which is an important difference from standard CRF
approaches. It has been previously shown that this approach
outperforms iterations with the same model [2].

According to equation (3), context provides prior infor-
mation to solve the MAP problem. Even though the local
Markovianity assumption is reasonable and makes the problem
tractable, it still results in a significant loss of information
from global context. However, it is not practical to sample
every pixel in a very large neighborhood area of the context
due to computational complexity problem and overfitting.
Previous approaches [2], [12] have used a sparse sampling
approach to cover large context areas. However, single pixel

1The preliminary version of this model was presented in MICCAI
2011 [33].





 

Fig. 2. Illustration of the multi-scale contextual model. Each context image
is sampled at different scales (green squares). The blue squares represent the
center pixel and the red squares show the selected locations at original scale.

contextual information in the finest scale conveys only partial
information about its neighborhood pixels in a sparse sampling
strategy while each pixel in the coarser scales contains more
information about its surrounding area due to averaging filters
used. In other words, while it is reasonable to sample context
at the finest level a few pixels away, sampling context at the
finest scale tens to hundreds of pixels away is error prone and
presents a non-optimal summary of its local area. Conceptu-
ally, sampling from scale space representation increases the
effective size of the neighborhood while keeping the number
of samples small.

Figure 2 illustrates the multi-scale contextual model. In this
model, a scale-space representation of the context image is
created by applying a series of Gaussian filters. This results in
a series feature maps with lower resolutions that are robust
against the small variations in the location of features as
well as noise. Unlike the auto-context structure that uses a
sparse sampling approach to take samples from the context
image, the multi-scale contextual model uses the samples of
the scale space representation of context. Figure 3 shows the
single-scale sampling strategy (Figure 3a) versus the multi-
scale sampling strategy (Figure 3b). In Figure 3b the classifier
can have as an input the center 3×3 patch at the original scale
and a summary of 8 surrounding 3×3 patches at a coarser scale
(The green circles denote the summaries of dashed squares).
The green circles in Figure 3b are more informative and less
noisy compared to their equivalent red circles in Figure 3a. The

context image context image
(a) (b)

Fig. 3. Sampling strategy of context: (a) Sampling at a single scale (b)
sampling at multiple scales. Green circles belong to a coarser scale and
illustrate the summary of pixels in dashed squares. Green samples at the
coarser scale are more informative than corresponding red samples at the
original scale.
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summaries become more informative as the number of scales
increases. For example, in the second scale the summary is
computed over 3 × 3 neighborhood of the first scale image,
which is equivalent to 5 × 5 neighborhood of the original
image. In practice, we use Gaussian averaging filters to create
the summary (green circles). Other methods like maximum
pooling can be used instead of Gaussian averaging [34]. The
number of scales and Gaussian filter size are set according to
the characteristics of the particular application. The size of the
filter and number of scales should increase for larger objects.

From a mathematical point of view, equation (3) can be
rewritten as:

ŷMAP (i, j) = argmax
y(i,j)

P (y(i, j)|XN(i,j), CN
�
0(i,j)

(0),

CN
�
1(i,j)

(1), . . . , CN
�
l
(i,j)(l)), (4)

where C(0), C(1), . . . , C(l) denote the scale space represen-
tation of the context and N

�

0(i, j), N
�

1(i, j), . . . , N
�

l (i, j) are
corresponding neighborhood structures. Unlike equation (3)
that uses the context in a single scale, equation (4) takes the
advantage of multi-scale contextual information. Even though
in equation (4), we still use the Markov assumption, the size of
the neighborhood is larger and thus we lose less information
compared to equation (3).

The series multi-scale contextual model updates the equa-
tion (4) iteratively:

ŷ
k+1
MAP (i, j) = argmax

y(i,j)
P (y(i, j)|XN(i,j), C

k
N

�
0(i,j)

(0),

C
k
N

�
1(i,j)

(1), . . . , Ck
N

�
l
(i,j)

(l)), (5)

where C
k(0), Ck(1), . . . , Ck(l) are the scale space represen-

tation of the output of classifier stage k, k = 1, . . . ,K − 1
and ŷ

k+1
MAP (i, j) denotes the output of the stage k + 1. In

turn, the k + 1’st classifier output as defined in equation (5)
creates the context for the k + 2’nd classifier. For k = 0
no prior information is used and the model only uses the
input image for training. The model repeats equation (5)
until the performance improvement between two consecutive
stages becomes small. It must be emphasized that despite the
iterative form of equation 5, multiple models are learned in the
series separately and in sequential order which is an important
difference from standard CRF models.

