Fast AdaBoost Training using Weighted Novelty Selection
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Abstract—1In this paper, a new AdaBoost learning frame-
work, called WNS-AdaBoost, is proposed for training discrim-
inative models. The proposed approach significantly speeds up
the learning process of adaptive boosting (AdaBoost) by reduc-
ing the number of data points. For this purpose, we introduce
the weighted novelty selection (WNS) sampling strategy and
combine it with AdaBoost to obtain an efficient and fast learning
algorithm. WNS selects a representative subset of data thereby
reducing the number of data points onto which AdaBoost is
applied. In addition, WNS associates a weight with each selected
data point such that the weighted subset approximates the
distribution of all the training data. This ensures that AdaBoost
can trained efficiently and with minimal loss of accuracy.
The performance of WNS-AdaBoost is first demonstrated in
a classification task. Then, WNS is employed in a probabilistic
boosting-tree (PBT) structure for image segmentation. Results
in these two applications show that the training time using
WNS-AdaBoost is greatly reduced at the cost of only a few
percent in accuracy.

I. INTRODUCTION

OOSTING is a general learning concept to train a

single strong learner by combining a set of weak
learners [1]. Based on this concept, many methods have
been proposed in the literature to solve several problems,
such as classification [2], clustering [3], recognition [4], etc.
The first practical polynomial-time boosting algorithm was
developed by Schapire in 1990 [5]. And, in 1995, Freund and
Schapire proposed AdaBoost [6]. AdaBoost learns a strong
classifier by linearly combining a set of weak classifiers. In
order to focus the learning on the most difficult samples,
it uses a sample weighting strategy. After the addition of
each weak classifier, a sample weight is updated indicating
the importance of the sample for classification by subsequent
weak classifiers. The weights of the misclassified samples are
increased, and the weights of correctly classified samples are
decreased to lead the new weak classifiers to focus on the
more difficult samples. Despite the simplicity of the method,
AdaBoost has been shown to achieve good bounds on its
training and generalization error [7].

Following the success of AdaBoost, several related ap-
proaches have been proposed. These include Gentle Ad-
aBoost (GAB) [8], FloatBoost [4], robust alternating Ad-
aBoost (RAAB) [9], Modest AdaBoost [10], AdaTree [11],
probabilistic boosting tree (PBT) [2], among others. GAB
uses Newton’s algorithm instead of greedy steps for opti-
mization, thereby improving generalization performance [8].
FloatBoost also improves the generalization performance by
backtracing and pruning previously learnt weak classifiers

deemed irrelevant. RAAB and modest AdaBoost use mod-
ified loss functions to reduce the effect of outliers in the
optimization. AdaTree and PBT both use a tree structure
and implement AdaBoost as the classifier on the nodes. The
advantage of using a tree structure is that by focusing the
training of AdaBoost on simpler subproblems, training of
the classifiers is simpler and requires less iterations. This
makes AdaTree and PBT particularly useful for learning with
larger datasets. Another significant advantage of PBT is that
it provides an approach for learning the posterior distribution
which is useful in vision problems.

Although the AdaBoost learning algorithm is considered to
be computationally efficient, training can be time consuming
in some cases. An obvious example, is that of learning from
large datasets, and this issue can aggravated depending on the
learning complexity of the weak classifier. Convergence of
the learning algorithm can also be slow for problems with a
very complex decision boundary. In those problems the first
weak classifiers influence the re-weighting process making
it difficult for later weak classifiers to focus exclusively on
the harder examples. As mentioned earlier, AdaTree and
PBT are helpful in these cases because the strong classifier
is obtained by combining simpler AdaBoost classifiers and
because classifiers in lower levels of the tree learn from
subsets of the original data [11], [2]. The tree structure is
also helpful in the testing phase because the classification
of some samples can be obtained without fully traversing
the tree. Another approach for fast training proposed in the
literature involves resampling the original data according to
the distribution weights [12].

In this paper, we propose a new learning framework which
speeds up the training of AdaBoost and any other boost-
ing based algorithms, including all of the aforementioned
methods. For this purpose, we introduce a novel sampling
strategy, weighted novelty selection (WNS), and combine
it with AdaBoost to obtain the WNS-AdaBoost framework.
WNS is a sampling method which reduces the number of data
points by selecting representative points from the dataset. It
also determines a corresponding weight for each of these
selected points which shows the importance of that point
and aims at preserving the distribution of the original data.
By reducing the number of training samples, the proposed
framework significantly reduces the training time. The output
of the WNS algorithm is then used by AdaBoost, or any of its
variants, to learn a discriminative model. This is achieved by
training AdaBoost on the representative set of data points and



initializing the weight distribution with the weights obtained
from WNS after normalization.

