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Abstract—In bioelectric inverse problems, one seeks to recover
bioelectric sources from remote measurements using a mathe-
matical model that relates the sources to the measurements. Due
to attenuation and spatial smoothing in the medium between the
sources and the measurements, bioelectric inverse problems are
generally ill-posed. Bayesian methodology has received increasing
attention recently to combat this ill-posedness, since it offers a
general formulation of regularization constraints and additionally
provides statistical performance analysis tools. These tools include
the estimation error covariance and the marginal probability
density of the measurements (known as the ‘“‘evidence”) that allow
one to predictively quantify and compare experimental designs.
These performance analysis tools have been previously applied
in inverse electroencephalography and magnetoencephalography,
but only in relatively simple scenarios. The main motivation
here was to extend the utility of Bayesian estimation techniques
and performance analysis tools in bioelectric inverse problems,
with a particular focus on electrocardiography. In a simulation
study we first investigated whether Bayesian error covariance,
computed without knowledge of the true sources and based on
instead statistical assumptions, accurately predicted the actual
reconstruction error. Our study showed that error variance was
a reasonably reliable qualitative and quantitative predictor of
estimation performance even when there was error in the prior
model. We also examined whether the evidence statistic accurately
predicted relative estimation performance when distinct priors
were used. In a simple scenario our results support the hypothesis
that the prior model that maximizes the evidence is a good choice
for inverse reconstructions.

Index Terms—Bayesian estimation, electrocardiography, inverse
solutions.

I. INTRODUCTION

HE PRIMARY GOAL in bioelectric inverse problems is
to recover a bioelectric source distribution given a set of
remote measurements and a mathematical model that relates
the desired spatial source distribution to the measurement data
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distribution. The two best-known examples are inverse elec-
trocardiography (ECG) or magnetocardiography (MCG) prob-
lems, in which one seeks to reconstruct cardiac electrical source
distributions from the distributions of electrical potentials [1],
[2] or the magnetic field on or outside the body surface, and
inverse electroencephalography (EEG) or magnetoencephalog-
raphy (MEG) problems, in which one seeks to reconstruct the
distribution of sources in the brain given electrical or magnetic
measurements on or outside the head [3], [4].

It is well known that due to attenuation and spatial smoothing
inside the medium between the desired sources and the mea-
surement sites, these bioelectric inverse problems are generally
ill-posed; small disturbances in the measured data may yield
large variations in the reconstructed source distribution. The
most common approach to overcome this ill-posedness is to
employ deterministic “regularization,” in which the solution is
a trade-off between a good fit to the measured data and an a
priori constraint imposed on the solution [5], with a regular-
ization parameter determining the trade-off point. One alternate
approach to regularization which has received increasing atten-
tion recently in the literature is the Bayesian methodology [6],
[7].

A key requirement of this Bayesian methodology is that one
has prior information about the otherwise unknown sources
with which to define prior probability density functions. In this
study, we used a database of prior measurements from exper-
iments, which served as training data from which to estimate
models for these prior densities. The Bayesian formulation al-
lows one to include such measurements and prior information
in a “natural” way, offering a general formulation of the regu-
larization constraints; but perhaps more importantly, it provides
statistical performance analysis tools, such as estimation error
covariance and the marginal probability density function of
the measurements, known as the “evidence,” that allow one to
predictively quantify and compare a variety of experimental
designs. For instance, one can use the Bayesian error covari-
ance to predict whether obtaining extra measurements would
lead to a significant improvement in one’s confidence in the
inverse estimates, or apply the Bayesian “evidence” statistic to
compare different databases used to create a prior model. As
we describe below, Bayesian approaches to the inverse electro-
cardiography problem have concentrated on the formulation of
statistically-defined regularization methods. In the EEG/MEG
literature, application of the performance analysis tools has
been reported, but generally with relatively simple scenarios
such as independent sources or the restriction of probabilistic
parameters to the parameters of the medium [7], [8].
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In this paper, we extend the application of these statistical
performance analysis tools to inverse ECG, a case in which the
sources (in our formulation, the time-varying potentials at a
mesh of nodes on the epicardium) are clearly correlated with
each other across the surface. We expect that this extension
will, in turn, be useful for EEG/MEG problems, although we
do not directly treat them here. Also, for simplicity, we ignore
the temporal correlation of the epicardial potentials, rather
treating them as uncorrelated; the purpose of this study was
to attempt to incorporate spatially correlated sources into a
practical Bayesian framework.

To help further motivate the use of Bayesian tools, we con-
sider cases in which there are two types of measurements, both
resulting from the same underlying sources but each with its
own biophysical or spatial relationship to those sources. We
have two specific types of scenarios in mind. In the first, we
assume one has the usual remote measurements from the body
surface (e.g., ECG or EEG) but also access to a small number
of measurement locations very near the sources; in this case,
one would like to use these high quality but spatially sparse
measurements to improve the inverse solution. Such a scenario
could arise with venous-catheter-based endocardial [9] or epi-
cardial [10] measurements, or perhaps in brain surgery in which
a small number of cortical measurements might be available.
In the second scenario, which is really a generalization of the
first, one might have two distinct types of measurements, such
as electrical and magnetic measurements. Although our formu-
lation allows for both scenarios (with the restriction that we
only deal with scalar measurements, although magnetic field
measurements might be multicomponent), we concentrate on
the former scenario applied to electrocardiology, specifically on
the possibility that one has sparse epicardial potential measure-
ments available, via multielectrode venous catheters, to use in
an epicardial potential formulation of the inverse electrocardio-
graphy problem.