III. MULTI-CLASS MULTI-SCALE CONTEXTUAL MODEL

While our multi-scale contextual model extracts a set of
rich features from the context image of each object, it
is unable to take into account the contextual information
from multiple objects. We propose the multi-class multi-scale
(MCMS) contextual model as a remedy to this problem as it is
designed to leverage both the multi-scale and the multi-class
contextual information. The proposed method can successfully
capture long distance dependencies between objects and across
different categories.

The multi-class contextual model is illustrated in Figure 4.
In this figure, each classifier is a binary classifier, which is
trained to segment only one object of interest. In other words,

Fig. 4. Illustration of the multi-class contextual model. Each classifier is a
binary classifier, which is trained for a specific object (a,b, and c are objects).
Each classifier takes advantage of the context images of all objects from
the previous stage. Superscripts show object type and subscripts show the
classifier number in the series. Generalization to cases with more classes is
straightforward.









































Fig. 5. The multi-class feature pooling scheme. The neighborhood samples
of the center pixel (blue circle) in the context image “a”, i.e., red circles, are
used together with the neighborhood samples in the context images “b” and
“c”, i.e., green circles, to form the feature vector. The same feature vector
together with the features of input image is used for all the classifiers. In
the MCMS model the samples are pooled at multiple scales as well. The
multi-scale sampling is not shown in this figure for the sake of clarity.

each classifier treats the pixels belonging to the object of
interest as positive samples and all the other pixels including
the background pixels as negative samples. The multi-class
architecture allows the classifier of each object type access
to the contextual information from each object type of the
previous stage. This flow of information is achieved by feeding
neighborhoods from the output of each classifier, i.e., the
context image, in stage k to each classifier in stage k + 1.
The multi-class feature pooling scheme is shown in Figure 5.
It extracts samples from the neighborhood of center pixel in
all the context images from the previous stage. The extracted
samples are used together with input image samples as the
input to classifier. The same feature vectors are used for all
the classifiers, nonetheless, each classifier is trained to segment
a specific object. In other words, although the input feature
vectors are the same, the target labels are different for each
classifier. The propagation of contextual information among
different categories enables the model to learn the geometrical
relationships and object dependencies implicitly.

We describe the effectiveness of the multi-class model
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(a
)

Train image Square groundtruth Disk groundtruth

(b
)

Test image Stage1 (square) Stage1 (disk)

(c
)

Test image Stage2 (square) Stage2 (disk)

(d
)

Test image Stage2 (square) Stage2 (disk)
Fig. 6. A synthetic example that shows the effectiveness of the multi-class
contextual model. (a) The input image and corresponding groundtruth images,
(b) the outputs of the first stage classifiers, (c) the outputs of the second stage
classifiers in the single-class model, and (d) the outputs of the second stage
classifiers in the multi-class model. The multi-class model is more successful
in removing the parts of the other object compared to the single-class model.

with a synthetic example. Consider the input image and the
corresponding groundtruth images in Figure 6a. Two pixel
classifiers are trained for the square and the disk classes sepa-
rately. The outputs of these classifiers are shown in Figure 6b.
The results are not perfect and each classifier misclassify some
pixels of the other object as positive samples due to the noise
and similarity between the textures. The single-class model
that uses only the contextual information from the same object
is not able to correct the wrong classified pixels completely
(Figure 6c). By using the contextual information from both
of the objects, the multi-class model will classify most of the
previously misclassified pixels correctly as shown in Figure 6d.
For example, the second stage square classifier exploits the
information that those misclassified pixels from the previous
stage are classified as disk by the first disk classifier and thus
is able to correct them in the second stage. In this example
we have two objects but this can be extended to any arbitrary
number of objects.

The mathematical formulation of the multi-class contextual

model for each classifier is obtained by incorporating the
cross-contextual information in equation (3):

ŷMAP (i, j) = argmax
y(i,j)

P (y(i, j)|XN(i,j), C
a
N � (i,j),

C
b
N � (i,j), C

c
N � (i,j)), (6)

where C
a
, C

b
, C

c denote the context images of different
objects. We assume three objects in equation (6) for the sake of
simplicity but the extension to more objects is straightforward.