II. WEIGHTED NOVELTY SELECTION

Weighted novelty selection is the pre-processing sampling
method in the WNS-AdaBoost framework. The main idea is
to provide the boosting algorithm with a concise summary
of the training dataset such that the learning algorithm can
quickly and efficiently train the classifier. WNS achieves this
by selecting representative points from the training dataset,
and by deriving a corresponding set of weights such that
the two pieces of information summarize the original data
distribution.

WNS was inspired by Platt’s work on resource-allocating
networks [13]. Platt introduced a criterion to decide whether
a given input point should be added to a growing radial
basis function neural network in order to minimize network
error. The point was added if the distance to the other points
already in the network was larger than a threshold and the
network error was above another threshold. Fundamentally,
Platt’s criterion aims to select a reduced set of data points
that preserves the data structure relevant to the reduction of
the modeling error.

Similarly, WNS picks a data point as a representative
point if the smallest distance to all previous representative
points is larger than a threshold §. Hence, 0 is a parameter
that indirectly controls the number of representative points.
Smaller § increases the number of representative points and
vice versa. This procedure ensures that enough points are
picked to cover the whole space while keeping the number
of them to a minimum.

The set of representative points provides a limited charac-
terization, however, because it does not accurately reflect the
density of the input data points. For example, in a classifica-
tion problem with classes separated by a low density region,
one wants to place the decision boundary between the two
classes to minimize the error. However, the representative set
alone would fail to properly provide this information, unless
the clusters are clearly separated and the separation is larger
than §/2. Hence, to more accurately capture the structure
of the original training dataset, WNS associates a weight
to each representative point. This weight corresponds to the
number of input data points assigned to a representative data
point, which captures information about the data distribution.
Intuitively, since the weight states how many data points are
summarized by a representative point, one can think that
representative points with larger weights correspond to areas
with higher density and thus are more relevant.

The WNS sampling strategy is quite simple and follows
directly the ideas described above. Consider a set of N
input data points X = {x1,Xa,...,Xn}, and denote the
representative set by X* = {x;} and the corresponding set
of weights by W = {w;}, j =1,2,.... In addition, denote
by Ix = {j1,...,jn} the indices of the representative points
in X% for each x; € X, such that x; € X is represented by
zi € X R

Accordingly, the WNS sampling algorithm proceeds as
follows:

1) Initialization: set X%
{1,0,...,0}, and Y =
2) For each x; € X \ X,
a) Compute the distance of x; to all x; e Xn,
d(xi,%]);
b) Find n = argmin d(x;,x]);
c) If d(x;,x)) >l d,
Add the point to X * and set the corresponding
weight in W to 1;
else if d(x;,x),) <46/2,
Set j; = n and w, = w, + 1;
else
Add x; to Y.
3) For each x; €Y,
a) Compute the distance of x; to all X; e X,
d(xi,%])s
b) Find n = argmin,; d(x;,x));
¢) Set j; =n and w, = w, + 1.

= {xi}, W = {1}, Ix =

Note that even though the algorithm depicted here uses
distances, the algorithm can be readily adapted to use similar-
ities. This can be obtained simply by inverting the inequality
comparisons. For dissimilarities, the distance metric can be
relaxed to a semi-metric (which does not verify the triangle
inequality) without affecting the outcome.

Computationally, the WNS sampling algorithm is fast and
efficient since the algorithm proceeds in a single pass through
the data. The computational complexity is O(NM), where
N is the number of points in the original dataset and M is
the number of points in the representative set. Although in
theory it is possible for the computationally complexity to be
O(N?), this corresponds to the limiting case § — 0, in which
case the representative set equals the input data. Typically,
M is much smaller than N. An additional advantage is that
the WNS algorithm can be easily parallelized.

It is noteworthy that WNS is conceptually similar to
the weighted Nystrom approach proposed for kernel meth-
ods by Zhang and Kwok [14]. Both methods provide a
weighted sampling strategy for summarizing the dataset. The
weighting have slightly different roles however. In weighted
Nystrom, the weights are utilized to approximate the com-
putation on large kernel systems by compressing the kernel
matrix and expanding the eigendecomposition. In contrast,
WNS explicitly summarizes the data distribution and passes
that information directly to the boosting algorithm using the
weight data distribution.

Clearly, many density-preserving data characterization
methods exist in the literature, including: mixture mod-
els [15], [16], mean shift [17], vector quantization [18],
etc. However, these methods have typically several data-
dependent parameters that need to be carefully set. In com-
parison, WNS has only one parameter, §, which is largely
independent of the data if the data range is normalized. More-
over, WNS makes no assumptions on the data distribution.



