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Abstract

The use of unstructured adaptive tetrahedral meshes in the solution of transient flows
poses a challenge for parallel computing due to the irregular and frequently changing
nature of the data and its distribution. A parallel mesh adaptation algorithm, PTETRAD,
for unstructured tetrahedral meshes (based on the serial code TETRAD) is described and
analysed. The portable implementation of the parallel code in C with MPI is described
and discussed. The scalability of the code is considered, analysed and illustrated by
numerical experiments using a shock wave diffraction problem.

1 Introduction

Spatial mesh adaptation techniques are increasingly being used for the solution of transient
partial differential equations (PDEs) e.g. [18]. The use of error indicators to carefully place
fewer triangular, tetrahedral, quadrilateral or hexahedral elements than with a regular mesh
makes it possible to solve problems more quickly, but without reducing accuracy and to gain
robustness and confidence in the accuracy of the solution. The most commonly used mesh
adaptation techniques are usually classified as h, p or r refinement, see [1, 12]. In h-adaptation
an initial mesh that defines a geometry is successively refined and coarsened by the addition
and removal of nodes until a mesh appropriate to the solution has been constructed. This
approach can be used with both structured and unstructured meshes and in any number of
spatial dimensions.

Despite the success of mesh adaptation in reducing the overall solution time, there is a
need for ever larger problems to be solved with greater accuracy. Current serial computers
cannot cope with the memory or computational demands of such problems and it is thus
necessary to consider the use of parallel computers in order to achieve acceptable solution
times. Combining a parallel solver with a serial adaptation procedure is clearly undesirable as
the adaptation would be a bottleneck, preventing the efficient scaling of the solution process.
Furthermore, meshes are often so large as not to fit on a single processor’s memory. There
is thus a clear need for a parallel mesh adaptation procedure. The main difficulties in using
parallel methods are the complex data structures, the irregular nature of the mesh and the
constantly evolving nature of the mesh as it is adapted to follow the evolution of the flow.

In this paper we discuss the issues arising in the parallelisation of the TETRAD (TETRa-
hedral ADaptation) code of Speares and Berzins [18], a general purpose, three-dimensional,



unstructured tetrahedral mesh h-adaptation algorithm. The parallel version of TETRAD,
PTETRAD, utilises a mesh partitioned and distributed over the processors of the parallel
machine. The solution and adaptation algorithms proceed independently on each processor
with communications occurring at intervals to ensure consistency of both the mesh and the
data across the machine. The parallel solvers using PTETRAD employ data parallelism using
the commonly used ‘owner computes’ rule (see [5] for example). This paper follows on from
earlier work that considers static partitioning [15], dynamic repartitioning [22] and some algo-
rithmic and data-structure issues [16] for adaptive meshes in parallel. A comparison between
the algorithm discussed here with other approaches to parallel adaptation may be found in
8].

In order to address the parallelisation of the TETRAD code and consider the issues that
arise with regard to portability and scalability, Section 2 will describe TETRAD, and give a
description of its complex serial data-structures. A discussion of how these data structures are
parallelised is given in Section 3. The issue of data consistency in parallel mesh refinement is
addressed in Section 4. Section 5 considers the parallel implementation and portability issues
while Section 6 describes how the load is balanced throughout the parallel computation,
from the initial mesh partition to how such partitions are adjusted as the mesh adapts. The
choice of partition is a very important factor determining the scalability of the entire solution
process as is discussed in Section 7. Section 8 describes the test problem used to illustrate
the scalability of the code and shows results illustrating both the success and weaknesses of
the approach described. These results are used to consider how the scalability is affected by
the partitioning, both for the solver and for the adaptation. This paper concludes with a
summary of the present approach and by identifying future work.

2 TETRAD

2.1 Data Structures

TETRAD is a general-purpose tetrahedral-mesh adaptation code which can be used to sup-
port a variety of numerical schemes e.g. [18, 9]. In order to ease the complexity of using
unstructured meshes and to support a range of solvers, a rich data-structure is utilised in
TETRAD. Figure 1 shows that the nodes, edges, faces and elements in a tetrahedral mesh
are all stored, with their natural connectivities. Each node makes use of a one-way linked list
of surrounding elements to describe the connectivity within the irregular mesh. Nodes and
faces are stored in a two-way linked list and elements are organised as a tree. The tree is not
uniform in that a refined element can produce varying numbers of child elements, depending
on how the refinement is done. Edges are stored in a series of two-way linked lists (one per
level of refinement) with additional parent/child pointers. Storing the mesh hierarchy reduces
derefinement to simply a matter of removing a set of elements without reconstruction of a
coarser mesh. This simplicity and speed is offset by the extra memory requirements of storing
the hierarchy of nodes, edges, faces and elements. Solver specific data is attached to mesh
objects such as nodes or elements by a void pointer, thus allowing the data-structure to store
auxiliary information required by the PDE solver at edges, nodes or element centroids. This
flexibility makes it possible to use TETRAD with a variety of finite-element or finite-volume
methods, e.g. both cell-vertex finite element and volume schemes, Tomlin et al. [19] as well
as the cell-centred schemes described here and incompressible flow algorithms under develop-
ment. Other general purpose codes such as those of Flaherty [6] and Biswas [4] have, to the
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Figure 1: Mesh Data-Structures in TETRAD

best of our knowledge, similar storage requirements.