By combining multi-class and multi-scale contextual mod-
els, the powerful MCMS model is obtained which is able to
extract contextual information from large area and through
different objects. The MCMS model is designed to make
an extensive use of contextual information. This architecture
allows the classifiers in the series to correct the errors of the
previous stages by using the information from other classes
and thus improves the segmentation performance. The update
equation of the MCMS model can be derived by combining
equation (3) and equation (4):

ŷ
a,k+1
MAP (i, j) = argmax

y(i,j)
P (y(i, j)|XN(i,j),

C
a,k

N
�
0(i,j)

(0), Cb,k

N
�
0(i,j)

(0), Cc,k

N
�
0(i,j)

(0),

C
a,k

N
�
1(i,j)

(1), Cb,k

N
�
1(i,j)

(1), Cc,k

N
�
1(i,j)

(1),

. . . , C
a,k

N
�
l
(i,j)

(l), Cb,k

N
�
l
(i,j)

(l), , Cc,k

N
�
l
(i,j)

(l)), (7)

where C
a,k(0), Ca,k(1), . . . , Ca,k(l) are the scale space rep-

resentation of the output of classifier stage k for object “a”,
k = 1, . . . ,K − 1 and ŷ

a,k+1
MAP (i, j) denotes the output of the

stage k + 1 for object “a”. Similar equations are updated
for objects “b” and “c”. Each of these update equations
are related to a row of classifiers in Figure 4. The main
difference between equation (5) and equation (7) is that the
former only pools contextual information from a single object
while the latter takes advantage of contextual information from
multiple objects. The overall training algorithm for the MCMS
contextual model is described in Algorithm 1.

The time complexity of the MCMS model is almost the
same as the multi-scale since the classifiers of each stage can
be trained in parallel. Although this model has many parame-
ters, the training is not complicated because the classifiers are
trained separately through the stages and among the objects.

IV. EXPERIMENTAL RESULTS

We perform experimental studies to evaluate the perfor-
mance of both multi-scale and MCMS contextual models. We
show the effectiveness of multi-scale contextual model for
membrane detection in EM images and horse segmentation
in a general computer vision dataset. We then show how
membrane detection results can be used in MCMS model to
improve mitochondria and synapse segmentation results.

A. Datasets

We used three different datasets in our experiments:
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Algorithm 1 Training algorithm for the MCMS model
Input: A set of training images together with their bi-

nary groundtruth images for different objects, T =
{(Xi, Y

s
i ), i = 1, . . . ,M, s = 1, . . . , Nobj}.

• For each input image Xi, generate non-informative
probability maps, Cs,0

i , s = 1, . . . , Nobj , with uniform
distribution.

• k = 0

repeat

for j = 1 : Nobj do

• Construct a new training set Tj =
{((Xi, C

s,k
i ), Y j

i ), i = 1, . . . ,M, s = 1, . . . , Nobj}.
• Train a classifier, f

j
k , on features extracted from

the input images and scale space representation of
the context images (maximize equation (7) to obtain
classifier parameters).

end for

for j = 1 : Nobj do

• Use the trained classifier f j
k to generate new context

images C
j,k+1
i (equation (7)).

end for

• k = k + 1

until convergence (improvement is negligible between two
consecutive stages)

1) Weizmann horse dataset: The Weizmann dataset [35]
contains 328 gray scale horse images with corresponding
foreground/background truth maps. Similar to Tu et al. [2], we
used half of the images for training and the remaining images
were used for testing. There is only one object category, i.e.,
horse, in this dataset and thus we could only use it to test the
multi-scale contextual model.

2) Mouse neuropil dataset: This dataset is a stack of 400
images from the mouse neuropil acquired using serial block
face scanning electron microscopy (SBFSEM [19]). Each
image is 4096 by 4096 pixels and the resolution is 10×10×50
nm/pixel. To evaluate the segmentation performance, a subset
of 70 images of size 700 by 700 pixels were selected. An
expert anatomist annotated membranes and mitochondria in
this subset with different labels. From those 70 images, 14
images were randomly selected and used for training and the
56 remaining images were used for testing.

3) Drosophila VNC dataset: This dataset contains 30 im-
ages from Drosophila first instar larva ventral nerve cord
(VNC) [16], [17] acquired using serial-section transmission
electron microscopy (ssTEM [36], [37]). It has a resolution
of 4 × 4 × 50 nm/pixel and each 2D section is 512 by
512 pixels. For this dataset, an expert annotated membranes,
mitochondria, and synapses with different labels. We used 15
images for training and 15 images for testing.