In the inverse ECG literature, Bayesian methods have gen-
erally assumed that the measurement noise and the epicardial
potentials are Gaussian distributed and mutually (spatially) un-
correlated. Thus, the prior density of epicardial potentials could
be defined in terms of a mean and a covariance matrix. This
approach was introduced early in the development of the field
by Martin et al. [11], who examined the feasibility of applying
statistical constraints to inverse solutions. The mean vector and
the covariance matrix were estimated through temporal aver-
aging and Monte Carlo sampling approaches using potentials
simulated from an activation sequence. The measurement noise
model not only included the instrumentation noise, but also
modeling errors. Results were encouraging enough to warrant
further pursuit of statistical regularization methods. Barr et al.
in [12] used a simplified version of this idea; zero-mean inde-
pendent and identically-distributed (i.i.d.) epicardial potentials
and noise. This type of Bayesian maximum a posteriori (MAP)
formulation is equivalent to zero-order Tikhonov regularization
with the regularization parameter equal to the ratio of the
standard deviation of the noise in the torso measurements to
the standard deviation of the epicardial potentials. Much more
recently, van Oosterom [6], [13] improved this idea and used
a more realistic volume conductor to obtain the covariance
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matrix used in the MAP equation. All of these studies ignored
temporal correlation. Greensite, in [14] and [15], has proposed
a statistical approach that combined temporal and spatial
constraints, presenting ways to estimate temporal and spatial
covariances under certain mathematical assumptions, based on
structures inherent in the space-time correlation matrix.

In the EEG/MEG literature, there have been several reports
using Bayesian tools for performance analysis as well as
for inverse reconstruction [16]-[18]. In the Bayesian case,
in which the unknowns are modeled as stochastic, the prior
distribution function plays a role in determining error bounds
[19]. Russell ez al. [7] applied this idea to the inverse EEG/MEG
problem using a discrete distributed model of cortical dipole
current sources in a four-concentric-sphere head model. The
stochastic source parameters were the dipole moments, which
were assumed to be linearly related to the measurements. Both
the sources and measurement noise were assumed to be i.i.d.
and independent from each other. The only unknown statistical
model parameters were the variances of the dipole moments
and the measurement noise. In addition to using a Bayesian
estimation error metric, the authors also used the evidence
to estimate these variances, and calculated the information
content of the measurements using differential entropy and
mutual information. Radich er al. [8] derived error bounds for
unbiased dipole location estimation under a general head model
parameterized by both deterministic and stochastic parameters.
In their derivation, the only stochastic terms were the head
model parameters, such as conductivities of various layers
within a four-shell spherical head. They did not study the effects
of uncertainties in the source parameters. One non-Bayesian
approach used by several investigators reported performance
analysis by modeling the unknowns as deterministic; in this
case, the investigators applied the well know Cramer-Rao bound
(CRB) on the variance of unbiased estimates of deterministic
parameters [20]-[22].

In this paper, we report a simulation study designed to address
the following questions.

1) How reliable is the theoretical Bayesian estimation error
covariance when the prior density distribution is not ex-
actly known, but instead is estimated from previously
recorded similar source distributions, i.e., training data?
Can we use it as a substitute for the actual error vari-
ability, which can only be obtained from the actual es-
timation error, which in turn requires knowledge of the
true solution?

2) How does the reliability of the estimation error covari-
ance change when an “ideal” estimated prior model ob-
tained by estimating it from the true sources is used?

3) If the source parameters are not i.i.d. but have a more
complicated prior model, how can one adapt the ap-
proach of Russell er al. [7] of using the evidence for
statistical parameter selection to accommodate this new
model?

In what follows, we concentrate on the linear inverse epicar-
dial potential problem, using Gaussian assumptions for both the
unknown sources and any measurement noise. In a simulation
study we investigate whether the Bayesian error covariance,

Authorized licensed use limited to: The University of Utah. Downloaded on September 21, 2009 at 15:54 from IEEE Xplore. Restrictions apply.



SERINAGAOGLU er al.: BAYESIAN SOLUTIONS AND PERFORMANCE ANALYSIS IN BIOELECTRIC INVERSE PROBLEMS

which can be computed based simply on the problem formu-
lation without knowledge of the true sources, and is based on
simplifying statistical assumptions and estimated prior statis-
tics, accurately models the actual error of the methods, both
with and without the use of sparse epicardial potentials. We
also seek to establish whether the Bayesian evidence statistic
accurately predicts estimation performance when different sets
of training data are employed.

In Section II, we formulate a mathematical relationship be-
tween the epicardial potentials, and the measurements used for
estimation of these potentials. In Section III, we first present
Bayesian estimation and evaluation methods, then we explain
how we obtained simulated measurements and our candidate
training sets used in this study. In Section IV, we report on simu-
lation results that examine the use of two Bayesian performance
analysis tools: the error covariance and the evidence. Finally, in
Section V, we discuss our results and present our conclusions.

II. PROBLEM DEFINITION

We denote the epicardial potentials as a vector x(k), of size
N x 1, obtained by stacking the values at each node on the heart
surface into a column vector at time instant k, k = 1,..., K,
the corresponding torso potentials as y(k), of size M x 1, and a
forward solution matrix as A, of size M x NN, which represents
the mathematical model of the conducting medium between the
sources and measurement sites. Then

y(k) = Ax(k) +n(k) M

where n(k) is the measurement noise vector. We assumed in this
paper that the noise is additive, and we did not take into account
possible errors or noise in the forward solution matrix.

In addition to y(k), we assume that we have available a
second set of measurements, denoted as z(k), of size L x 1,
related to the desired source distribution via an equation

z(k) = Bx(k) + e(k) 2)

where e(k) is the measurement noise vector of appropriate size,
and B is the mathematical model that relates x(k) to z(k). As
discussed in Section I, although other scenarios can fit the same
formulation, here we will call this second set of measurements,
z(k), the “secondary measurements” and denote y(k) as the
“primary measurements.”