2.2 Refinement Types

There are two categories of refinement used in TETRAD. Elements with all their edges
marked for refinement are refined into 8 ‘regular’ child elements. This is illustrated in Figure
2. The choice of internal diagonal is chosen in the manner of Ong [14] in order to ensure that
geometrical mesh “quality” is retained. Elements with five or less edges marked are refined
in a so-called ‘green’ manner. This proceeds by creating a new node at the centroid. All the
nodes in the element (including those created by refining the marked edges) are connected to
this new node. This creates between 6 and 14 new elements, depending on how many edges
were refined. An example of green refinement is shown in Figure 3. Green elements thus
perform the task of ensuring the mesh is conforming and are used as a transition between
area of differing levels of refinement.

Green elements are typically more geometrically distorted [14] than regular elements and
thus are not refined further to prevent further possible distortion. In the situation where
error estimates require further refinement of a green element, the element is first derefined
and subsequently re-refined regularly. This procedure may have a knock-on effect. Consider
the situation illustrated with triangles in Figure 4. If edge a is marked for refinement, the
triangle 17 will have to be refined. AsTj is green it is must be first derefined and subsequently
regularly refined. This means that the edge b, shared between triangles 77 and 75, must be
refined. Consequently, 75 must be derefined and re-refined as it is also green. The same
knock-on effect also occurs with tetrahedral meshes and is catered for in the serial code by a
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Figure 2: Regular refinement into 8 children
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Figure 3: Green refinement into 6 children resulting from refinement of one edge

depth-limited recursive search. This search runs through the list of green elements that are
to be derefined and subsequently re-refined. For each of these elements, a check is made of
all the edge adjacent elements. If these elements are green and are a level coarser than the
original green element they are added to the list of elements to be derefined and the search
continues recursively with the new element as the starting point. The search thus progresses
spatially through the mesh and terminates upon reaching base elements.

An important issue is that although the green refinement approach adopted here preserves
the geometrical quality of the tetrahedra, the general issue of mesh quality is considerably
more complex for non-isotropic solutions and involves not only the discretisation error but
also the norm, [2, 3], in which the error is to be controlled.

3 Parallel Data Structures

The parallelisation of TETRAD has required the consideration of two main data structure
issues. The first being how to partition the hierarchical mesh and the second being the
provision of support for communications between the subdomains of this partitioned mesh.

T
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Figure 4: Knock-on effect of refining green elements for a triangular mesh



3.1 Parallel Data Structure Partitioning

There are two main options for partitioning a hierarchical mesh. The first is to partition
the grid at the root or coarsest level. When using standard partitioning tools such as Chaco
[7] or Metis [11] this requires weighting the dual graph node corresponding to the coarse
mesh element by the descendents of that element in the computational mesh. This approach
has the advantage that the local hierarchy of elements is maintained on a processor and
thus all parent/child interactions (such as refinement/derefinement) are local to a processor.
The partitioning cost is fixed, because the base mesh never changes, and low, as the base
mesh is generally small in comparison with the adapted computational mesh. The main
disadvantage with this approach however is that for small coarse meshes with large amounts
of refinement, it is difficult to get good partitioning, both in terms of load balance and in cut
weight minimisation, due to the large and varying weights that will be used.

The second approach is to partition the leaf level mesh, i.e. the actual computational
grid. The pros and cons of this approach are essentially the opposite of those with coarse
mesh partitioning. In particular, the quality of the partition in terms of cut weight and load
balancing is likely to be better, albeit at the expense of a longer and non-constant partitioning
time. Also, the data-structures have to be more complicated as hierarchical operations (such
as multigrid V-cycles) are no longer necessarily local to a processor. This would, for example,
lead to slower derefinement as communication may now be required. Fine mesh partitioning
in a hierarchical data structure would also add an extra level of complexity to the coding due
to the non-local operations in adaptation.

The approach taken for parallelising TETRAD is that of partitioning the coarse mesh
as the main disadvantage, that of suboptimal partition quality, can be avoided if the initial
coarse mesh is scaled as one adds more processors.

3.2 Communication Support

Given a partitioned mesh, new data structures are required in order to support the inter-
processor communications and to ensure data consistency. In common with many other
parallel PDE solvers, e.g. [5], so-called halo mesh objects (alternatively known as ghost or
shadow objects) are utilised in order to reduce communications overheads. Halos act as a
form of communication cache, being a local copy of remote data that is needed frequently.
The choice of which halo data to have is solver dependent. Typically, for a given element on
a partition, all elements in the computational stencil will have a halo copy on that partition.
For example, Figure 5 shows a first-order cell-centred scheme that has a halo consisting of
triangles (tetrahedra) that share an edge (face) with any triangle (tetrahedron) on the edge
of the partition. In order to ensure that local data structures are complete, halos are kept of
all edges, nodes and faces that compose an element.

Possible data inconsistencies due to multiple copies are resolved by assigning each object
that is a copy the same owner as the original object. Thus halo objects are not owned by the
processor on which they reside. In situations where halos may have different data than the
original, the original definitive value is used to overwrite the halo copies.

The updating of halo data (e.g. at the end of a time-step) requires communication between
a mesh object and its copies. The remote locations of halos are stored in a one-way linked
list as it is not known a-priori how many halos any given mesh object might have. Each link
in the list consists of a processor—pointer pair that locates a halo on a remote processor. This



Figure 5: A 2D partitioned mesh and the distributed structure. Halo elements are dashed
and arrows indicate communication links

method eliminates searching on the remote processor and ensures efficient halo updates. When
adapting the mesh however, new elements may be created in the inter-partition boundary
region. These elements will have (or be) halos and thus new communication linked lists will
need to be created. To do this, new halo objects have to send their location to their original
in order to create the linked list.