The results presented in this paper were generated using a
HPDL980 server containing 160, 2.40 GHz Intel CPUs and
750G of memory. The horse dataset, requires 19G of memory
during training, while the mouse neuropil and Drosophila VNC
datasets require 13G and 14G of memory, respectively. It
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(a) (b)
Fig. 7. Horse segmentation experiment on the Weizmann horse dataset. (a)
The test F-value at different stages of the series for different methods with
different number of scales. (b) The precision-recall curves for test images and
for different methods (the last stage of the series). Using more scales improves
the results.

took about 6, 5, and 3 days per stage to train the multi-
scale contextual model on the horse, mouse neuropil, and
Drosophila VNC datasets, respectively. As mentioned before,
the training time of the MCMS model is almost the same as the
multi-scale contextual model. Unlike the training, our model is
relatively fast at the test time. Applying the classifiers weights
on each input image takes less than one minute. Details
regarding the parameters for each experiment are described
in detail in the following sections.

B. Multi-scale contextual model (horse segmentation)

In this experiment, we test the multi-scale contextual model
for horse segmentation. We used MLP-ANNs [38], [39] as
the classifier in the series architecture, as in [12]. Each
classifier in the series has one hidden layer with 30 nodes.
Back-propagation was used to learn the weight vector and
biases [38], [39].

Input image feature vectors were computed on a 31 × 31
sparse stencil [12] centered on each pixel. The size of the
feature vector is 57. The context features were computed using
5×5 patches at five scales (one at original resolution and four
at coarser scales). We used a Gaussian filter of size 7 × 7 to
generate the scale space.

The average F − value = 2×Precision×Recall
Precision+Recall at threshold

0.5, for different methods is shown in Figure 7(a). As we
expected, the performance increases with the number of scales.
The test F-value at stage 5 for multi-scale contextual model
with 5 scales is 87.3%. This result outperforms the auto-
context result which is 84% [2]. It must be emphasized that
the improvement from the first stage to the last stage in our
method is 25.2% while the improvement in the auto-context
method is almost 5%. It is worth noting that we use a simple
stencil to generate the input image feature vector instead of
applying large filter banks to the input image as in [2] and our
first stage F-value (62.1%) is less than auto-context first stage
F-value (79%), but, our last stage result F-value is higher. This
shows that multi-scale contextual model can compensate for
the bad result of the first stage and improves the performance
in later stages by using context in an effective manner. The
precision-recall curves of the last stage results for the test set
are shown in Figure 7(b).

Figure 8 shows some examples of our test images and their
segmentation results using different methods with different
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Fig. 8. Test results for the horse segmentation experiment. (a) Input images,
(b) single-scale contextual model [12], (c) multi-scale contextual model with 4
scales, (d) multi-scale contextual model with 5 scales, (e) groundtruth images.
The multi-scale contextual model is successful in removing the side effects
of the cluttered background and filling the body of horses.

Input Stage1 Stage2 Stage3 Stage4 Stage5

Fig. 9. Test results for the horse segmentation experiment. The first column
shows the input image and the remaining columns show the output at different
stages of multi-scale contextual model.

number of scales. As we can see, the multi-scale contextual
model outperforms the single-scale contextual model in re-
moving the side effects of the cluttered background and filling
the body of horses. For example, in the middle column, the
rider is removed by the multi-scale contextual model with 5
scales. Figure 9 shows two examples of test images and the
corresponding segmentation results at different stages of the
multi-scale contextual model. The converges of the model can
be seen qualitatively in the results.

C. Multi-scale contextual model (membrane detection)

In this experiment, we show the performance of multi-
scale contextual model for membrane detection on the mouse
neuropil dataset. We used the same architecture as the previous
experiment except that each MLP-ANN in the series had one
hidden layer with 10 nodes.

This dataset is very imbalanced since the number of positive
samples. i.e., membrane pixels, is much less than the negative
samples, i.e., non-membrane pixels. To provide a relatively
balanced dataset and optimize the MLP-ANN performance,
5.5 million samples were randomly selected from the training
set to contain 1

3 positive and 2
3 negative examples, as in [12].