In the specific application we will test, z(k) contains direct
measurements of a small subset of the elements of x(k). If we
arrange our matrices and vectors so that the measured locations
in z(k) correspond to the first L elements of x(k) (L < N),B
is equal to [I, 0]. We note that for other scenarios, such as
combining electrical and magnetic measurements, B would be
the forward matrix corresponding to the second measurement
modality. Since we do not consider temporal correlation, and
thus approach the problem independently at each time instant,
for simplicity we drop the time index from our equations in the
sequel.
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A. Augmented Problem

There are three ways to choose the measurements used in an
inverse solution: include only the primary measurements, in-
clude only the secondary measurements, or include both types
of measurements.

If only the primary measurements are available, one solves
the problem defined by (1) for x. We will refer to this approach
as “classical reconstruction.” Using only the secondary mea-
surements is not of interest here. To incorporate both types of
measurements, we can reformulate the problem by combining
(1) and (2) into an augmented form

v=Dx+n, VZ[-‘Z/}, nz{ﬂ D:{g} 3)

and solve this equation for x. We will refer to this approach as
“augmented reconstruction.”

All of the equations that use one or both types of measure-
ments have a simple linear relation to the source distribution,
with only the variable names changed. Therefore, we will
present the following mathematical framework for only the
classical reconstruction notation.

III. METHODS

A. Bayesian Estimation

In the Bayesian approach, one estimates the value of the un-
known parameters, which are assumed to be random with some
known prior probability density function (pdf), so that the es-
timator is optimal “on the average.” The following provides a
brief summary of Bayesian methods used in this study. Refer to
[23] for more details.

Both x and y are assumed to be random with a joint prob-
ability density function (pdf), p(y,x), and x has a prior pdf
denoted by p(x). Then the posterior pdf of x given the data y is

p(y\x) p(x)
Jx p(y\x) p(x) dx

p(x\y) = “

where p(y\x) is the conditional pdf of the measurement vector,
¥, conditioned upon the parameter vector, x, (also known as the
likelihood function), and X is the parameter space.

One well-known estimation method is the Bayesian max-
imum a posteriori (MAP) estimation, in which the estimator is
picked to maximize the posterior pdf. Another Bayesian esti-
mation approach is the Bayesian minimum mean square error
(MMSE) approach in which the estimator, chosen to minimize
the square of the estimation error on the average, is the poste-
rior mean. Since here we will assume that x and y are jointly
normal, the Bayesian MMSE and MAP estimates coincide.

Specifically, we assume that x has a normal prior distribution
with mean x and covariance C,, the noise in the primary mea-
surements is distributed as n ~ N(0,C,,), with C,, = 021,
and the noise in the secondary measurements is e ~ N(0, C.),
with C, = 03 I. Both noise terms are uncorrelated with x, and
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with each other. Under these conditions, the Bayesian MAP (or
MMSE) solution equals

%= (ATC;'A+C7Y) T (ATCly + CI'R) ()

where 7 and ~! denote transpose and inverse of a matrix, re-
spectively.

1) Estimation Error: One of the properties that makes
Bayesian estimation attractive is that one can estimate the sta-
tistical characteristics of the estimation error, and then construct
confidence intervals from these characteristics.

The Bayesian MAP reconstruction X, under the assumptions
listed in the previous section (i.e., x and y are jointly normal,
etc.), has mean equal to X. Then, the estimation error has zero
mean (i.e., the estimate is unbiased) and covariance matrix equal
to

C.= (ATClA+C;h) . ©6)

The diagonal elements of this error covariance matrix give the
variances of the error in the estimate of the epicardial potential
at the corresponding leads, i.e.,

var(z; — ;) = Cc(4,7) (N

where z; and Z; are the jth elements of x and X, respectively,
and C.(j, ) is the jth diagonal element of C..

Using this variance and the Bayesian MAP solution, one can
compute confidence intervals for the estimate. For example,
with 95% probability, the true solution at lead j lies approxi-
mately within the range

Xj =2V Ce(4.J) < x5 < % +2¢/Ce(5, ). @®)

If we map the error covariance or confidence intervals back onto
the epicardium, we have a theoretical quantitative prediction of
where on the epicardium we expect our method to give us more
or less reliable results, and indeed an indication, in the appro-
priate physical unit, of this uncertainty.

B. Prior Selection

In the previous sections, we defined the prior density model
of x in terms of the mean vector x and the spatial covariance
matrix C, but did not discuss the specifics of how to obtain
this model. In this section, we discuss a method to select the
prior density from various candidate models using the evidence
(i.e., the marginal probability distribution function of the mea-
surement vector). This discussion extends the method reported
by Russell ef al. [7], in which only two independent parame-
ters needed to be chosen, and these parameters were selected by
plotting the evidence with respect to these variance parameters
and choosing the values that yielded the maximum value. Here
we assume a more complicated covariance matrix for which it
is not straightforward to plot the evidence.

We start by assuming that we have available p different prior
models, Hy, Hy, ..., Hy, where each model, H;, can be repre-
sented by the mean vector X and covariance matrix C,((i ) The
hypothesis is that the prior model that maximizes the evidence
is also the model that best explains the measurements. Under
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the Gaussian-distribution assumptions stated earlier, the mar-
ginal probability density function of the measurement vector,
Y, given a prior model H;, is

1
p(y\H:) = @ 1/2
(2m)M/2 ‘Cy

-exp <—% (y - Ai(i))T (C?(,"'))i1 (y - Ax@)) )

where Cg(,i) — ATCYA + C, [23]. We pick the model that
maximizes the evidence as our “best model” among the candi-
dates.