The communications links (backward) are set up by utilising the existing hierarchy to
locate the copies of new data on remote processors. Each processor loops around the newly
created data (owners have been decided by now), and if the owner is remote, packs a buffer
with the pointer to the local information as well as parent pointers (for the remote processor)
and any further information that is required to traverse the remote hierarchy. The commu-
nications cost is approximately the same as setting up the forward communications links in
that there are the same number of messages to/from the same processors. This communica-
tion is in the opposite direction to the links already established, and thus without adding a
new communication link (from halo to original) the original mesh object would have to be
searched for on the remote processor. This is inefficient and thus halos also store a pointer to
their original mesh object. The arrows in Figure 5 illustrate the communications links stored
in the parallel data structure.

4 Parallel Adaptation Algorithms

The general structure of the parallel adaptation code follows that used in the serial case,
albeit with added communications and synchronisation phases, and is illustrated in Figure 6.

The initial mesh is read from file, complete with a partition vector, on a single processor
and then distributed across the parallel machine together with halo copies of mesh objects
required to complete the subdomain on each partition and provide support for communica-
tions. Alternatively, a ready partitioned mesh (complete with halos) can be read in on each
processor. This second approach uses rather more disk space and more files than the first,
but is quicker and overcomes the limitations of a single processor’s memory that the first
approach has. Once the initial mesh has been read in, the refinement criteria to be used
throughout the calculation are applied to the initial mesh and the mesh refined. The initial
condition is then re-evaluated on the revised mesh and the process continued until the mesh
fits the initial conditions.



TETRAD uses a similar adaptation strategy to that of Lohner [12]. Following a time-
step, edges are marked for either refinement or derefinement based on some solution derived
criteria. This may be either an error estimate or simply utilise gradients of solution values.
The first communication phase occurs here in order to ensure that halo edges are marked in
the same manner as their original edges.

Solver Time Steps ——— Mark Edges

A

Synchronise Markings —>» Communication

Construct
Adaptation Lists

—» Communication

Create Communication
Links

—» Communication

Synchronise —> Communication
Adaptation Lists
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Figure 6: Overview of PTETRAD Adaptation algorithm

4.1 Green Tetrahedra and Recursive Searching

Once all edges are consistently marked, the elements and edges adaptation lists are con-
structed. Separate lists are generated for derefinement and regular and green refinement.
This list construction enforces the adaptation rules that are used, such as not refining further
an element that is currently refined in a green manner. The recursive search described in
Section 2.2 is then used to ensure that all elements are refined in the correct manner.

The spatial nature of the parallel search is problematic as merely running the serial search
in each subdomain is not sufficient, given that the search may well leave the subdomain. To
allow for this, any edges encountered in the search that have halos are stored on a list (together
with relevant information for continuing the search remotely) for later processing. Once the
searches have terminated, the stored list of edges is exchanged with the relevant processors,
and the search restarts on these halo edges. This process repeats until all processors have
empty lists for communication. This is necessary as the search may later return to processors
that previously have finished searching. This results in some processors possibly being idle
during this stage of the adaptation process. As in the serial case, the search (and hence
number of data exchanges) is limited by the depth of refinement in the mesh. Getting this
search to work correctly is very important as this ensures that all elements (and their copies)
are marked consistently for adaptation and thus avoids the need for much explicit consistency
checking.



4.2 Adaptation algorithm

Once the final, consistent adaptation lists have been computed, the adaptation proceeds in a
similar manner to the serial code. Derefinement is followed by regular refinement on elements
and on any copies independently. The assignment of ownership to newly created data, unlike
the serial case, cannot always be done consistently without communication as it likely that a
given processor will not have enough information at the boundaries of the mesh it holds. Thus
it is necessary to have an explicit update of ownership for edges on inter-processor boundaries
to ensure that these edges and their copies have the same owner.

All the newly-created data that is on the inter-processor boundaries then has its communi-
cation links created. This is termed the links phase and is problematic as the communications
links necessary for doing this are precisely the ones that are in the process of being created.
By utilising the mesh hierarchy however it is possible to solve this problem. For example,
communications links for new elements are created by using the existing links in place for
the parent elements. Similarly links can be created for new edges and nodes by again using
parent links to a higher level edge or element. These new links are then utilised to create the
links from halos to the original mesh objects.

The next stage of the algorithm is to construct a list of edges that have been refined
but whose halos have not. These halo edges are then refined in order to complete the mesh
consistency. Such a situation exists as some edges are removed from the original refinement
lists during derefinement of elements that on the inter-processor boundaries. The final refine-
ment stage is that of green elements where hanging nodes are removed and the final adapted
mesh is completed. As for the regular elements, this refinement is done independently until
communication links for the newly created halo data are set up. The final stage of the algo-
rithm is to assign globally consistent numeric IDs to new data. Again this process requires a
communication to ensure that all halos of a mesh object have the same ID as the original.

5 Parallel Implementation and Portability

5.1 Coding Issues

Parallel TETRAD was implemented using ANSI C with MPI [13] due to the need for portabil-
ity. The low-level of a message passing approach is not ideal for the complex data-structures
and large amounts of communication involved in parallel adaptation. This type of application
(with irregular, unstructured data) is currently poorly supported by libraries and compilers
however and message passing is the only real option. As far as possible, communications are
performed by using nonblocking MPI functions to avoid deadlock and allow a degree of over-
lap between computations and communications. Following the model in [15], communications
are coalesced wherever possible to minimise total latencies and maximise bandwidth usage.
The style of programming used is similar to that of the BSP [23]. Each processor works
in ‘supersteps’ which are separated by communications phases when data is updated across
processors. Unlike the BSP paradigm, however, not all the data is held consistently at each
superstep boundary. In derefinement, for example, halo edges may be removed from adap-
tivity lists as the processor does not have enough information to make a correct decision.
This is corrected at a later stage, but only after all the regular refinement and subsequent
construction of communications links has taken place. While the derefinement and regular
refinement proceed without communication (they are essentially a superstep) the construction



of communication links involves much message-passing and would be therefore a superstep
boundary. The synchronisation of the edge refinement lists takes place after this and thus
does not fully conform to BSP style.

