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ABSTRACT

High-resolution microscopy techniques have been used to
generate large volumes of data with enough details for un-
derstanding the complex structure of the nervous system.
However, automatic techniques are required to segment cells
and intracellular structures in these multi-terabyte datasets
and make anatomical analysis possible on a large scale. We
propose a fully automated method that exploits both shape
information and regional statistics to segment irregularly
shaped intracellular structures such as mitochondria in elec-
tron microscopy (EM) images. The main idea is to use al-
gebraic curves to extract shape features together with texture
features from image patches. Then, these powerful features
are used to learn a random forest classifier, which can pre-
dict mitochondria locations precisely. Finally, the algebraic
curves together with regional information are used to segment
the mitochondria at the predicted locations. We demonstrate
that our method outperforms the state-of-the-art algorithms
in segmentation of mitochondria in EM images.

Index Terms— Mitochondria segmentation, algebraic
curves, random forest, electron microscopy imaging

1. INTRODUCTION

The morphology and distribution of intracellular components
are of substantial biological importance for neuroscientists.
For example, abnormal mitochondria morphology can be
seen in Parkinson’s disease-related genes [5] or geometrical
properties of mitochondria can be used to distinguish can-
cer cells from normal cells [13]. In addition, an accurate
mitochondria segmentation would improve cell segmentation
results by distinguishing mitochondria membranes from other
cell membranes [7]. Electron microscopy (EM) imaging tech-
niques generate nanoscale images that contain enough details
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for study of intracellular components, such as mitochon-
dria. However, the sheer size of a typical EM dataset, often
approaching tens of terabytes [1], makes manual analysis
infeasible [3]. Hence, automated image analysis is required.
However, fully automatic analysis is challenging because
numerous intracellular components exhibit irregular shapes
and have similar local appearances [12]. Moreover, the tex-
ture and physical topologies of intracellular components are
highly variable [9] (Figure 1). A robust automated segmenta-
tion method must overcome these issues.

Fig. 1. Mitochondria (red outlines) appear in different shapes
and intensities in EM images. This variety and the existence
of other similar structures make segmentation a difficult task.

General segmentation methods which have been proposed
for natural image datasets yield poor results when applied to
EM images [12]. Jain et.al. [8] showed that global proba-
bility boundary [2] and boosted edge learning [6], which re-
sult in outstanding segmentation performance on natural im-
ages, perform poorly on EM datasets. Therefore, a successful
method for segmenting specific structures such as mitochon-
dria must be optimized for EM images.

There are several segmentation methods that handle EM
images specifically. In [18], a graph-cut method is proposed
that minimizes an energy function over the pixel intensity and
flux of the gradient field for cell segmentation. However, this
model might be confused by the complex intracellular struc-
tures. In [17], textural information is used to train a Gentle-
boost classifier for mitochondria segmentation of the lateral
part of the rat’s brain. In [13], texton-based region features
are used with different classification methods to segment mi-



tochondria in MNT-1 cells. Even though these methods make
extensive use of textural information, they ignore the shape
information. In [14], Ray features are proposed to capture
shape information for detection of irregular shapes such as
mitochondria. But, they only rely on geometric information
of shapes and ignore texture information. Radon like fea-
tures [10] are another set of features designed to take both
texture and geometric information into account and can be
tuned to segment different objects in EM images.

More powerful mitochondria segmentation methods work-
ing on 3D volumes have been proposed recently. Lucchi
et.al. [11] solved a graph partitioning problem by learning
a classifier based on the textural and shape information to
segment mitochondria. Giuly et.al. [7] proposed a multi-step
approach that exploits a patch classifier followed by a contour
pair classification and level sets. We also propose a multi-
step approach that combines textural and shape information
to provide a high-accuracy mitochondria segmentation. As
a first step, we extract patches with different sizes from the
input image and fit algebraic curves, of different degrees, to
each patch. Next, shape and texture features are extracted
based on the fitted polynomials. These features are then used
to train a classifier that predicts if a patch belongs to mito-
chondria. Finally, in the patches containing mitochondria,
based on the classifier decision, we use the connected com-
ponent of the center pixel bounded by the fitted polynomial
to segment the mitochondria.