We can equally well use the logarithm of the marginal density.
Then, the best model becomes

Hpest = arg max log[p(y\Hi)] (10)

)
+ (v-ax®) () (v ax0)|}an

It is also possible to treat C,, as a variable parameter and try
to choose it to maximize the evidence. In this work, we limit
ourselves to choosing the prior model only, because there are
often other ways to estimate the noise variance, for example by
taking the sample variance of a region in the measurements in
which we have only noise.

If there are a limited number of prior models available (e.g.,
from different training sets), one can pick the prior model that
yields the largest evidence value. But it is also possible to solve
the optimization problem introduced in (10) directly to find the
best mean vector and covariance matrix.

One can either find a different “best model” for each vector
y(k), where k denotes time instant, or find one model that will
be used at all time instants and is the “best model” on the av-
erage.

1 )
_ (4)
arg H}%X{ 5 [M log(27) + log(‘Cy

C. Validation Data

In this paper, we report on simulation studies applying the
Bayesian techniques described in previous sections to inverse
electrocardiography. The source distribution in our formulation
is the potential distribution on the heart surface. The primary
measurements are the corresponding potential values on the
body surface, and the secondary measurements are epicardial
measurements measured at sites that lie over coronary veins.
Such epicardial signals are equivalent to catheter measurements
from the coronary veins [10] so that we refer to them as surro-
gate catheter measurements. These measurements are spatially
very sparse. However, they are direct in the sense that they do
not suffer from attenuation or spatial smoothing nearly as much
as the body surface measurements.

1) Experiments: All data for this research came from exper-
iments performed at the Nora Eccles Harrison Cardiovascular
Research and Training Institute of the University of Utah. Two
different canine heart preparations were used; an in situ prepa-
ration and an isolated heart preparation. In the in situ cases, the
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heart remained in place in the animal. It was exposed through
a midsternal opening and suspended in a pericardial cradle. In
the isolated heart cases, a preparation described in [24], [25],
consisting of an isolated dog heart suspended in a torso-shaped
electrolytic tank, was used.

In each of preparations described above, we recorded epicar-
dial potentials simultaneously at a sampling rate of 1000 Hz.
from 490-electrode epicardial sock electrodes contained in a
flexible array attached to a nylon stocking fitted over the ven-
tricles [24], [25].

2) Simulated Measurements: We formed surrogate ve-
nous catheter signals by selecting 42 evenly spaced leads
corresponding to the locations of the major cardiac veins in a
490-electrode sock applied to either an in situ or an isolated
canine heart and added normally distributed zero mean i.i.d.
noise at 30 dB SNR, approximately what we observe in the
true catheter recordings. We simulated torso potentials using a
boundary element solution to Laplace’s equation for a human
shaped torso tank in which the heart was suspended. We then
added noise at 25 dB SNR to the simulated torso surface poten-
tials. Again, this SNR value is approximately what we observe
in the true body surface recordings. In (1) and (2), N = 490
and M = 771, and we set L = 42 wherever applicable.

D. A Priori Information From Training Sets

We obtained a priori information needed for Bayesian
methods from training sets which consisted of epicardial po-
tential maps by estimating the sample mean and covariance
of epicardial potentials by averaging over time. We used
two different protocols to create training and test data sets:
“Leave-one-beat-out” and “Leave-one-experiment-out” proto-
cols.

1) “Leave-One-Beat-Out” Protocol: In the ‘“leave-one-
beat-out” protocol, the beat we used for simulating the mea-
surements (i.e., the test beat) and the training set beats came
from the same experiment (same dog heart), but excluded the
test beat. Clearly such a training set is unrealistic, since we do
not normally expect to have access to recordings from the same
heart surface. However, the prior distribution obtained from
this kind of training set is a good approximation of the true
prior, and it allows us to test the reliability of the theoretical
error variances in a best case scenario.

2) “Leave-One-Experiment-Out” Protocol: In this second
protocol, the test beat came from a different experiment (i.e.,
a different dog heart) than the experiments from which we ob-
tained the training set beats. This scenario is more realistic than
that of the “leave-one-beat-out” protocol and it allows us to
study how prior-model mismatch affects the results.

IV. RESULTS

In this section, we present the simulation results in two parts.
Given that the main objective of this paper is to report on the
use of Bayesian performance analysis tools, we include the re-
sults that examine the use of both the error covariance and the
evidence. First, we report on the feasibility of using the theoret-
ical Bayesian error covariance matrix, defined by (6), when we
did not have the actual error values between the true epicardial
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potentials and their estimates. Next, we report on the feasibility
of using the “evidence” as a prior-model selection criterion.

A. Theoretical Versus Computed Error Maps

We compared two types of error covariance matrices: a
“theoretical error covariance” given in (6) which was predicted
by the Bayesian model, and a “computed error covariance”
calculated using the actual estimation error between the original
potentials and the corresponding reconstructions. The goal was
to determine if the theoretical error covariance could be a useful
substitute for the computed one when we do not have the actual
error values that are required to obtain the computed error
covariance.

We carried out simulations using both the “leave-one-
beat-out” and “leave-one-experiment-out” protocols, applied
Bayesian MAP estimation, and solved both the classical inverse
problem [MAP solution—(1)] and the augmented inverse
problem [MAP-ED solution—(3)].