The major difficulty encountered in developing parallel adaptation routines using message
passing is that it is very difficult to maintain consistency between mesh objects and their
copies. Debugging situations where inconsistency occurs are particularly awkward as the
inconsistency may not cause problems until the end of the superstep where communication
occurs. Moreover, this problem tends to manifest itself in that send and receive buffers will
not match up in size (as communication is coalesced) and discovering exactly which mesh
object causes the problem can be time consuming. While debugging tools such as SGI’s
Workshop Debugger are helpful, they do not yet have the same ease of use as their serial
counterparts. The lack of high level language support for irregular parallelism also adds to
the programming difficulties and is one of the major obstacles for the more widespread use
of irregular parallelism.

5.2 Order Independence

In implementing mesh adaptation it is necessary to ensure that all the adaptation functions
are order independent. That is, they give the same final mesh regardless of the order in which
elements are processed. This is vital as elements and their halo copies may well be processed
in different orders on different processors. Serial TETRAD has a number of cases where
processing order can affect the final mesh. One such example is illustrated in Figure 7. Here,
a face is illustrated which is to be refined in a green manner (as only two edges are refined).
There are two ways of doing the refinement, both of which result in refined meshes of equal
quality. The serial code picks the first of these refinements that it encounters. Doing this in
parallel however can result in the faces being refined in different ways on different processors.
In particular, this can result in differing connectivity in the mesh across different processors.
This inconsistency is clearly unacceptable and is eliminated by utilising node co-ordinates
to impose an order in such situations. There are a number of such order dependent code
segments in the serial code which have required careful analysis and replacement so that the
parallel code produces a consistent mesh across the processors.

Figure 7: Examples of Green Face Refinement

5.3 Portability

The portability of PTETRAD as coded in ANSI C with MPI, has been demonstrated by
moving the code to a variety of platforms including a Cray T3D, an SGI PowerChallenge,
and SGI Origin 2000 and on workstation networks (SGI Indys and SGI O2s). Only one line is
changed for the differing machines and this is purely for memory efficiency. The Cray T3D is
a 64 bit machine and to obtain the same accuracy for double and int variables as for a 32 bit
machine, one need use only float and short. This can result in halving the memory needed



for all the physical solution and many of the data structures variables. This is achieved simply
by using itype and dtype rather than int or double in variable definitions. Depending on
a #define statement in a globally included file, itype and dtype can be set to the required
accuracy by a typedef statement. At the same time, the constants MPI_DTYPE and MPI_ITYPE
are set to the relevant MPI datatypes. For example, MPI_DTYPE is set to either MPI_DOUBLE or
MPI_FLOAT. This technique is similar to one used in ParMetis [10] and allows us to use larger
partitions on the Cray T3D than would otherwise be possible.

Despite this technique, the overhead from 64 bit pointers on the Cray is quite substantial.
For example, every element stores 12 pointers (4 nodes, 6 edges, children and parent) and leaf
elements are likely to store more for additional connectivity as required by the solver. Edges,
nodes and faces also use a large number of pointers. The cumulative affect of the extra
memory used, together with the fact that in order to be general the data-structures used
are large, is to limit the number of elements that can be stored on a single T3D processing
element with 64MB of memory to around 45,000, while more application-specific codes with
lightweight data structures may be able to store at least five times as many elements per
processor.

6 Parallel Load Rebalancing

In any parallel unstructured mesh calculation, load balancing is a very important issue; for
adaptive meshes it is doubly so. Not only is there the requirement that the initial mesh is
partitioned in a suitable manner but it is also necessary for the mesh to be repartitioned
periodically due to the imbalance created by the mesh evolution. This is particularly true
when solving PDE problems whose solutions involve fast moving shocks; the imbalance created
by the constantly evolving mesh will require frequent repartitioning to bring the imbalance
down to acceptable levels.

6.1 Initial Partition

The initial mesh partitioning is based on ensuring that the number of base mesh elements in
each subdomain should be equal (or as near to it as possible) and that the number of halo
elements should be minimised. This latter condition is to ensure that communications are
minimised. Given sufficient information about the problem (such as initial conditions and
spatial and temporal gradients) it is possible to weight the mesh so as to anticipate where
future refinement will be needed for the partitioning problem. This will ensure that after the
mesh has adapted to the initial condition, it is not too ill-balanced. This is also desirable in
that many dynamic partitioning tools make an assumption that the initial mesh partition is
reasonable. The partitioning problem is NP complete and thus a variety of differing heuristics
have been invented that give a reasonable partition in good time. Many of these have been
released as software tools, such as Jostle [24], Metis [11] and Chaco [7] and all have been used
successfully with PTETRAD.

