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Abstract. The need to solve ever-larger transient CFD problems more
efficiently and reliably has motivated the use of mesh adaptation on par-
allel computers. We will discuss issues arising in the portable parallelisa-
tion of a general-purpose, unstructured, tetrahedral adaptivity code for
use on distributed memory computers. In particular, we will discuss the
parallelisation of complex hierarchical data-structures and issues of par-
titioning and communication links. We will also consider algorithmic and
implementation issues of the code such as the parallelisation of a depth-
limited recursive search. Results from a range of parallel computers will
be given for challenging transient shock problems which demonstrate
the success of the approach. Future developments to make the parallel
programming of such applications more high level will be considered.

1 Introduction

The execution of computations based around adaptive unstructured 3d meshes
provides some non-trivial problems when being executed on a parallel machine.
Typically, the computations are based around distinct phases of execution, marked
by the timesteps of the updated solution values, the mesh adaption points, and
the possible redistribution of the mesh elements. One of the main problems to
overcome is to be able to efficiently support the communication of the required
data within these phases, given that the mesh elements have been partitioned
among the processors. Since the partitioning of the mesh and the redistribution
of mesh elements are both carried out at run-time, a static compiler analysis
is inappropriate. However, although a phase of execution has the characteristic
that the data communicated is unpredictable, the communication patterns are
repetitive. This may be taken advantage of by run-time protocols to improve
efficiency.

The use of a shared address space for implementing parallel software eases
the changeover from serial to parallel execution, and leads to clear modular code.
However, most machines which support a shared memory enforce sequential con-
sistency, which often results in poor performance for this class of problem (based
around producer-consumer sharing patterns). Some weaker form of consistency
or domain-specific knowledge of the problem needs to be employed in order to
gain good parallel efficiency.



2 The Parallel Adaptation of Unstructured 3D Meshes

2.1 A parallel adaptive algorithm

The software outlined in this subsection 1s based upon a parallel implementation
of a general purpose serial code, TETRAD (TETRahedral ADaptivity), for the
adaptation of unstructured tetrahedral meshes [11]. The technique used is that
of local refinements/derefinements of the mesh to ensure sufficient density of the
approximation space throughout the spatial domain, {2, at all times. A more
complete discussion of the parallel algorithms and data structures may be found

in [12, 13, 14].

Data structures One of the major 1ssues involved in parallelising an adaptive
code such as TETRAD is how to treat the existing data-structures. TETRAD
utilises a complex tree-based hierarchical mesh structure, with a rich intercon-
nection between mesh objects. Figure 1 indicates the mesh object structures
used in TETRAD. In particular, note that the main connectivity information
used 1s ‘node to element’ and that a complete mesh hierarchy is maintained by
both element and edge trees. Furthermore, as the meshes are unstructured, there
is no way of knowing a-priori how many elements share any given edge or node.

For parallelisation of TETRAD, there are two main data-structure issues.
The first is how to partition a hierarchical mesh, the second is that we require
new data-structures to support parallel partitioning of the mesh.

1. There are two main options for partitioning a hierarchical mesh. The first
is to partition the grid at the root or coarsest level, 7y. This has a number
of advantages. The local hierarchy is maintained on a processor and thus all
parent/child interactions (such as refinement/derefinement) are local to a
processor. The partitioning cost will also be low, as the coarse mesh is gen-
erally quite small. The main disadvantage of this approach however is that,
for comparatively small coarse meshes with large amounts of refinement, 1t
may be difficult to get a good partitioning, both in terms of load balance
and communication requirements.

The other main approach 1s to partition the leaf-level mesh, i.e. the actual
computational grid. The pros and cons of this approach are the opposite of
those with the coarse level partitioning. In particular, the quality in terms
of load balance and cut-weight of the partition is likely to be better, albeit
at the expense of a longer partitioning time. However, the data-structures
have to be more complicated as hierarchical operations, such as multigrid
V-cycles and derefinement for example, are no longer necessarily local to a
processor (and are therefore likely to be slower).

The approach taken for parallelising TETRAD is that of partitioning the
coarse mesh. The only disadvantage of this, that of possible suboptimal
partition quality, can be avoided if the initial, coarse mesh is scaled as one
adds more processors.