We used a simple simulation scenario: for K, different test
beats, we first found the MAP and MAP-ED solutions. If we
define X;,t = 1,..., K, as the true solution matrix from the
test beat, where each row represents a node across time and
each column a time instant across all nodes, and XNAP and
X?’IAP_ED as the MAP and MAP-ED solution matrices, re-
spectively, organized similarly to X, then the computed error
matrices corresponding to MAP and MAP-ED solutions are:
E%\/IAP =X, — X]l‘l\fIAP and Ei\/IAP—ED =X, — X?/IAP—ED’ re-
spectively. Using the error matrices obtained for every test beat,
we obtained the augmented error matrices

EMAP _ I:Ei\'[AP Eé\/IAP E}V{I}:&P} (12)

and
JEMAP-ED _ [Ei\'[AP—ED E;\TAP—ED E}\"’[AP—ED:| .
(13)

We estimated the “computed error covariance” matrices for
MAP and MAP-ED solutions from these augmented error
matrices by replacing the expectations in the definition of
covariance matrix with averages over time and beat
, 1 ,

CMAP _ ° pMAP  (pMAP)T (14)

and

1 , ,

CMAP-ED _ - pMAP—ED  (pMAP-EDYT

Q

where () is the number of columns in the augmented error ma-
trices. If the number of time instances is the same for all test
beats (i.e., K), then Q = K, - K.

To examine how the error variance was distributed over the
surface of the heart, we obtained “theoretical” and “computed”
error standard deviation maps by taking the square root of the
diagonal entries of the “theoretical” and “computed” error co-
variance matrices, respectively, and mapping these standard de-
viation (std) values to their corresponding node locations on the
heart surface. We used the visualization program map3d [26] to
display these maps.

15)
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Next, we used confidence intervals to test the similarity
of theoretical and computed error maps and their numerical
accuracy as an error evaluation technique. The question posed
was whether the percentage of actual error values of the
computed solutions that fell within the interval obtained using
the theoretical error variances in fact reflected the predicted
confidence percentage. According to the theory presented in
Section III-A1, the estimation error, €;(7), at lead j and time

instant ¢, satisfies —2-1/C.(J,7) < €;(i) < 2-4/C.(J,4), with
95% probability, and =3 - /C.(j,7) < €;(2) < 3y/Cc(4,7),
with 99% probability. We used the multibeat error matrices
defined by (12) and (13) for this test. For each of the augmented
error matrices, we divided the number of elements of the
matrix that had values within the “confidence interval” by
the total number of elements in the matrix. We compared
“theoretical confidence interval,” using the “theoretical” error
standard deviations, and “computed confidence interval,” using
the “computed” error standard deviations. We performed this
experiment for 95% and 99% confidence intervals. We then
generated scatter plots of the theoretical error standard deviation
values versus the computed ones, and fitted to them linear
regression lines.

1) “Leave-One-Beat-Out” Protocol: For this protocol, we
simulated 10 different torso and epicardial measurements using
the same left ventricularly paced (LV-paced) test beat, the same
noise variance, but different noise realizations. The training set
included beats paced from both left ventricular (LV) and right
ventricular (RV) surfaces.

Fig. 1 shows the “theoretical” and “computed” error standard
deviation maps corresponding to MAP and MAP-ED solutions
for the “leave-one-beat-out” protocol. This figure shows panels
containing four different views of the heart and each panel con-
sists of four error maps in which the top two maps are the the-
oretical error maps, and the bottom two are the computed error
maps. The maps on the left correspond to MAP reconstruction
and the ones on the right correspond to MAP-ED reconstruc-
tion. In all of these error maps, darker regions correspond to
higher error standard deviation values. The range is fixed glob-
ally for all of the maps, across all of the views.

Based on these results (and others like them) we make the
following observations.

. In the MAP-ED reconstruction, both the theoretical
and the computed error maps displayed distinctly
lower error standard deviation values around the epi-
cardial measurement sites. In the anterior view, these
small values lay along the 1 o’clock—8 o’clock line,
which is along the left anterior descending artery
(LAD), and in the posterior view, the small values
appeared as continuous long and thin vertical areas
that divide the posterior surface of the heart into three
regions of larger error standard deviation values.

The significance of this observation is not that the lo-
cations were correctly found, because we already start
with the assumption that we know the measurement
locations. Of greater interest is the fact that the error
got smaller around the measurement sites, and that this
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Fig. 1. Error standard deviation maps, observed from 4 different views of the
heart using the “leave one beat out” protocol. In each view, the error plots on
the left are based on MAP reconstruction, and the ones on the right are based on
MAP-ED reconstruction with X = 42. The top two maps are the “theoretical
error maps” and the two bottom maps are the “computed error maps.” See text
for details. (a) Anterior view, (b) posterior view, (c) LV view, and (d) RV view.

reduction was visible not only in the computed error
maps, but also in the theoretical error maps.
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. Comparing the theoretical and computed error maps
showed that both types of error maps show a decrease
in standard deviation values in MAP-ED relative to
MAP. This is consistent with a previous study [27],
which reported that the MAP-ED detected small de-
tails missed by MAP.

. In the theoretical and computed error maps, we did not
observe a detailed agreement, only a gross correspon-
dence at some regions of the heart (e.g., along the coro-
nary veins, in MAP-ED).

Tables I and II contain summaries of the percentage of error
values that fell within the theoretical and computed confidence
intervals for 95% and 99% predicted confidence intervals, re-
spectively. We observe the following.

. The percentages of error values that fell within the
confidence intervals, using both the computed and the
theoretical standard deviation values, were consistent
with the predicted percentage. The discrepancy was
not more than 2% in both MAP and MAP-ED esti-
mates.

. MAP and MAP-ED estimates showed very similar
values in both 95% and 99% cases.

2) “Leave-One-Experiment-Out” Protocol: In this pro-
tocol, we simulated torso and epicardial measurements using
9 different test beats, each of which was paced at a different
node on the LV surface. The noise variance was the same.
The training set included beats paced from both LV and RV
surfaces.

