
Portable Parallel Adaptation of Unstructured3D MeshesP.M. Selwood, M. Berzins, J.M. Nash and P.M. DewSchool of Computer StudiesThe University of LeedsLeeds LS2 9JT, West YorkshireUnited KingdomAbstract. The need to solve ever-larger transient CFD problems moree�ciently and reliably has motivated the use of mesh adaptation on par-allel computers. We will discuss issues arising in the portable parallelisa-tion of a general-purpose, unstructured, tetrahedral adaptivity code foruse on distributed memory computers. In particular, we will discuss theparallelisation of complex hierarchical data-structures and issues of par-titioning and communication links. We will also consider algorithmic andimplementation issues of the code such as the parallelisation of a depth-limited recursive search. Results from a range of parallel computers willbe given for challenging transient shock problems which demonstratethe success of the approach. Future developments to make the parallelprogramming of such applications more high level will be considered.1 IntroductionThe execution of computations based around adaptive unstructured 3d meshesprovides some non-trivial problems when being executed on a parallel machine.Typically, the computations are based around distinct phases of execution, markedby the timesteps of the updated solution values, the mesh adaption points, andthe possible redistribution of the mesh elements. One of the main problems toovercome is to be able to e�ciently support the communication of the requireddata within these phases, given that the mesh elements have been partitionedamong the processors. Since the partitioning of the mesh and the redistributionof mesh elements are both carried out at run-time, a static compiler analysisis inappropriate. However, although a phase of execution has the characteristicthat the data communicated is unpredictable, the communication patterns arerepetitive. This may be taken advantage of by run-time protocols to improvee�ciency.The use of a shared address space for implementing parallel software easesthe changeover from serial to parallel execution, and leads to clear modular code.However, most machines which support a shared memory enforce sequential con-sistency, which often results in poor performance for this class of problem (basedaround producer-consumer sharing patterns). Some weaker form of consistencyor domain-speci�c knowledge of the problem needs to be employed in order togain good parallel e�ciency.

2 The Parallel Adaptation of Unstructured 3D Meshes2.1 A parallel adaptive algorithmThe software outlined in this subsection is based upon a parallel implementationof a general purpose serial code, TETRAD (TETRahedral ADaptivity), for theadaptation of unstructured tetrahedral meshes [11]. The technique used is thatof local re�nements/dere�nements of the mesh to ensure su�cient density of theapproximation space throughout the spatial domain,
, at all times. A morecomplete discussion of the parallel algorithms and data structures may be foundin [12, 13, 14].Data structures One of the major issues involved in parallelising an adaptivecode such as TETRAD is how to treat the existing data-structures. TETRADutilises a complex tree-based hierarchical mesh structure, with a rich intercon-nection between mesh objects. Figure 1 indicates the mesh object structuresused in TETRAD. In particular, note that the main connectivity informationused is `node to element' and that a complete mesh hierarchy is maintained byboth element and edge trees. Furthermore, as the meshes are unstructured, thereis no way of knowing a-priori how many elements share any given edge or node.For parallelisation of TETRAD, there are two main data-structure issues.The �rst is how to partition a hierarchical mesh, the second is that we requirenew data-structures to support parallel partitioning of the mesh.1. There are two main options for partitioning a hierarchical mesh. The �rstis to partition the grid at the root or coarsest level, T0. This has a numberof advantages. The local hierarchy is maintained on a processor and thus allparent/child interactions (such as re�nement/dere�nement) are local to aprocessor. The partitioning cost will also be low, as the coarse mesh is gen-erally quite small. The main disadvantage of this approach however is that,for comparatively small coarse meshes with large amounts of re�nement, itmay be di�cult to get a good partitioning, both in terms of load balanceand communication requirements.The other main approach is to partition the leaf-level mesh, i.e. the actualcomputational grid. The pros and cons of this approach are the opposite ofthose with the coarse level partitioning. In particular, the quality in termsof load balance and cut-weight of the partition is likely to be better, albeitat the expense of a longer partitioning time. However, the data-structureshave to be more complicated as hierarchical operations, such as multigridV-cycles and dere�nement for example, are no longer necessarily local to aprocessor (and are therefore likely to be slower).The approach taken for parallelising TETRAD is that of partitioning thecoarse mesh. The only disadvantage of this, that of possible suboptimalpartition quality, can be avoided if the initial, coarse mesh is scaled as oneadds more processors.