ELEMENT
Parent
Nodes[4] —
o
Parent
Child[Nc] Child
FACE Element
—
Node[3]
Element
EDGE
Parent
Nodes[2] -
—o —eo + o—o
Parent
child[2] Child
NODE
XYz ® (xy2)
Element[Nf]

Fig. 1. Mesh Data-Structures in TETRAD

2. Given a partitioned mesh, we also need new data-structures in order to
support inter-processor communication and to ensure data consistency. Data
consistency is handled by assigning ownership of mesh objects (elements,
faces, edges and nodes). As is common in many solvers such as those used by
[15] we use halo elements, a copy of inter-processor boundary elements (with
their associated data) used to reduce communication overheads. In order
to have complete data-structures (e.g. elements have locally held nodes) on
each processor, we also have halo copies of edge, node and face objects. If
a mesh object shares a boundary with many processors, it may have a halo
copy on each of these. All halos have the same owner as the original mesh
object. In situations where halos may have different data than the original,
the original 1s used to overwrite the halo copies and thus is definitive. This is
used to help prevent inconsistency between the various copies of data held.

Adaptivity algorithms Both TETRAD ([11]) and its parallel implementa-
tion, PTETRAD ([12]), use a similar strategy to that outlined in [16] to perform
adaptivity. Edges are first marked for refinement/derefinement (or neither) ac-
cording to some estimate or indicator (provided as part of the parallel solver: see



Fig. 2. (a) Regular Refinement dissecting interior diagonal; (b) Green Refine-
ment by the addition of an interior node

2.2 below for example). Elements with all edges marked for refinement may then
be refined regularly into eight children. To deal with the remaining elements
which have one or more edge to be refined we use so-called “green” refinement.
This places an extra node at the centroid of each element and is used to provide
a link between regular elements of differing levels of refinement. The types of
refinement are illustrated in Figure 2. An important restriction that is made
is that green elements may not be further refined as this may adversely affect
mesh quality ([17]). Instead, they are first removed and then uniform refinement
applied to the parent element.

Immediately before the refinement of a mesh, the derefinement stage occurs.
This may only take place when all edges of all children of an element are marked
for derefinement and when none of the neighbours of an element to be deleted
are green elements or have edges which have been marked for refinement. This
is to prevent the deleted elements immediately being generated again at the
refinement stage which follows. A further necessary constraint is that no edges
or elements at the coarsest level, 7y, may be derefined.

For further details of the implementation of these adaptive algorithms using
MPT ([18]) please refer to [12]. This paper discusses important issues such as
performing parallel searches in order to allow refinement of edges of green ele-
ments (which requires coarsening followed by regular refinement), maintaining
mesh consistency and dealing with halo data in parallel.

2.2 A parallel finite volume solver

In order to apply the above adaptive algorithm to systems of PDEs of the
form (??7) a parallel solver is also required. The data structures supported by
TETRAD have been used with both finite element and finite volume solvers
(cell-centred and cell-vertex), however in this paper we restrict our numerical
experiments to a cell-centred finite volume scheme.

The scheme that we use is applicable when (?7) represents a system of hy-
perbolic conservation laws of the form
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Fig. 3. (a) Support for portable applications; (b) A PriQueue implementation;
(c) Performance on the Cray T3D

such as the three-dimensional Euler equations for example, and is a parallel ver-
sion of the algorithm described in detail [11]. This is a conservative cell-centred
scheme which is a second-order extension of Gudunov’s Riemann problem-based
scheme ([19]), using MUSCL-type piecewise linear reconstructions of the primi-
tive variables within each element ([20]). Although the time-stepping is explicit
it is executed in two distinct phases: a non-conservative predictor-type update
(referred to in [20] as the “Hancock step”) followed by a second half-time-step
based upon the application of the underlying conservation law. Implicit in this
numerical method is the need to solve a Riemann problem at each element in-
terface at each time-step — although this is only done approximately using a
modified form of the approximate solver described in [21].