Algebraic curves, i.e., the zero level set of polynomi-
als in two variables, are suitable for modelling complicated
shapes [16]. Moreover, they take advantage of all data in an
image patch and thus are able to find weak edges embedded
in noise [15]. We take advantage of the power of algebraic
curves in finding ambiguous edges in cluttered backgrounds
to estimate the boundary of mitochondria and extract infor-
mative shape and textural features from images. The regional
features, i.e., textural features from image regions, are more
robust and informative compared to pixel features.

2. METHOD

Our proposed method is composed of four steps: Curve fit-
ting, feature extraction, detection, and pixel labelling.

2.1. Curve fitting

A dth degree polynomial can be represented by fd(x, y) =∑
0≤l+m≤d almxlym. Given an n × n image patch P (x, y),

we fit a polynomial to the patch by minimizing the cost func-
tion E:

E =

n∑
i,j=1
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where∇P (xi, yj) denotes the gradient vector at pixel (xi, yj),
∇fd(xi, yj) is the gradient vector of polynomial f at (xi, yj),
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Fig. 2. (a) Two patches with mitochondria (two left columns)
and two patches without mitochondria (two right columns) in
them, (b) fitted polynomials of degree 4 to the patches in (a),
and (c) the zero level sets overlayed on the input patches.

and wij is the length of ∇P (xi, yj). This minimization
problem can be solved using linear least squares [15].

In Eq. 1, the f2
d (xi, yj) term determines the zero level

set of the fitted polynomial, i.e., fd(x, y) = 0, and the
(
∇P (xi,yj)

wij
.∇fd(xi, yj) − 1)2 term forces the ∇fd(x, y) to

have the same direction as ∇P (x, y) with unit magnitude
at each point. The effect of large gradients in noisy areas
is damped by this unit magnitude constraint. Finally, the
w2

ij term increases the influence of pixels with large gradient
magnitude. These pixels are most likely on the target con-
tour and have larger gradient magnitudes compared to noisy
pixels. The above-mentioned properties make this fitting
strategy appropriate for noisy EM images with complex re-
gional textures. In addition, this fitting strategy is rotation and
scale invariant and thus is suitable for shape representation.
Figure 2 shows the fitted polynomials to two patches with
mitochondria and two patches without mitochondria in them.

2.2. Feature extraction

We use zero level sets of the fitted polynomials (Figure 2(c))
to extract both shape and textural features from each patch.
The zero level set divides each patch to two disjoint regions:
inside, i.e., fd(x, y) > 0 and outside, i.e., fd(x, y) < 0. Each
polynomial thus forms a hypothesis of existence of a mito-
chondrion in the patch. The inside region and the zero level
set curve exhibit similar features among the patches with mi-
tochondria (two left columns in Figure 2) which are different
from features of the patches without mitochondria (two right
columns in Figure 2). The textural features are extracted from
inside of the zero level set curve and include Hu’s invariant
moments, mean, variance, skewness, kurtosis, and entropy of
the pixel intensities. The shape features are extracted from
the zero level set curve itself. They contain Hu’s invariant
moments of the curve and the average intensity of pixels on
the curve. We also use the ratio of the inner area to the curve
length as another shape feature. The combination of the tex-



tural and shape features provide a rich set of features that can
be used to detect mitochondria in an image.

2.3. Detection

The extracted features from each patch are used to train a bi-
nary random forest classifier that predicts whether that patch
belongs to a mitochondrion or not. In practice, we extract
many patches with different sizes at different locations and fit
polynomials of different degrees to each of them. It is worth
noting that we use different patch sizes due to different sizes
of mitochondria and fit polynomials of different degree due to
different shape complexities of mitochondria. The shape and
textural features are then extracted from each patch. To train
the classifier, the patches that their centers are close to centers
of mitochondria are considered as positive samples and the
remaining patches are considered as negative samples. The
centers of mitochondria are the center of mass of connected
components in groundtruth images. The classifier indeed tests
the hypothesis that made by the polynomials. It must me em-
phasized that many of them will be false because there are
few mitochondria in each image.