The results in Fig. 2 show the “theoretical” and “com-
puted” error standard deviation maps for MAP and MAP-ED
reconstructions. These results support the first two observa-
tions we made on Fig. 1. In addition, we make the following
observations.

. Similar to the leave-one-beat-out case, there were
some differences between the theoretical and com-
puted error maps. On the average, computed error
maps had higher error standard deviation values than
the theoretical error maps.

. The distance between the measurement electrodes
along the LAD was larger than the distance between
the electrodes that lay on the posterior cardiac veins.
This is reflected in both types of error maps, i.e., we
observed small circular areas with small error standard
deviation values along the LAD, and by looking at the
centers of these circular areas, we could determine
where we made the measurements. This was not as
obvious in Fig. 1. The electrodes were placed closer to
each other on the posterior veins than they were near
the LAD, hence the small error standard deviation
values appeared to be continuous, and we did not see
gaps between the electrode locations.

. In the first test scenario, the theoretical maps “under-
predicted” the regions of direct influence of the sparse
measurements, in the sense that the regions of very low
error variance were wider in the computed maps than
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TABLE 1
PERCENTAGE OF ERROR VALUES THAT FELL WITHIN THE CONFIDENCE
INTERVAL, USING BOTH THE “COMPUTED” AND THE “THEORETICAL”
STANDARD DEVIATION VALUES IN THE LEAVE-ONE-BEAT-OUT PROTOCOL.
FOR THESE RESULTS, WE ASSUMED A 95% CONFIDENCE INTERVAL

% error values % error values
within within
theor. interval computed interval
MAP [ 0.931 [ 0.932
MAP-ED | 0.931 [ 0.937
TABLE 1I

PERCENTAGE OF ERROR VALUES THAT FELL WITHIN THE CONFIDENCE
INTERVAL, USING BOTH THE “COMPUTED” AND THE “THEORETICAL”
STANDARD DEVIATION VALUES IN THE LEAVE-ONE-BEAT-OUT PROTOCOL.
FOR THESE RESULTS, WE ASSUMED A 99% CONFIDENCE INTERVAL

% error values % error values
within within
theor. interval computed interval
MAP 0.976 0.984
MAP-ED 0.975 0.984

in the theoretical ones. In the present scenario, the re-
verse is the case; the theoretical maps overpredicted the
direct influence regions of the sparse measurements.
This seems to indicate that mismatch between the ac-
tual test case and the prior model leads to a somewhat
optimistic assessment of the error variance, especially
close to the catheter measurement sites.

Comparisons of the percentage of error values that fell within
the theoretical and computed confidence intervals for 95% and
99% predicted confidence intervals summarized in Tables III
and IV suggested the following.

. The percentage of error values that fell within the con-
fidence interval, according to the theoretical standard
deviation values is smaller than that predicted by the
computed values, in both MAP and MAP-ED esti-
mates (the gap was generally around 5%). This is not
surprising, since we observed previously that the com-
puted standard deviations are larger than the theoretical
ones, yielding a wider interval.

. The percentage of error values that fell within the con-
fidence interval were almost the same with MAP and
MAP-ED, for both 95% and 99% cases. This shows
that even though the percentage of error values that
fell within the confidence interval is not the same as
the proposed percentage, the relative performance of
the error covariance matrix is independent of the two
approaches employed.

3) Scatter Plots and Line Fitting: In the previous two
sections, we showed error covariance maps and calculated
confidence intervals from these maps. The maps showed
only gross correspondence, but the confidence interval results
suggested a higher level of agreement. In order to better un-
derstand the relation between the theoretical and computed
error standard deviation values, we obtained scatter plots of
the two, and fitted linear regression lines. These scatter plots,
and the corresponding regression lines are shown in Fig. 3 for
leave-one-beat-out and leave-one-experiment-out protocols,
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Fig. 2. Error standard deviation maps, observed from 4 different views of the
heart using the “leave one experiment out” protocol. The layout and description
of each panel is the same as Fig. 1. (a) Anterior view, (b) posterior view, (¢) LV
view, and (d) RV view.

using methods MAP and MAP-ED. The regression line, in
each method, had slope smaller than one, suggesting a consis-
tent underprediction of theoretical values.
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TABLE III
PERCENTAGE OF ERROR VALUES THAT FELL WITHIN THE CONFIDENCE
INTERVAL, USING BOTH THE “COMPUTED” AND THE “THEORETICAL”
STANDARD DEVIATION VALUES IN THE LEAVE-ONE-EXPERIMENT-OUT
ProTOCOL. FOR THESE RESULTS, WE ASSUMED A 95%
CONFIDENCE INTERVAL

% error values % error values
within within
theor. interval computed interval
MAP 0.87 0.93
MAP-ED 0.88 0.93
TABLE IV

PERCENTAGE OF ERROR VALUES THAT FELL WITHIN THE CONFIDENCE
INTERVAL, USING BOTH THE “COMPUTED” AND THE “THEORETICAL”
STANDARD DEVIATION VALUES IN THE LEAVE-ONE-EXPERIMENT-OUT

ProTOCOL. FOR THESE RESULTS, WE ASSUMED A 99%
CONFIDENCE INTERVAL

% error values % error values
within within
theor. interval computed interval
MAP 0.93 0.97
MAP-ED 0.94 0.97

B. Comparison of Prior Models

The results in the previous section showed that the reliability
of the error variance maps increases if a “good” prior distri-
bution is used. Moreover, earlier studies have shown that the
Bayesian MAP reconstructions using a “good” prior density
produced reconstructions with good fidelity to the true potential
distributions [6]. Therefore, it is important to create a training
set that best represents the unknown source distribution.