Input image feature vectors were computed on a 11 × 11
stencil. Context features were computed on 5 × 5 patches at
four scales (one at original resolution and three at coarser
scales). The classifier then gets as input the 5 × 5 patch at
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(a) (b)
Fig. 10. Membrane detection experiment on the mouse neuropil dataset.
(a) The test F-value at different stages of the series for different methods.
The F-value for the RLF and gPb-OWT-UCM methods are 0.59 and 0.46,
respectively. (b) The precision-recall curves for test images and for different
methods (the last stage of the series).

the original resolution (CN
�
0(i,j)

(0) in equation 4) and 5 × 5
patches at three coarser scales (CN

�
l
(i,j)(l) in equation 4). We

used a Gaussian filter of size 5×5 to generate the scale space.
We compared the performance of our methods with the

RLF [29] and gPb-OWT-UCM (global probability of boundary
followed by the oriented watershed transform and ultrametric
contour maps) [26]. The average F-value for different stages
of multi-scale contextual and MCMS models is shown in
Figure 10(a). The performance of the multi-scale contextual
model is 2.65% better than using a single-scale context [12].
The precision-recall curves for pixel-wise membrane detection
are shown in Figure 10(b).

Figure 11 shows five examples of our test images and cor-
responding membrane detection results for different methods.
As shown in our results, the multi-scale contextual model
outperforms the methods in [12], [29], [26], and it is more
successful in removing undesired parts from inside cells.

D. MCMS contextual model (mitochondria segmentation)

In this section, we show that MCMS model outperforms the
multi-scale contextual model in mitochondria segmentation for
the mouse neuropil dataset. For this dataset, the labels are only
available for membrane and mitochondria, so, Nobj = 2 in
Algorithm 1. We used MLP-ANNs with 10 hidden nodes for
both membrane and mitochondria classifiers.

Input image feature vectors were computed on 11× 11 and
15 × 15 stencils for membrane and mitochondria classifiers,
respectively. For both of the categories, the context features
were computed on 5 × 5 patches at four scales. To compare
the performance, we used the same mitochondria classifiers
with the same parameter settings in the multi-scale contextual
model. The average F-value at different stages and for different
methods is shown in Figure 12(a). The performance of the
MCMS model is 2.42% better than the multi-scale contextual
model. The precision-recall curves for pixel-wise mitochondria
segmentation are shown in Figure 12(b). Figure 13 shows five
test examples and corresponding mitochondria segmentation
results for different methods. The MCMS model is more
successful in correcting both false positive and false negative
errors compared to the multi-scale contextual and RLF models.
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Fig. 11. Test results for the membrane detection experiment (mouse neuropil dataset). (a) Input images, (b) gPb-OWT-UCM method [26], (c) RLF method [29],
(d) single-scale contextual model [12], (e) multi-scale contextual model, (f) groundtruth images. The multi-scale contextual model is more successful in removing
undesired parts from inside cells than the algorithms proposed in [12], [29], [26]. For gPb-OWT-UCM method, the best threshold was picked and the edges
were dilated to the true membrane thickness.
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Fig. 12. Mitochondria segmentation experiment on the mouse neuropil
dataset. (a) The test F-value at different stages of the series for different
methods. (b) The precision-recall curves for test images and for different
methods (the last stage of the series).
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Fig. 13. Test results for the mitochondria segmentation experiment (mouse
neuropil dataset). (a) Input images, (b) RLF method [29], (c) multi-scale
contextual model, (d) MCMS contextual model, (e) groundtruth images.
The MCMS contextual model is more successful in correcting both false
positive and false negative errors compared to other methods. Some of the
improvements are marked with red rectangles.

E. MCMS contextual model (mitochondria and synapse seg-

mentation)

In this experiment, we test the MCMS model performance
on the Drosophila VNC dataset with three object categories:
membrane, mitochondria, and synapse. We used MLP-ANNs
with 10 hidden nodes as classifier in the series.

Input image features were computed on 11×11, 15×15, and
15× 15 for membrane, mitochondria, and synapse classifiers
respectively. Similar to previous experiments, context features
were computed on 5 × 5 patches at four scales. To compare
with the multi-scale contextual model, we used classifiers with
the same parameter settings for mitochondria and synapse
segmentation. Figure 14 shows five test samples and cor-
responding mitochondria segmentation results for different
methods. The MCMS model gives cleaner results compared
to other methods. Figure 15 shows synapse segmentation

(a
)
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)

(c
)

(d
)

(e
)

Fig. 14. Test results for the mitochondria segmentation experiment
(Drosophila VNC dataset). (a) Input images, (b) RLF method [29], (c) multi-
scale contextual model, (d) MCMS contextual model, (e) groundtruth images.
The MCMS contextual model gives cleaner results compared to other methods.
Some of the improvements are marked with red rectangles.

results for five test samples. The MCMS model is more
successful in correcting false positive errors compared to the
multi-scale contextual model. It must be emphasized that in
this experiment we target four elements of synapses, i.e.,
synapstic cleft, postsynaptic density, T-band, and vesicles,
simultaneously, which is a challenging task even for expert
anatomists. That explains why the results are not as good as
the membrane and mitochondria segmentation results.