Element

Child

Parent

Child

Parent
Nodes[4]

Child[Nc]
Parent
Edges[6]

Child[2]

 Parent

Nodes[2] +

EDGE

FACE

ELEMENT

NODE

+ ...

(x,y,z)

Element[Nf]

X,Y,Z

Element

Nodes[3]

Fig. 1. Mesh Data-Structures in TETRAD2. Given a partitioned mesh, we also need new data-structures in order tosupport inter-processor communication and to ensure data consistency. Dataconsistency is handled by assigning ownership of mesh objects (elements,faces, edges and nodes). As is common in many solvers such as those used by[15] we use halo elements, a copy of inter-processor boundary elements (withtheir associated data) used to reduce communication overheads. In orderto have complete data-structures (e.g. elements have locally held nodes) oneach processor, we also have halo copies of edge, node and face objects. Ifa mesh object shares a boundary with many processors, it may have a halocopy on each of these. All halos have the same owner as the original meshobject. In situations where halos may have di�erent data than the original,the original is used to overwrite the halo copies and thus is de�nitive. This isused to help prevent inconsistency between the various copies of data held.Adaptivity algorithms Both TETRAD ([11]) and its parallel implementa-tion, PTETRAD ([12]), use a similar strategy to that outlined in [16] to performadaptivity. Edges are �rst marked for re�nement/dere�nement (or neither) ac-cording to some estimate or indicator (provided as part of the parallel solver: see

Fig. 2. (a) Regular Re�nement dissecting interior diagonal; (b) Green Re�ne-ment by the addition of an interior node2.2 below for example). Elements with all edges marked for re�nement may thenbe re�ned regularly into eight children. To deal with the remaining elementswhich have one or more edge to be re�ned we use so-called \green" re�nement.This places an extra node at the centroid of each element and is used to providea link between regular elements of di�ering levels of re�nement. The types ofre�nement are illustrated in Figure 2. An important restriction that is madeis that green elements may not be further re�ned as this may adversely a�ectmesh quality ([17]). Instead, they are �rst removed and then uniform re�nementapplied to the parent element.Immediately before the re�nement of a mesh, the dere�nement stage occurs.This may only take place when all edges of all children of an element are markedfor dere�nement and when none of the neighbours of an element to be deletedare green elements or have edges which have been marked for re�nement. Thisis to prevent the deleted elements immediately being generated again at there�nement stage which follows. A further necessary constraint is that no edgesor elements at the coarsest level, T0, may be dere�ned.For further details of the implementation of these adaptive algorithms usingMPI ([18]) please refer to [12]. This paper discusses important issues such asperforming parallel searches in order to allow re�nement of edges of green ele-ments (which requires coarsening followed by regular re�nement), maintainingmesh consistency and dealing with halo data in parallel.2.2 A parallel �nite volume solverIn order to apply the above adaptive algorithm to systems of PDEs of theform (??) a parallel solver is also required. The data structures supported byTETRAD have been used with both �nite element and �nite volume solvers(cell-centred and cell-vertex), however in this paper we restrict our numericalexperiments to a cell-centred �nite volume scheme.The scheme that we use is applicable when (??) represents a system of hy-perbolic conservation laws of the form@u@t + @F (u)@x + @G(u)@y + @H(u)@z = 0 ; (1)

Fine-grain
Parallelism

Coarse-grain
Parallelism

Shared Abstract
Data Types

APPLICATION

Parallel Platform

......