According to the theory in Section III-B, one can obtain better
reconstructions if one chooses the prior model that maximizes
the evidence. We studied the feasibility of using the evidence
to compare different models based on a very simple scenario,
in which there are only three prior models, obtained using the
leave-one-experiment-out protocol:

1) wuse a training set composed of left ventricularly beats

only (LV-paced);

2) use a training set composed of right ventricularly beats

only (RV-paced);

3) use a training set composed of both LV and RV paced

beats (LVRV-paced).

The goal was to study the relation between the evidence value
corresponding to each of these prior models, and the reliability
of the reconstructions. The test beat used for this study was
paced from the LV surface of the heart. The prior parameters
(i.e., the mean vector and the covariance matrix) obtained from
the LV-paced training set were coarsely similar to the ‘true’
mean and covariance (i.e., parameters estimated from the test
beat), but those obtained from the RV-paced and LVRV-paced
training sets were very different from the true mean and
covariance.

Fig. 4 contains plots of evidence values found using logarithm
of (9) at all time instances in the QRS interval (the interval
that corresponds to the depolarization phase of the ventricular
cells), for the three training sets. We note that the evidence stays
approximately the same for all three priors until around 25 ms,
at which a region of the epicardium around the pacing site has
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Fig. 3. Scatter plots and the corresponding regression lines. Slopes of the

regression lines are: in the leave-one-beat-out protocol, 0.68 for MAP and 0.65
for MAP-ED, and in the leave-one-experiment-out protocol, 0.67 for MAP
and 0.58 for MAP-ED.

depolarized. After that time, the evidence value corresponding
to the RV-paced prior becomes smaller than the other two.
This gap widens even more between time instances 70 and 100
ms. The evidence value corresponding to LV-paced prior is
indistinguishable from that of LVRV-paced prior until around
75 ms, at which most of the epicardial surface has depolarized,
and after that becomes smaller.

To compare the evidence statistics with inverse reconstruc-
tion results using different priors, we show reconstructed epi-
cardial potential maps in the QRS interval for all three priors
using the MAP approach. The two panels in Fig. 5 show these
reconstructions as well as the original isopotential maps at 42
(top) and 80 (bottom) ms after pacing. At 42 ms, the evidence
value for RV-paced prior is smaller than the other two, so we
would expect the reconstruction with the RV-paced prior to be
worse than the others. At 80 ms, the evidence values from largest
to smallest correspond to the LVRV-paced prior, the LV-paced
prior and the RV-paced prior. According to our hypothesis, we
expect to obtain the best reconstruction among the three priors
using the LVRV-paced prior, and the worst using the RV-paced
prior. Each panel contains the original isopotential map at the
top, and the three reconstructions below. To the right of the orig-
inal maps is a single time signal from one lead with the current
time instant marked for reference. In each panel, the range is
fixed for all isopotential maps. In all of these isopotential maps,
darker regions represent negative potentials, lighter regions rep-
resent positive potentials, and the wavefront lies at the transition
from darker to lighter regions.

At 42 ms, reconstruction using the RV-paced prior was in-
deed significantly worse than for the other two reconstructions.
It was noisy and the shape of the wavefront was not accurate.
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Fig. 5. Isopotential maps at two different time instances, using three different

prior densities, compared to the original isopotential maps. (a) At 42 ms and
(b) at 80 ms.

On the other hand, reconstructions using the other two priors
had better fidelity to the original potential distribution. Between
the reconstructions that use LV-paced and LVRV-paced priors,
the one using LV-paced prior was slightly better.

At 80 ms, the reconstruction using the RV-paced prior pro-
duced many noisy contours, and it was hard to differentiate
one single dominant wavefront. The best reconstruction was
with the LVRV-paced prior; the wavefront that lay along the
2 o’clock-8 o’clock line in the original isopotential map was
better reconstructed than the other two. This finding was also
consistent with the evidence values: at this time instant, LVRV-
paced prior produced the highest evidence value, and RV-paced
produced the lowest evidence value.
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V. DISCUSSION AND CONCLUSIONS

The main motivation of this paper was to advance the utility of
Bayesian estimation techniques and performance analysis tools
in bioelectric inverse problems, with a specific focus on inverse
electrocardiography. We are interested in a Bayesian estimation
framework for three main reasons.

1) Previous simulation studies showed that when a “good”
prior density was available, its performance was much
better than that of standard Tikhonov regularization.

2) The performance analysis tools available to Bayesian es-
timation methods (e.g., the error covariance matrix) hold
promise to be a good tool to evaluate the methods, in
advance of actually carrying out any measurements, and
even when true solutions are not available.

3) Once one has measurements, one can use statistical infor-
mation derived from the prior and posterior probability
density distribution to design the solution methodology
and the experiment. For example, we investigated using
the Bayesian evidence to choose a good prior model for
the epicardial potentials.

Our study showed that the error covariance was a reasonably
reliable qualitative and quantitative predictor of estimation
performance despite error in the estimated prior statistical
model. When the training data used for the prior estimate
closely matched the test beat, confidence intervals were quite
accurate. When the training data matched less closely (as here,
test and training data came from different animals, and from
both in situ and tank experiments lumped together), numerical
predictions were somewhat less accurate but still reasonable
and qualitative results were predictive. Moreover, confidence
intervals were equally predictive both with and without the
use of sparse measurements (comparing MAP and MAP-ED
methods.) These findings suggest that the use of the sparse
measurements does not introduce any further inaccuracy in
the statistical modeling, despite the expectation of a more
pronounced mismatch between training and test specifications
when the blurring effect of the volume conductor is absent,
lending impetus to the development of better methods to con-
struct a training data set and to estimate a prior covariance.