We propose to employ WNS to speed up AdaBoost. In this
regard, WNS is applied to each of the classes to reduce the
number of points in them. Afterward, the selected points and
corresponding weights are passed to AdaBoost. In addition
to reducing the number of points, which can speed up any
boosting algorithm, in this framework AdaBoost can take the
advantage of the corresponding weights. In other words, not
only the reduction of the number of data points improves the
speed of the AdaBoost but also the corresponding weights
help to keep the performance of the AdaBoost at reasonable
rate. So unlike to the usual method that the weights are the
same for all the input points, this time each input point has
its specific weight which shows how important it is.

ITII. WNS-ADABOOST

The AdaBoost algorithm learns a strong classifier by
linearly combining (simpler) weak classifiers according to,

H(z) =Zatht(aj), (1

where h;(x) denotes a weak classifier. Different weak classi-
fiers can be used in this framework. The key contribution of
AdaBoost is to use a distribution, i.e. a set of weights, over
the training samples. These weights are updated adaptively
at each iteration of AdaBoost and play an important role in
determining the combination factor for each weak classifier,
i.e. {a;} in equation 1.

At each iteration, AdaBoost selects the weak classifier that
minimizes the weighted error,

e = wilhy(zi) # i, 2)

where w; is the sample weight and y; denotes the desired
output for input z;. This error is calculated with respect to
the weights w,; on which the weak classifier is trained. The
vote weight of each classifier is computed using this error

1—6,5
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Accordingly, the weights are updated with

witl = wzt' exp(—ayyihi(;))

: 7 )

where w! denotes the weight of training sample z; at iteration
t and Z; is a normalization factor which is chosen so that
w'T will be a probability distribution. This update rule
increases the weights of the samples which are difficult to
classify and decreases the weights of the samples which are
easy to classify, so, the next weak classifier focuses on the
more difficult samples.

Typically, the weights are initialized uniformly because
prior knowledge about the importance of the training samples
is not available. Put differently, AdaBoost is left to infer
the distribution of the samples solely based on their relative
amount. In the proposed method, however, WNS is used to
explicitly capture and summarize the data distribution using
a reduced number of training samples. This information is

transferred to AdaBoost by setting the weights according to
the values obtained from WNS. Hence, the weights are no
longer initialized uniformly and each representative point has
its own weight which can be different from the other points.
Using this strategy, instead of a large number of training
points with the same weights, AdaBoost is given a smaller
number of training points together with prior information
about the importance of them. To summarize, WNS speeds
up AdaBoost in the training stage by reducing the number
of training samples and maintains also the performance of
AdaBoost at a good level by providing prior information
about the importance of the selected representative points.
Given a training set X = {z1,...,zn} and the corre-
sponding labels L = {l,...,In}, [; € {—1,1}, the WNS-
AdaBoost training algorithm proceeds as follows:
1) Separate the classes and make two sets: X7 = {z;|l; =
—1}, X2 = {1‘1|l1 = 1}
2) Choose a 6 and run WNS for X; and Xs. The
representative points and weights for each class are:
X1 — (Zl,Wl) , X2 — (Z27W2).
3) Construct a new training set Z = {Z1,Z>} and W =
{Wy, Wa}.
4) Normalize W so it will be a probability distribution.
5) Use Z, W to train an AdaBoost classifier.

Although we described the WNS-AdaBoost for training
the AdaBoost, one can notice that it can be used also in other
AdaBoost based frameworks, e.g. PBT, AdaTree, etc. This
generalization can be described by considering the WNS as
a pre-processing step. In other words, WNS gets the training
set and provides a new training set with corresponding
weights.

IV. EXPERIMENTAL RESULTS

We illustrate the performance of WNS-AdaBoost in terms
of accuracy and speed on two different problems: Poker
hand classification and texture segmentation. In the first
experiment we verify the effectiveness of WNS-AdaBoost in
a simple AdaBoost structure while in the second experiment
we show its performance in the probabilistic boosting tree
(PBT) framework.

A. Poker hand classification

The poker hand dataset is available from the UCI Machine
Learning Repository [19]. The dataset contains 25010 data
points for training and 1000000 data points for testing
distributed over 11 classes. This dataset was used in a two-
class form where the first class represents the hands which
are not a recognized poker hand and the second class contains
the poker hands from one pair to royal flush. The size of
the feature vector is ten, i.e. suit and rank for each card. A
decision tree with 7 nodes was used as the weak classifier
and boosting was run for 600 iterations.

Table I shows the classifier training time and its accuracy
for different parameter values of 6. As we can see by using
0 = 3 the WNS-AdaBoost is more than two times faster than
the conventional AdaBoost algorithm while its accuracy is



TABLE I
TRAINING TIME AND PERFORMANCE FOR THE “POKER HAND” DATASET.