6.2 Dynamic Repartitioning

As the mesh adapts it is of critical importance to rebalance the calculation periodically. The
requirements for this partitioning problem are rather different from the static case. As well
as requiring the repartitioned mesh to be load balanced with minimal communication, it is
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also necessary to minimise the amount of data movement so that the total time taken in
redistributing the mesh is minimised. Furthermore, the calculation of the new partition must
be fast and run in parallel on the already distributed data. Examples of partitioners that
fit the task are ParMetis [10] (PARDAMETIS and PARUAMETIS), Parallel Jostle [25] and
Touheed’s algorithm [21], all of which have been utilised in the parallel code, PTETRAD.
The new partition is calculated on the base level mesh, with nodal weights corresponding to
the number of leaf elements in the tree under each base element. Edge weights are calculated
as either the number of leaf level faces between base mesh elements, or as an average of the
nodal weights. Either of these gives a reasonable (and proportionate) approximation to the
true weight of the cut.

As the base mesh is fixed and is only a proportion of the size of the whole mesh, the
calculation of the new partition is not costly. The weights that tend to arise with adaptation
however are often large and varying. This makes the repartitioning problem difficult and
means that the resultant partition may not have perfect load balance. A comparison is given
in [22] for the performance of ParMetis, Parallel Jostle and Touheed’s algorithm for the same
test problem used in this paper. Touheed’s algorithm tends to move the least data and
give the best balance, but does rather poorly for cut-weight. Parallel Jostle and ParMetis
produce comparable results, with Parallel Jostle achieving slightly better cut-weights and load
balance than ParMetis at the cost of moving more data. This is achieved largely due to the
better configurability of Parallel Jostle. Both algorithms utilise graph coarsening algorithms
to obtain speed. This may not be ideal, however, when dealing with a relatively small but
heavily weighted graph such as those produced by adaptation. Parallel Jostle allows relaxation
of the amount of coarsening done and this seems to give it the edge over ParMetis in terms
final partition quality.

6.3 Data Redistribution

Redistributing the mesh to match the new partition and setting up the new halo elements
is not a simple task. Each processor sends out copies of mesh objects that are either being
moved or will be required as halos. This involves communication with as many neighbours
processors as are specified by the partitioning software.

The actual moving of mesh data is done by first copying the data to the new processors
on which it will reside and later removing repeated data that is no longer required. While
this uses more memory, it is a more reliable and faster approach. In order to reassemble
the mesh on remote processors, it is essential that mesh objects are copied in the correct
order. Nodes have to be moved before edges (as edges point to nodes), edges before elements
and elements before faces. As the mesh is unstructured, finding the relevant (for example)
nodes for edges to point to requires some form of searching. This is achieved efficiently by
using a randomised hash table of node addresses, indexed by the node IDs. This provides a
good compromise between memory usage and speed (essential as such searches are frequent).
A similar technique is used to avoid replication of mesh objects which would occur when
copies are sent from multiple processors. As with adaptation, communications are coalesced
wherever possible in order to minimise their overhead. Once all the mesh objects have been
copied, any that are no longer required are deleted.

The final task in redistribution is a two-phase process to ensure that all mesh objects
and their halos have correct communication links. First, the communication links that are
no longer valid are removed, and then the new links are created. There are two options
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for removal of invalid communication links. One is to remove only those links which are
invalid. Due to the possible inaccuracy of existing links however, this requires global com-
munications for each processor. The alternative method removes all communication links
before reconstruction. Although this uses larger point-to-point messages in reconstructing
communications links, it eliminates global communications and is both quicker and more
scalable.

7 Scalability Discussion

The scalability of an adaptive mesh solver is dependent on all three of the main components:
mesh adaptation, repartitioning and the solver itself. The solver used here has good scalability
characteristics e.g. see [22], and so the focus here will be on mesh adaptation and redistri-
bution. The overall scalability is affected by the scalability of each of these two components
and how often they are each invoked. Adaptation is used either when the estimated error
exceeds some tolerance, or at regular intervals if (for example) one knows a-priori the speed
of the main shock in the calculation. Thus fast flows, e.g. [18], will require more frequent
adaptation than slow flows e.g. [9]). Moreover, with more adaptation stages, load balance will
be destroyed more rapidly and thus repartitioning will be also be required more frequently. It
is therefore clear that for fast explicit solvers for high-speed flows, the scalability of the adap-
tivity and repartitioning will be of greater significance than for solvers with a lot of intensive
calculation (such as reactive flow where chemical reactions are modelled along with the fluid
flow) and slow flows, for which frequent mesh adaptation and redistribution is not needed.

7.1 Mesh Adaptation

The scalability of the PTETRAD mesh adaptation algorithm is a complex matter. with
the choice of partitioning affecting the efficiency of the adaptation calculations. An ideal
partition has low cut-weight to minimise the communication involved. Indeed, this is a more
important issue in adaptation, as there is far more communication involved in setting up
the communication links for new data and ensuring consistency of the distributed mesh than
there usually is in a well designed parallel solver.

It is also desirable to balance the load of adaptation equally across the parallel machine.
The cost of repartitioning for adaptation is prohibitive however and thus the existing partition
for the solver is utilised. The disadvantage of this is that adaptation may only occur on a
few processors. When the meshes on these processors are heavily refined there is a lot of
communication in establishing the new communication links and ensuring consistency of the
various mesh copies. Thus communication is likely to be a limiting factor in the scalability
of the adaptation algorithm.

A further scalability issue is that if the initial mesh is fixed, but the number of processors is
increased, then each processor will have a smaller number of elements, and more importantly
a higher proportion of halo elements and hence communication. This however can be avoided
by scaling the base mesh with the number of processors.