The question of appropriate error measures is one which
still challenges inverse electrocardiography: even when one has
validation data available in experimental scenarios, the standard
quantitative measures such as relative error and correlation
coefficient are only somewhat representative of the evaluation
of results. The results here suggest that the error covariance,
although it quantifies reliability rather than accuracy directly,
corresponds well to reconstruction accuracy. In a companion
study [28] we illustrate that the error covariance indeed seems
to better represent comparative accuracy of significant features
in the reconstruction than does relative error.

Moreover, because the error covariance does not depend on
the measurements, but rather quantifies the reliability inherent
in the experimental design itself, one can quantify expected
reliability of an inverse solution, for example in terms of
confidence intervals, before taking any measurements; the cal-
culation depends only on the geometry of the problem and the
prior information. However, the validity of the error covariance
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may be suspect due to errors in the prior statistics (and/or
the forward model). The statistical model that we used in this
paper is approximate since it only accounts for additive noise.
The question of whether this approximation is close enough
to be useful or whether a more sophisticated statistical model
is required is one for future investigation.

In Section I'V, we compared the theoretical Bayesian error co-
variance with the computed error covariance. In the error co-
variance maps, we did not observe a detailed agreement, only a
gross correspondence at some regions of the heart. On the other
hand, the confidence intervals were quite accurate, implying that
the theoretical values, even when we used a prior model that
fits the test data only in a general sense, could be used instead
of the computed error covariance values to obtain meaningful
results. In order to quantify the correspondence between the
two error standard deviation values, we obtained scatter plots.
The slopes of the associated regression lines were smaller than
one, implying that there seems to be a systematic bias toward
under-predicting the error variance (or over-predicting the relia-
bility of the method). This is understandable because of the sim-
plified assumptions we have made on the statistical characteris-
tics of the data. The leave-one-experiment-out method is more
biased toward under-prediction than the leave-one-beat-out, and
the MAP-ED method is more biased than MAP.

In addition to quantifying reliability, one could use the error
covariance maps to design a measurement scheme. For example,
one could choose the torso measurement electrode locations to
reduce the overall error variance values; one set of measurement
leads might yield lower error variances than another set. Simi-
larly, one could try to locate the secondary measurement sites, if
possible, near regions where “poor” estimation were expected.

The observations on the error covariance metric clearly
showed the importance of choosing a “good” prior density if
we would like to use the theoretical error maps as a reliable
evaluation technique, and to increase the reliability of the
Bayesian reconstructions. In this paper, we studied a second
Bayesian metric, the “evidence,” and designed a very simple
prior selection scenario, with only three prior models. Even by
using this simple simulation, we obtained results that support
the hypothesis that the prior model that maximizes the evidence
is a good choice of prior. Here, we did not really maximize
the evidence, but just labeled the prior among the proposed
candidates that yields the largest evidence value as the “best”
prior. This idea can easily be extended to choose from a larger
number of candidate priors. An alternative use is to design an
adaptive algorithm in which one can test whether to accept a
training beat into a training set by testing if including that beat
increases or decreases the evidence. More research is necessary
to evaluate the evidence as a prior selection criterion for inverse
bioelectric problems.

When we compared the inverse solutions using LV-paced
and LVRV-paced training sets, we observed that the LVRV-
paced training set (whose prior density parameters were dif-
ferent from the parameters obtained from the test beat) works
better than the LV-paced set (whose prior density parameters
were coarsely similar to the parameters obtained from the test
beat) even though the test beat was an LV-paced sample. This
result was somewhat surprising and should be a topic of further
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investigation; we are not at this point certain whether this is an
artifact of the simulation (we had data from only two experi-
ments in the training sets) or a more general phenomenon that
comes from having a more varied dataset to estimate the prior.

A third Bayesian metric that could be considered as a perfor-
mance analysis tool in a future study is the differential entropy
(or mutual information derived from the differential entropy).
The measure of information gain in the system results in a re-
duction in entropy (or uncertainty), or an increase in the mutual
information: the higher the level of the information gained from
data, the lower the uncertainty [29]. This idea could be used
to evaluate the information content introduced by primary and
extra measurements. For example, one could use mutual infor-
mation to decide whether including a certain type of measure-
ment in addition to primary measurements would add enough
new information to justify the effort required to obtain it, or to
select the number and/or location of measurement leadsets.

As we have described in Section I, Bayesian techniques were
applied previously to inverse EEG/MEG problems with sim-
plified statistical assumptions. In this paper, we attempted to
advance that work to include spatially correlated sources. We
expect that the same approach can be useful in several related
inverse problems. Some suggestions of possible applications
might include the following.

. The idea of incorporating various information sources
in a Bayesian framework can be extended to other
types of inverse problems. For example, endocardial
mapping data via noncontact electrodes could be
combined with sparse endocardial measurements via
contact electrodes. Rao et al. presented an inverse
solution in [9], in which both endocardial mapping
data via noncontact electrodes and sparse endocardial
measurements via contact electrodes were available,
but the latter were used just for validation. One can
imagine combining both types of measurements into a
single inverse solution.

. Estimation error covariance could be used to evaluate
other types of inverse problems. Russell et al. showed
the feasibility of this idea when both the sources and
the measurement noise are i.i.d. This idea could easily
be extended in a fashion similar to our derivation to
handle full prior covariance matrices, such as the one
used in the inverse EEG/MEG problem of [16].

Future research will include formally treating error in the
forward model and the covariance estimate, refining the prior
model selection algorithm using evidence to create a training
set that is in some sense optimized for the problem, and incor-
porating temporal correlations.
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