Method 0  Number of training Time for applying Time for Training Testing Speedup
samples WNS (s) training error error
WNS-AdaBoost 3 13396 8.85 135s 13% 20% 2.23
WNS-AdaBoost 2.7 18278 10.05 236.10s 11% 17% 1.3
AdaBoost - 25010 — 320.19s 10.3% 16% -
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Fig. 1.

4% less than the AdaBoost. As ¢ decreases the performance
improves at the cost of speed, e.g. WNS-AdaBoost with
parameter 6 = 2.7 performs almost the same as AdaBoost
while it is 1.3 times faster than AdaBoost.

B. Texture segmentation

In order to show that proposed method is not restricted
to regular AdaBoost algorithm and can be used in any Ad-
aBoost based classifier, we adopted the probabilistic boosting
tree (PBT) [2] together with WNS-AdaBoost for texture
segmentation. The PBT learns a discriminative model in a
hierarchical structure. At each level of the hierarchy, PBT
learns some AdaBoost classifiers and use them to split data
to smaller groups. The details can be found in [2]. In our
experiment the depth of the tree in PBT is two and we used
a decision tree with five nodes as our weak classifier.

The dataset used in this experiment contains 20 star images
generated from five different textures for foreground and
four different textures for background using textures from
Brodatz database [20]. Eight of these images were used for
training and the remaining 12 images were used for testing.
The input feature vector to the PBT classifier was formed
by sampling the input image at every pixel using an 11 x 11
stencil, Figure 1. The size of the feature vector is 41.

The ROC curves for training and testing images are shown
in Figure 2. The accuracy performance of WNS-PBT is close
to the AdaBoost while it is much faster. The classifier training
time for PBT and WNS-PBT with different parameter values
of ¢ is shown in Table II. One can notice that there is a trade-
off between the accuracy and the speed of the classifier. In
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Fig. 2. ROC curves for the texture segmentation experiment.

other words, we can make the classifier faster at the cost
of accuracy. In this experiment it seems that § = .7 is
a reasonable choice that makes the classifier much faster
at the cost of few percents decreasing in the accuracy. It
must be emphasized that speedup in this experiment is much
higher compared to the previous experiment due to the size of
the dataset, so, WNS-AdaBoost is more useful for the large
dataset cases. The segmentation results on some test images
for WNS-PBT and PBT are shown in Figure 3. The results
for WNS-PBT with § = 0.7 and PBT are shown in third
and fourth columns. The results are really close while the



TABLE I
TRAINING TIME FOR THE “TEXTURE SEGMENTATION” EXPERIMENT.

Method 6  Number of training Time for applying Time for Speedup
samples WNS (s) training
WNS-PBT 1 1808 108.62 5.82s 38351
WNS-PBT 0.7 27206 11186.96 502.64s 444
AdaBoost  — 524288 - 62hours —

Input

Fig. 3.

WNS-PBT (§ =1) WNS-PBT (§ =.7)

Test results for the texture segmentation experiment. The first column shows the input image and the remaining columns show the output of

WNS-PBT with § = 1, WNS-PBT with § = 0.7, and PBT classifiers respectively.

WNS-PBT method is 444 times faster than PBT in training.

V. CONCLUSIONS

This paper introduces a new framework WNS-AdaBoost
for efficient learning of discriminative boosting models. The
WNS-AdaBoost framework efficiently selects a reduced set
of representative training points, thus reducing the overall
computational complexity for training and increasing the
speed of the training process. Moreover, by returning the
weights for each of representative point, WNS provides a
compact representation of the distribution of the training
data in a way that is naturally amenable to AdaBoost.
The combination of these two characteristics ensure faster
training and with minimal loss of accuracy.

The improvement in training speed is achieved potentially
at the expense of a small reduction in accuracy. This behavior

is regulated by the sampling parameter ¢. If ¢ is increased
from zero, the size of the representative training set given to
AdaBoost is reduced, thereby increasing the training speed
but decreasing the accuracy because of the increasingly crude
representation of the data. Conversely, as § tends to zero,
WNS outputs the original training data, which is equivalent
to the direct use of AdaBoost. Still, the experiments show
that by appropriately choosing d, it is possible to achieve
large improvements in training speed with negligible loss of
accuracy.

It must be emphasized that the WNS-AdaBoost framework
extends beyond AdaBoost alone to any other AdaBoost-
based classifier. As an example, this generality was explicitly
demonstrated in the application of the framework to the
PBT classifier. Additionally, it is noted that, although the



algorithm was described here only for the two-class case for
ease of presentation, the framework is not restricted to this
case and can be generalized to multi-class problems in a
straightforward way.
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