7.2 Repartitioning and Redistribution

Repartitioning and redistributing data are an integral part of a good dynamic parallel code,
but are a significant parallel overhead. As repartitioning consists almost entirely of commu-
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nication, it tends not to scale well. Indeed, the more processors are used, the more quickly
imbalance is generated by the adaptation and, if repartitioning is triggered only on exceeding
an imbalance threshold, the more repartitioning is done. It is not at all clear that this is
the right approach for triggering repartitioning however as for problems with large numbers
of processors with modest sized grids and fast flows, the gain in run-time speed from using
a load-balanced solver may not be better than the time taken by the repartitioning process.
It may be better however when also considering the improvement gained by using a new
partition for adaptivity, but this may be difficult to predict. Where there is more work for a
processor to do before an adaptive step (such as with large grids, small numbers of processors
or slow flows), the load balance is more critical to overall performance and repartitioning will
pay off. In these cases it may even be appropriate to repartition after every adaptation.

8 Scalability Experiments and Analysis

8.1 Test Problem

The problem we have used to test the parallel adaptivity is that described in Speares and
Berzins [18]. This is an inviscid Euler equations gas jet flow problem modelling the shock
wave diffraction around the 3D corner formed between two cuboid regions. The test problem
arose as part of an industrially-funded study into gas jets. This is an ideal problem for
mesh adaptation as the shock moves through the domain and a static mesh would require
high resolution throughout. It is also a good test for parallel robustness as the shock moves
through the spatially partitioned mesh and repartitioning of the mesh will be essential and
frequent. The initial condition for the problem is of Rankine-Hugoniot shock data at the
interface of the two cuboid regions in the domain with an initial shock speed of Mach 1.7.
The solution is computed with a cell-centred, Riemann-problem-based, finite-volume scheme
of the MUSCL type, employing an HLLC style Riemann solver. Full details of both the
problem and the (serial) solver can be found in [18].

The parallelisation of an explicit cell-centred finite-volume solver such as the one used here
is relatively straightforward given the data-structures designed into the parallel adaptation
code. Each processor holds solution values for elements in its domain, with copies of solution
values on the halos as required by neighbouring sub-domains. The calculation proceeds using
an ‘owner computes’ rule. Since the halos were chosen appropriately, this allows the the
computation to proceed with minimal communication. There are two updates of solution
values per time-step, after the Hancock half-step and at the completion of the full time-
step. At both times, only the changed data are updated, with boundary gradient information
calculated with the new solution values, rather than included in the communication. The
only other communication in the time-step is to ensure that all processors are using the same
sized time-step. This is necessary as CFL constraints are different on differing subdomains
due to the varying mesh sizes and solution characteristics.

The form of the developing shock solution and an indication of how the mesh adapts to is
given in Figures 8 and 9. Figure 8 shows the base mesh adapted to the initial shock condition,
and Figure 9 shows the solution after the solution has started developing. The Figures show
the mesh on the boundary (with three boundary walls cut away for ease of viewing).

The scalability experiments use a Cray T3D with 64MB of memory per node. Two
different base meshes are used; one with 5,184 elements and the other with 34,560 elements.
The code has been used with much larger base meshes and higher resolutions, but due to the

13



),

PO
R
‘Sm AV

é?A
et

£
kL
e

N
)

g

R
AR
PR

)
RS A‘
Y

5
Wy
R
ARy
AR
A S AN
AN
B

\ TR A
(AR
SRR
= N
S AR
Y

Figure 8: Coarse mesh of 5,184 elements Figure 9: Adapted mesh after 540 time-steps

adapted to initial shock condition.
per node memory limitations of the T3D, they are not very useful in illustrating scalability.
This storage limitation is not such an issue on machines such as the Origin 2000 with much
larger per-processor memories.

Scalability experiments have used used up to three levels of refinement from the base
mesh. For the smaller base mesh, the computational mesh resolution is equivalent to a
regular mesh of 41,472 elements for one level of refinement, 331,776 elements for levels and
2,654,208 elements for three levels. This is achieved by using meshes of 12,391 elements,
3,860 elements and 87,082 elements respectively. Similarly, the larger base mesh has fine
mesh resolution of 276,480 elements with one level of refinement, 2,211,840 elements with
two levels and 17,694,720 elements with three levels achieved by using meshes with 49,716
elements, 97,481 elements and 295,275 elements.

The experiments all use Parallel Jostle for repartitioning with the coarsening threshold
set to 300, [24], as experience indicates this is the most suitable value for this example.

An important feature of this supersonic flow calculation is that the solution changes
rapidly, mesh adaptation is required frequently. In this case the mesh is adapted every fifteen
time-steps. Moreover, the solver uses explicit time integration, is computationally light and
so scales well. This means that the scalability of the adaptation is very important to the
scalability of the whole process. The decision when to repartition is also very important as
frequent remeshing with an inexpensive solver is precisely the most difficult case encountered.
There are clearly better choices for when to repartition, but here repartitioning is performed
once the imbalance has exceeded a certain percentage threshold.

It is also worth considering how the scalability is affected by using solvers with differing
amounts of work per remesh. For example, by using a solver for reacting flows with multiple
chemistry species (such as that considered in [9]). In order to simulate the differing amounts
of work required per remesh, total timings can be recalculated to give more weight to the
solver contribution to the total timings. This is equivalent to running the existing solver for
larger numbers of timesteps and thus is a fair comparison as the solver communication times
are increased with the computation times. The present solver is only first order in both space
and time; the use of second order methods would increase the cost by a factor of at least
four per timestep. Furthermore, in the present problem, remeshing takes place after very few
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timesteps, whereas in some calculations such as that of Tomlin et al. [19] and Johnson et al.
[9] it has proved possible to use the same mesh for many hudreds of timesteps.