0 1 2 p-1

data
items

Locks Flags

160

180

200

220

240

260

280

300

1 2 4 8 16 32 64 128 256

T
im

e
 (

m
ic

ro
se

cs
)

Processors

Performance of the PriQueue

Enqueue
Predicted
Dequeue
PredictedFig. 3. (a) Support for portable applications; (b) A PriQueue implementation;(c) Performance on the Cray T3Dsuch as the three-dimensional Euler equations for example, and is a parallel ver-sion of the algorithm described in detail [11]. This is a conservative cell-centredscheme which is a second-order extension of Gudunov's Riemann problem-basedscheme ([19]), using MUSCL-type piecewise linear reconstructions of the primi-tive variables within each element ([20]). Although the time-stepping is explicitit is executed in two distinct phases: a non-conservative predictor-type update(referred to in [20] as the \Hancock step") followed by a second half-time-stepbased upon the application of the underlying conservation law. Implicit in thisnumerical method is the need to solve a Riemann problem at each element in-terface at each time-step { although this is only done approximately using amodi�ed form of the approximate solver described in [21].The parallel version of the solver is straightforward to implement due to theface data structure that exists within the adaptivity software (see Figure 1 forexample). To avoid any con
icts at the boundary between two sub-domains astandard \owner computes" rule is used for each of the faces when solving theapproximate Riemann problems to determine
uxes. The use of halo elementsensures that the owner of each face has a copy of all of the data required tocomplete these
ux calculations provided the halo data is updated twice foreach time-step (i.e. immediately before the Hancock step and then again beforethe second half-time-step).3 Shared Abstract Data Types for Portable PerformanceThe use of MPI allows the PTetrad code to be readily ported between parallelplatforms. However, this does not imply that the same solution is the mostoptimal one on all platforms, or that using some other form of communicationsmechanism might give signi�cant performance improvements (see Section 4.3).This section describes the application of Shared Abstract Data Types (SADTs)[4] to support such performance requirements.

3.1 BackgroundSADTs are an extension of ADTs to include concurrency. A serial ADT supportsa well-de�ned interface, for example, the Enqueue and Dequeue of elements froma Priority Queue (PriQueue), hiding the internal implementation from the pro-grammer. An SADT instance may be made visible to multiple processors, whichmay then concurrently invoke operations. The abstraction barrier enables imple-mentations to take advantage of parallelism where appropriate, while shieldingthe user from details such as communication and synchronisation.The Leeds studies have used the generic software structure as shown in Figure3(a). The SADTs are used to hide the often complex concurrency issues involvedin the use of �ne-grain parallelism to support irregular forms of parallelism [?], aswell as making use of coarse-grain parallelism. The application is written usinga combination of coarse-grain parallelism, to structure the main phases of thecode, and the SADTs, to support more dynamic forms of parallelism.Weakened forms of data consistency can also be used to maximise perfor-mance, where this will not a�ect the correctness of the application using it[4, 1]. For example, the PriQueue may not be seen in the same state by allprocessors, such that a Dequeue may not strictly receive the highest priority ele-ment. This enables more e�cient parallelisation methods which can segment thePriQueue elements across the processors, making e�ective use of high degrees ofparallelism, and reducing communications and synchronisation overheads.There are many related research e�orts in this area, including DistributedShared Abstractions (DSAs) [1], Information Sharing Abstractions [6] and Par-allel Abstract Data Types [2], all of which aim to provide the applications pro-grammer with high level abstractions of sharing in parallel systems.3.2 Example: A Priority QueueAn example implementation of the PriQueue on the Cray T3D machine is shownin Figure 3(b). Each processor holds a segment of the PriQueue elements inits local memory, which are ordered by their priority. An associated local datastructure holds associated information to govern the access of the elements. Theimplementationmakes use of the SHMEM library to provide high bandwidth andlow latency access to the local memories by other processors. The cyclic access ofthe segments by the processors distributes the priorities approximately evenly. Aprocessor is then guaranteed to remove one of the p highest priorities, when thereare p processors. This weaker form of semantics allows the highly concurrentimplementation given above, resulting in scalable performance characteristics asthe number of processors grow.The graph in Figure 3(c) shows that the time to complete a Dequeue andEnqueue (for 1000 single word elements per processor under continuous access)grows only slowly as the number of processors increase. This results in an in-crease in throughput from 11; 400 Enqueues per second for 2 processors, up to1; 190; 700 Enqueues per second for 256 processors, due to the lack of any sig-ni�cant serial bottlenecks in the implementation. The use of the PriQueue to