2.4. Pixel labelling

For a given input image, overlapping patches with different
sizes are extracted. Next, polynomials of different degrees
are fitted to each patch and the shape and textural features are
computed for each patch. These features are then passed to
the random forest classifier. If a patch is classified as positive
by the random forest classifier, all the connected pixels of the
center pixel in that patch are marked as mitochondria in the in-
put image. The connected pixels of the center pixel are found
in a certain threshold around the intensity of the center pixel.
To add more certainty to the labelling process, we only mark
the connected pixels inside the zero level set as mitochondria
and consider the remaining pixels as background.

The segmentation accuracy can be improved by applying
morphological post-processing. We apply the morphological
dilation followed by the region filling to fill holes in the seg-
mented mitochondria.

3. RESULTS AND CONCLUSION

We test the performance of our proposed method on two dif-
ferent sets of EM images: mouse neuropil and Drosophila
ventral nerve cord (VNC) [4]. The mouse neuropil dataset
contains 40 images of size 700 × 700. 14 of these images
were used for training and the remaining images were used
for testing. The Drosophila VNC datset contains 30 images of
size 512×512. 15 of these images were used for training and
the remaining images were used for testing. The groundtruth
images of mitochondria were annotated by a neuroanatomist.

For both of the datasets, we extracted patches with four
different sizes, 48× 48, 64× 64, 88× 88, 104× 104, and fit

Table 1. Testing performance of different methods for the
mouse neuropil dataset.

Method Precision Recall Fvalue

Pixel classifier 67.18% 68.05% 67.61%

RLF [10] 78.07% 82.31% 80.14%

Proposed method 82.51% 82.47% 82.49%

polynomials of two different degrees, 2 and 4. The discussed
features in section 2.2 were then extracted and a random forest
classifier with 100 trees was trained.

We compared the accuracy of our proposed method with
a patch-based pixel classifier and the radon-like features
method [10]. An artificial neural networks classifier with 10
hidden nodes was used as the pixel classifier. For both of the
pixel classifier and RLF method, the best threshold was found
using the training results. Table 1 shows the segmentation ac-
curacy of different methods for the testing set in the mouse
neuropil dataset. It can be observed that our proposed method
has better performance than the other two methods; a 14.9%
and 2.4% improvement in the testing F-value compared to the
pixel classifier and the RLF method respectively.

For the Drosophila VNC dataset, we compared our pro-
posed method with Giuly et.al. [7] method 1 in addition to
the pixel classifier and the RLF method. This dataset is more
difficult and the quality of images is lower than the mouse
neuropil dataset. While the performance of RLF method was
close to the performance of our proposed method for the
mouse neuropil dataset, our method outperformed the RLF
method with more than 20% in the testing F-value for this
dataset. One of the advantages of our method is that it is
robust against the texture and noise in the EM images and
thus performs reasonably well even for low quality datasets
like Drosophila VNC dataset. The segmentation accuracy
results are shown in Table 2. The segmentation results of
mitochondria for two test images from the mouse neuropil
and the Drosophila VNC dataset are shown in Figure 3.

Table 2. Testing performance of different methods for the
Drosophila VNC dataset.

Method Precision Recall Fvalue

Pixel classifier 31.29% 60.44% 41.24%

RLF [10] 46.12% 57.67% 51.25%

Giuly et.al. [7] 64.22% 57.01% 60.40%

Proposed method 78.57% 68.08% 72.95%

Conclusion: This paper introduced a mitochondria seg-
mentation framework using algebraic curves. The main idea

1The results of Giuly et.al. [7] method was only available for the
Drosophila VNC dataset. We thank Richard J. Giuly for providing these
results.



(a) Input image (b) Pixel classifier (c) RLF [10] (d) Proposed method (e) Groundtruth

(a) Input image (b) Pixel classifier (c) RLF [10] (d) Giuly et.al. [7] (e) Proposed method (f) Groundtruth

Fig. 3. Test results for the mitochondria segmentation. First row: mouse neuropil dataset, second row: Drosophila VNC dataset.

of our method is to use the power of algebraic curves to
extract both shape and textural features from input images.
The algebraic curves use all the information in a window
and are robust against noise and texture. Moreover, algebraic
curves enable our method to use regional features that are
more informative compared to pixel-wise features. We use
the extracted feature to train a random forest which detects
mitochondria in input images. Finally, we apply an automatic
pixel labelling approach by finding connected components of
the center pixels in the patches that the classifier classifies
them as positive samples.
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