8.2 Computational Results

Results are shown in Figures 10 and 11 for the scalability of the entire solution process on a
mesh of 34,560 base elements with 1 and 2 levels of refinement respectively. The scalability
is shown for calculations with 15, 150 and 1500 time steps per remesh. In all these cases, the
solution has been calculated with a number of different thresholds for repartitioning. The
best result is used in each case. The timings are scaled (to 100 for the smallest number of
processors used) in order that the graphs for differing amounts of work may be compared.

Ideal -— |
15 timesteps per remesh -+---
150 timesteps per remesh -&
1500 timesteps per remesh -

100 |

Ideal -— - 100 -

15 timesteps per remesh -+
150 timesteps per remesh -&
1500 timesteps per remesh -

10 |

Scaled Time
Scaled Time

10 -

100 100

10 10
Number of Processors Number of Processors

Figure 10: Scalability for 34,560 element Figure 11: Scalability for 34,560 element
mesh with 1 level of refinement mesh with 2 levels of refinement

It is clear that in both cases, scalability improves as the number of time-steps per remesh
increases. This is not surprising as the amount of parallel overhead in a remesh is large
both from the communication inherent in adaptation, but also as frequent remeshing tends
to lead to frequent redistribution (which is an entirely parallel overhead). Similar behaviour
is found in Figures 12 and 13 which illustrate scalability for a mesh of 5,184 base elements
with 1 and 3 levels of refinement. The scalability for 64 processors is rather poor in this
case however, with a slowdown for 1 level of refinement and small amounts of work per
remesh. For Figure 12 this poor performance is largely due to a lack of work on larger
numbers of processors and the comparatively large repartitioning times. The performance
improves considerably with more work inbetween each remesh, but is still limited by the
overall compute/communications ratio in the solver. A further factor (which also affects the
scalability in Figure 13) is that a base mesh of only 5,184 elements is rather small for 64
processors, giving a large halo/computational element ratio. As was mentioned in Section 3
this is to be expected with a base mesh partitioning if the base mesh is kept fixed.

An issue that requires more consideration is that of which repartitioning threshold is most
appropriate for a given problem size and number of processors. Table 1 gives timings for a
number of thresholds for 2 levels of refinement of the smaller base mesh. For 15 and 150
timesteps per remesh, a 25 % threshold is most efficient as the time required by the extra
repartitioning steps in the 10 % case is prohibitive. For the 1500 timesteps case, however,
the gain in solver efficiency of the 10 % case is enough to overcome the extra partitioning
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Figure 12: Scalability for 5,184 element mesh  Figure 13: Scalability for 5,184 element mesh
with 1 level of refinement with 3 levels of refinement

Threshold (%) Number Time (sec) | Time (sec) | Time (sec)
of Repartitions (15 ts) (150 ts) (1500 ts)

10 16 424.5 2011.8 17968.7

25 ) 319.5 1973.5 18595.4

40 ) 349.1 2108.8 19784.9

Table 1: Timings for 5,184 element base mesh, 2 levels of refinement, 16 processors, varying
repartitioning thresholds, and for 15, 150 and 1500 timesteps per remesh

costs incurred. Other cases exhibit similar behaviour in that the more work there is between
remeshes, the more vital load balance becomes.

An interesting comparison can be made of the scalability of the individual parts of the
entire algorithm. One would not expect the adaptation to scale in the same way as the solver
given the different nature of the algorithms and amounts of communications involved. In a
similar manner, repartitioning (a similarly communications intensive process) will scale slower
than the solver. Figure 14 gives a comparison of scaling for the final adaptation, repartitioning
and computations phases in a calculation with 10 % repartitioning threshold on a mesh with
34,560 base elements and 2 levels of refinement.

The solver clearly scales well, as would be expected for an explicit finite-volume scheme.
The adaptation and repartitioning scale at a similar rate to each other, but at a much lower
rate than the solver. This is not surprising as they are far more communication intensive and
do not have the work involved evenly distributed. It is interesting to note that in this case
the repartitioning scales smoothly (this is not universally the case) while the adaptation is
is rather oscillatory. This is likely to be a consequence of how well the partition happens to
suit adaptation. In some cases (those with higher levels of refinement) the adaptation and
repartitioning scale less well again due to the further increased communications and repetition
of work involved in adapting the halos.

Since we have obtained these results, similar results have been obtained by Touheed [20]
using the same problem on a 32 processor Origin 2000. These results using the larger base
mesh and Jostle are shown in Table 77.

All times are in seconds. From this table we see that the migration frequency grows with
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Figure 14: Scalability comparison of the individual parts of the solution process

P 2 4 8 16 | 32

Solver Time 2873 | 1475 | 833 | 430 | 211
Redistribution Time 37 19 42 | 63 | 78
Migration Frequency 1 1 2 3 7

Table 2: Timing Results on 32 Processor SGI 02000

the number of processors if migration is invoked after a fixed percentage imbalance (10 %) in
this case.

8.3 Analysis of Scalability of Adaptation and Redistribution

An analysis of the scalability of the adaptivity is not straightforward but may be summarised
by stating that relatively few processors are involved in refining elements and subsequently
distributing relatively large amounts of data.