support the travelling salesman problem [3] has demonstrated that its weakerdata consistency semantics does not have an impact on the quality of the loadbalancing.3.3 The Application of SADTs to the PTetrad SoftwareAs described above, the two key ideas behind the support for high performanceSADTs are concurrency and weak data consistency. The segmentation of thePriQueue elements across the processors allows for highly concurrent access,and thus scalable performance. This form of segmented access is also clearlyvisible in the PTetrad code when partitioning the mesh elements. The weakconsistency of the PriQueue elements (meaning that there is not a struct globalordering on the element priorities) reduces the overheads of communication andsynchronisation, supporting good practical performance. This is also visible inthe PTetrad code, in that the shared halo elements only need be fetched fromtheir home location at speci�c points in the execution of the code, and thensubsequently accessed locally.4 Supporting Portable Parallel Adaptation4.1 Related WorkSupport at the lowest level comes from the use of adaptive paging protocols,which can take some advantage of the repetitive communications patterns toreduce the overall network tra�c. The Reactive NUMA (R-NUMA) system[?] is a cache coherency protocol which combines the advantages of a conven-tional Cache Coherent NUMA (CC-NUMA) protocol with the Simple COMA(S-COMA). CC-NUMA improve data locality by caching shared data accesses(invoking the appropriate coherency protocol). S-COMA additionally allows thelocal memory of the processor to be used to store pages of shared data (using thesame coherency protocol). This can potentially improve data locality by utilisingthe larger size of the main memory, but operating system overheads make thisa more expensive option. An R-NUMA system combines the two approaches.Reuse pages contain data which is frequently accessed locally and communica-tion pages are mainly used to exchange data between processors. The formercan use the S-COMA protocol to reduce the network tra�c caused due to cachecapacity misses, and the latter can use the CC-NUMA approach to allow thesharing of sparse data at the cache-line level. The system can dynamically decidewhen a page switches between reuse and communication by noting the numberof capacity and con
ict misses. Applying the system to a partitioned mesh al-lows internal mesh elements to be located on reuse pages and the shared (halo)elements to use communication pages. This is under the assumption that thesetwo distinct types of mesh elements can be arranged to lie on distinct pages,which would imply some form of domain-speci�c knowledge about the applica-tion being executed.