The average F-value for the test set at different stages is
shown in Figure 16. The MCMS model outperforms multi-
scale contextual model with 2.9% and 2.92% in mitochondria
and synapse segmentation respectively. The F-value of RLF
method for mitochondria segmentation is 60% which is about
7% worse than the MCMS model.

F. Results discussion

In all of the above experiments, our goal was to study the
effect of using rich contextual information in segmentation
performance. We only used the samples of input images
on a stencil structure as input image features. The overall
performance can be improved by applying filter banks to input
images and extract more informative features like what Tu et

al. [2] did for horse segmentation. We previously showed [33]
extracting Radon-like features from input images can improve
the membrane detection results.

We noticed that in the MCMS model if a dataset is highly
imbalanced then the effect of small classes on big classes
is negligible. For example, the mitochondria contextual in-
formation in section IV-D and the synapse and mitochondria
contextual information in section IV-E did not improve the
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Fig. 15. Test results for the synapse segmentation experiment (Drosophila
VNC dataset). (a) Input images, (b) multi-scale contextual model, (c) MCMS
contextual model, (d) groundtruth images. The MCMS contextual model is
more successful in correcting false-positives errors than multi-scale contextual
model. Some of the improvements are marked with red rectangles.

membrane detection results. Nonetheless, big classes or same-
size classes can improve the segmentation results of small
classes as we showed in the experiments. In the mouse
neuropil dataset the mitochondria class is 2.5 times smaller
than the membrane class and in the Drosophila VNC dataset
the mitochondria and synapse classes are 4.5 and 6 times
smaller than the membrane class respectively.

In general image segmentation applications, other powerful
techniques such as graph cuts and level sets can be applied to
the results of the MCMS model to improve the segmentation
accuracy. In segmentation of EM images, the final segmenta-
tion results can be improved further by applying appropriate
post-processing techniques. For example, Andres et al. [40]
propose a hierarchical method that uses over-segmented im-
ages obtained from membrane detection results and apply a
classifier to merge regions. Funke et al. [41] and Liu et al. [42]
use a tree structure to merge over-segmented regions for cell
segmentation. These post-processing approaches can improve
Rand error [43] for membrane detection. However, in our pro-
posed method we target the pixel error and our method can be
used for general computer vision datasets. The mitochondria
and synapse segmentation results also can be improved by
applying morphological post-processing, which removes tiny
false positive errors. Our goal in the experiment section was
to validate the multi-scale and the MCMS contextual models
and study of post-processing approaches are beyond the scope
of this paper.

V. CONCLUSION

We develop a supervised segmentation framework, which
exploits contextual information from multiple objects and at
different scales for learning discriminative models. Our multi-
class multi-scale (MCMS) contextual model enables an im-
plicit learning of geometrical relationships and dependencies
among multiple objects present in an image. We applied
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Fig. 16. Mitochondria and synapse segmentation experiment on the
Drosophila VNC dataset. (a) The test F-value at different stages of the series
for different methods (mitochondria segmentation). (b) The test F-value at
different stages of the series for different methods (synapse segmentation).

our method to object segmentation in EM images. Results
indicate that using multi-scale and cross-object contextual
information can improve the segmentation results for each
of the components present in EM images such as membrane,
mitochondria, and synapse. It is worth noting that the proposed
method is not restricted to this application and can be used in
other image segmentation problems.

Even though our model has hundreds of parameters to learn,
the complexity remains tractable since classifiers are trained
one at a time separately. Our model can specially be useful in
segmentation of imbalanced datasets that only a few samples
of a particular object/class are available. In these datasets,
large classes can improve the segmentation results of the small
classes by providing informative contextual information.

We conclude by discussing a possible extension of the
MCMS model presented in this paper. Our feature extraction
model only exploits pixel intensities from input images and
probabilities from context images. While this reduces the
computational complexity and keeps the model simple, more
complex features extracted from both input and context images
can improve the results.
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