In order to explore this issue in detail the example used above will be considered in detail
in the case of the first significant mesh adaptation after the start of integration. The base
mesh is 34,560 tetrahedra and two levels of refinement are used giving a mesh of about 97,000
tetrahedra. For this case, the proportion of processors involved significantly in adaptation
Pudapt is %P. This is approximately constant as P increases. Table 2 shows the average
halo size AvgINh and the maximum halo size MaxNh for the number of processors P . The
average size changes proportionately to 1/ log(P). The individual timings for the parts of
the mesh adaptation algorithm are given by Table 3 in which the following abbreviations are
used:

e Flags - setting and updating adaptation flags and creating of adaptation lists as in

P 4 8 16 32 64
Max Nh | 11425 | 12951 | 9296 | 6343 | 3926
Avg Nh | 6703 | 6695 | 4649 | 3188 | 2174

Table 3: Comparison of numbers of halo elements
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P 4 8 | 16 | 32 | 64
Flags | 2.7 18| 1.2]0.8|0.6
Deref 2010910610402

Regular | 4.3 124109 |04 |04
Links | 324034 |21]1.6
Green | 3823|2218 ]0.7
Links | 4.1 |5.0]38 2928

IDs 1.7124 1122|1414

Table 4: Times for Mesh Adaptation Steps

P 4 8 16 | 32 | 64
Owner + halo 103 | 8.1 | 6.4 |45 | 4.0
Data Movement | 11.6 | 12.7 | 8.2 | 7.2 | 6.0
Connect 0.1 | 0.1 |0.1]0.17]0.1
Communications | 2.2 | 4.2 | 2.1 |18 | 1.3

Table 5: Times for Mesh Redistribution Sub steps

Section 4.1.

Deref - Derefinement of tetrahedra.

green refinement, see Section 4.1.

e Green - Green refinement including synchronisation, see Section 4.1.
e [Ds - creation of consistent IDs and final cleanup operations, see Section 4.2.

The individual timings for the parts of the mesh redistribution algorithm described in
Section 6.3 are given by Table 4 in which the following abbreviations are used:

e Owner and halo - calculation of new partition (Jostle) and the new halo data.

Regular - Regular refinement of tetrahedra.

e Data movement - copying of mesh objects across machine

e Communications - deletion of old and creation of new communication links.

The two tables above show that the two key components in the relatively poor scalability
of mesh adaptation and redistribution are the Links phase as shown in Table 3 and the
Data Movement phase as shown in Table 4. Analysis of the links phase is problematic.
This is the largest parallel overhead in the adaptation algorithm - most of the rest of the
algorithm requires only relatively modest communication. The Links phases require a lot
of communication as all new edges, elements, nodes and faces require links to be created -
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Links - Creation of adaptation links forward and back. Used after both regular and

Connect - calculation of connectivity information and deletion of surplus data.




P 4 8 16 32 64
Nmoved | 30249 | 51775 | 63611 | 85974 | 93075
Prcigh | 3 7 10 12 13
Nopazp | 8710 | 12098 | 7977 | 5329 | 4058

Table 6: Number of Elements and Number of Processors in Redistribution

both forward and backward. Moreover in this case (unlike in redistribution) consistent IDs
are not known and cannot be used in a hash table to locate remote data, so rather more
information about the hierarchy has to be sent in order to locate the data. This data requires
more packing/unpacking as well as bandwidth. Suppose that a fraction 3 of the elements in
a halo proportional to 1 / log(P) is being refined in the partition of any one processor. The
time taken for this is thus proportional to 3 /log(P).

In the data movement phase for this example the number of elements moved ( Nyoved
) and the number of processors ( Ppeign) connected to any other is shown in Table 5. The
maximum amount of data moved by any processor is shown by Ny..p. Many edges and
nodes are also moved (in proportion to the number of elements moved) and the amount of
data moved scales as Np,oped = v log(P) , where P is the total number of processors. For 64
processors, a large proportion of the whole mesh is moved (although not as many as initial
inspection may suggest as many of the elements moved are halos). A comparison between
Tables 4 and 5 shows that there is a reasonably good correspondence between the maximum
number of elements that any processor has to move and the time taken for data redistribution.
It is interesting to note that dynamic graph repartitioning algorithms minimise the total data
moved rather than the maximum for a single processor, which this analysis suggests would
be the more relevant metric.

9 Conclusions and Future Work

The parallelisation of an unstructured adaptive mesh code in a portable fashion involves care-
ful consideration of complex irregular data-structures. Maintaining consistency of this data
is particularly difficult. Moreover, the necessity to code at the message passing level for effi-
ciency purposes does not lead to transparent, easily maintained software. The parallelisation
of TETRAD has been achieved however and the strengths and weaknesses of the approach
have been demonstrated for a testing shock problem. The adaptation itself scales in a modest
manner due to the amount of communication involved in maintaining consistency of halo
mesh objects and the cost of redistribution. It is thus not clear that present (re)partitioning
algorithms address this issue as well as they might.

As part of the larger solution process however we have demonstrated that by choosing
repartitioning thresholds carefully, good scalability may be achieved, providing that there is
sufficient computation in between remeshing. It is thus clear that the problems most suited
to parallel adaptive solution involve flows with larger amounts of computation per remesh
(such as chemical reaction-advection problems) and fairly low levels of refinement (up to 3
levels appears to give the best results).

A key issue to emerge is that the total cost of repartitioning and solution must be con-
sidered when deciding to repartition and in particular that the amount of data moved when
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repartitioning is an important part of this.

Further work has involved integration of the PTETRAD code with the SCIRUN steer-
ing system and the SPRINT integration code, [9] in order to solve problems of atmospheric
dispersion and orographic flows. Work is also ongoing to develop a new programming ab-
straction based on Shared Abstract Data Types in order to simplify the process of developing
and maintaining codes for irregular mesh problems [17].
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