Support at the intermediate level is characterised by the provision for ageneric framework for expressing irregular data structures and unstructuredcomputations. This is typically through the use of both static compiler analysis,and cache coherency protocols which can take advantage of unpredictable butrepetitive communications patterns. As an example, the C** language uses data-parallelism to perform parallel operations on a data collection within a globalnamespace. The support for data-parallelism allows a static compiler analysis toidentify distinct phases of execution which require communications. However, thecompiler does not attempt to identify the communications patterns in each phase- this is predicted by a run-time cache protocol. A sequentially consistent sharedmemory is the standard model used by parallel machines, but unfortunately in-troduces signi�cant ine�ciencies for typical producer-consumer sharing patterns[?]. The C** coherency protocol is divided into two stages. The �rst stage in-crementally builds a schedule to support the given communications, by using ahandler at each directory controller to note the incoming requests. The secondstage uses this schedule at the beginning of the subsequent phases of executionin order to prefetch the expected data, with any unsatis�ed requests being incre-mentally added to the schedule. The protocol includes coalescing neighbouringcache blocks, to be transferred using bulk messages. Limitations of the approachinclude an initially empty schedule for each phase, resulting in no cache blocksbeing requested, and schedule deletions only being supported by clearing thecurrent schedule. The protocol approach is similar to the Chaos runtime system[?]. However, Chaos requires the protocol stages to be explicitly de�ned withinthe application, and does not provide the facility for the incremental update ofa schedule, which is more appropriate to an adaptive code.Support at the high level is typi�ed by the use of the skeleton/templateapproach, where domain-speci�c knowledge of the type of application to beexecuted can be used to support high performance in a portable manner. Anexample is the M-Tree abstract data type [10], which aims to capture the datastructure and computational structure of adaptive numerical problems, usinga regional mesh tree (in which each node represents a region of the domainand children specify sub-domains). Example applications are in the area of theadaptive-mesh heat
ow problem, Adaptive Multigrid and Barnes-Hut. A num-ber of �rst-order functions can be speci�ed by the programmer to support basicqueries and updates on a tree node. Higher-order functions can specify particularcomputational patterns for the given application, such as performing a reductionon all nodes at a given level using some user-de�ned operator. This structuredabstraction provides the opportunity to investigate detailed issues which arecommon to the application domain, such as the optimal dynamic load balancingmethod and caching technique. Related studies have used the terms DistributedShared Abstractions (DSAs) [1] and Information Sharing Mechanisms [6], andShared Abstract Data Types, as described in Section 3. The common charac-teristic is the representation of shared abstractions as structures that may beinternally distributed across the nodes of a machine, so that their implementa-tions can be altered which maintaining software portability.

S
A

D
T

In
te

rf
ac

e

S
A

D
T

In
te

rf
ac

e

* apply solver * apply solver

* update halos

* barrier

* barrier

Coarse Fine Coarse

UpdateElement

Fine

Support Functions

Coarse Fine

Mesh Partition

UpdateHalo

* Write to halo* pack buffer

* unpack buffer

elements

communications links

SHMEM libraryMessage Passing Interface

L
oc

al
 S

ta
te

A
cc

es
s

of
 L

oc
al

 S
ta

te

Im
pl

em
en

ta
ti

on

Im
pl

em
en

ta
ti

on

SADT

Comms
Harness

* comms with

* point-point
comms

neighbours

Fig. 4. The support of the PTetrad code using an SADT4.2 The SOPHIA Interface.... for each local element e, execute UpdateElement(e);UpdateHalo();4.3 Implementation IssuesFigure 4 demonstrates the current approach which is being taken to the supportof the PTetrad code in an e�cient and portable manner. The Sophia interfaceis re
ected in the SADT interface, shown here by the UpdateElement() and Up-dateHalo() functions. The �gure shows two example implementations of thesefunctions, using either coarse-grain or �ne-grain parallelism. In the coarse-grainapproach, all elements will be updated by the solver, followed by a communi-cations phase in which a message containing updated halo information is sentto each neighbouring mesh partition. The �ne-grain approach updates the haloinformation as the solver is applied to the local elements. In both cases, weakdata consistency is applied such that the halo updates are only guaranteed to

have completed after the processors barrier synchronise. The former approach istypically used in conjunction with a message passing library, such as MPI, wherethe overheads in accessing the network are substantial. The latter approach, us-ing the SHMEM library in this case, can be used to overlap the network accesswith subsequent local computation by the solver, given su�ciently low soft-ware overheads for network access. Employing weak data consistency allows theblocking of communications in the case of MPI, and the potential to pipelinecommunications for SHMEM, supporting e�cient network access.4.4 Experiments....5 Concluding Remarks....References1. C. Clemencon, B. Mukherjee and K. Schwan, Distributed Shared Abstractions(DSA) on Multiprocessors, IEEE Transactions on Software Engineering, vol 22(2),pp 132-152, February 1996.2. J. Darlington and H. W. To, Building Parallel Applications Without Programming,Abstract Machine Models for Highly Parallel Computers, (eds J.R. Davy and P.M.Dew) Oxford University Press, pp 140-154, 1995.3. P. M. Dew and J. M. Nash, The High Performance Solution of Irregular Problems,MPPM'97: Massively Parallel Programming Models Workshop, Royal Society ofArts, London, November 1997 (to be published by IEEE Press).4. D. M. Goodeve, S. A. Dobson and J. R. Davy, Programming with Shared DataAbstractions, Irregular'97, Paderborn, Germany, June 1997.5. K. Gharachorloo, S. V. Adve, A. Gupta and J. H. Hennessy, Programming forDi�erent Memory Consistency Models, Journal of Parallel and Distributed Com-puting, vol 15, pp 399-407, 1992.6. L. V. Kale and A. B. Sinha, Information sharing mechanisms in parallel programs,Proceedings of the 8th International Parallel Processing Symposium, pp 461-468,April 1994.7. W. F. McColl, An Architecture Independent Programming Model For Scalable Par-allel Computing, Portability and Performance for Parallel Processing, J. Ferranteand A. J. G. Hey eds, John Wiley and Sons, 1993.8. J. M. Nash, P. M. Dew and M. E. Dyer, A Scalable Concurrent Queue on a MessagePassing Machine, The Computer Journal 39(6), pp 483-495, 1996.9. J. M. Nash, Scalable and Portable Performance for Irregular Problems Using theWPRAM Computational Model, To appear in Information Processing Letters: Spe-cial Issue on Models for Parallel Computation.10. Q. Wu, A. J. Field and P. H. J. Kelly, Data Abstraction for Parallel AdaptiveComputation, in M. Kara, J. R. Davy, D. Goodeve and J. Nash eds., AbstractMachine Models for Parallel and Distributed Computing, IOS Press, pp 105-118,1996.

11. W. Speares and M. Berzins, \A 3-D Unstructured Mesh Adaptation Algorithm forTime-Dependent Shock Dominated Problems", Int. J. Num. Meth. in Fluids, 25,81{104, 1997.12. P.M. Selwood, M. Berzins and P.M. Dew, \3D Parallel Mesh Adaptivity: Data-Structures and Algorithms", Proc. of 8th SIAM Conf. on Parallel Proc. for Scienti�cComputing, SIAM, 1997.13. P. Selwood, N. Touheed, P.K. Jimack, M. Berzins and P.M. Dew, \Parallel Dy-namic Load-Balancing for the Solution of Transient CFD Problems Using AdaptiveTetrahedral Meshes", To appear in Proc. of Parallel CFD 97 Conference, May, 1997,Manchester, UK.14. P. Selwood, N.A. Verhoeven, J.M. Nash, M. Berzins, N.P. Weatherill, P.M. Dewand K. Morgan, \Parallel Mesh Generation and Adaptivity : Partitioning and Anal-ysis", Parallel CFD { Proc. of Parallel CFD 96 Conference (ed. A.Ecer, J.Periaux,N.Satufoka and P.Schiano), Elesvier Science BV, 1997.15. J. Cabello, \Parallel Explicit Unstructured Grid Solvers on Distributed MemoryComputers", Advances in Eng. Software, 23, 189{200, 1996.16. R. L�ohner, R. Camberos and M. Merriam, \Parallel Unstructured Grid Genera-tion", Comp. Meth. in Apl. Mech. Eng., 95, 343{357, 1992.17. M.E.G. Ong, \Uniform Re�nement of Tetrahedron", SIAM J. Sci. Comp., 15, 1134{1144, 1994.18. Message passing Interface Forum, \MPI: A Message Passing Interface Standard",Int. J. of Supercomputer Applications, 8, no. 3/4, 1994.19. S.K. Godunov, \A Finite Di�erence Method for the Numerical Computation ofDiscontinuous Solutions of the Equations of Fluid dynamics", Mat. Sb., 47, 357{393, 1959.20. B. van Leer, \On the Relation Between Upwind Di�erence Schemes", SIAM J. Sci.Stat. Comp., 5, 1{20, 1984.21. A. Harten, P.D. Lax and B. van Leer, \On Upstream Di�erencing and GodunovType Schemes for Hyperbolic Conservation Laws", SIAM Rev., 25, 36{61, 1983.