The parallel version of the solver is straightforward to implement due to the
face data structure that exists within the adaptivity software (see Figure 1 for
example). To avoid any conflicts at the boundary between two sub-domains a
standard “owner computes” rule is used for each of the faces when solving the
approximate Riemann problems to determine fluxes. The use of halo elements
ensures that the owner of each face has a copy of all of the data required to
complete these flux calculations provided the halo data is updated twice for
each time-step (i.e. immediately before the Hancock step and then again before
the second half-time-step).

3 Shared Abstract Data Types for Portable Performance

The use of MPI allows the PTetrad code to be readily ported between parallel
platforms. However, this does not imply that the same solution is the most
optimal one on all platforms, or that using some other form of communications
mechanism might give significant performance improvements (see Section 4.3).
This section describes the application of Shared Abstract Data Types (SADTs)
[4] to support such performance requirements.



3.1 Background

SADTs are an extension of ADTs to include concurrency. A serial ADT supports
a well-defined interface, for example, the Enqueue and Dequeue of elements from
a Priority Queue (PriQueue), hiding the internal implementation from the pro-
grammer. An SADT instance may be made visible to multiple processors, which
may then concurrently invoke operations. The abstraction barrier enables imple-
mentations to take advantage of parallelism where appropriate, while shielding
the user from details such as communication and synchronisation.

The Leeds studies have used the generic software structure as shown in Figure
3(a). The SADTs are used to hide the often complex concurrency issues involved
in the use of fine-grain parallelism to support irregular forms of parallelism [?], as
well as making use of coarse-grain parallelism. The application is written using
a combination of coarse-grain parallelism, to structure the main phases of the
code, and the SADTs, to support more dynamic forms of parallelism.

Weakened forms of data consistency can also be used to maximise perfor-
mance, where this will not affect the correctness of the application using it
[4, 1]. For example, the PriQueue may not be seen in the same state by all
processors, such that a Dequeue may not strictly receive the highest priority ele-
ment. This enables more efficient parallelisation methods which can segment the
PriQueue elements across the processors, making effective use of high degrees of
parallelism, and reducing communications and synchronisation overheads.

There are many related research efforts in this area, including Distributed
Shared Abstractions (DSAs) [1], Information Sharing Abstractions [6] and Par-
allel Abstract Data Types [2], all of which aim to provide the applications pro-
grammer with high level abstractions of sharing in parallel systems.

3.2 Example: A Priority Queue

An example implementation of the PriQueue on the Cray T3D machine i1s shown
in Figure 3(b). Each processor holds a segment of the PriQueue elements in
its local memory, which are ordered by their priority. An associated local data
structure holds associated information to govern the access of the elements. The
implementation makes use of the SHMEM library to provide high bandwidth and
low latency access to the local memories by other processors. The cyclic access of
the segments by the processors distributes the priorities approximately evenly. A
processor is then guaranteed to remove one of the p highest priorities, when there
are p processors. This weaker form of semantics allows the highly concurrent
implementation given above, resulting in scalable performance characteristics as
the number of processors grow.

The graph in Figure 3(c) shows that the time to complete a Dequeue and
Enqueue (for 1000 single word elements per processor under continuous access)
grows only slowly as the number of processors increase. This results in an in-
crease in throughput from 11,400 Enqueues per second for 2 processors, up to
1,190,700 Enqueues per second for 256 processors, due to the lack of any sig-
nificant serial bottlenecks in the implementation. The use of the PriQueue to



support the travelling salesman problem [3] has demonstrated that its weaker
data consistency semantics does not have an impact on the quality of the load
balancing.

3.3 The Application of SADTSs to the PTetrad Software

As described above, the two key ideas behind the support for high performance
SADTs are concurrency and weak data consistency. The segmentation of the
PriQueue elements across the processors allows for highly concurrent access,
and thus scalable performance. This form of segmented access is also clearly
visible in the PTetrad code when partitioning the mesh elements. The weak
consistency of the PriQueue elements (meaning that there is not a struct global
ordering on the element priorities) reduces the overheads of communication and
synchronisation, supporting good practical performance. This is also visible in
the PTetrad code, in that the shared halo elements only need be fetched from
their home location at specific points in the execution of the code, and then
subsequently accessed locally.

4 Supporting Portable Parallel Adaptation

4.1 Related Work

Support at the lowest level comes from the use of adaptive paging protocols,
which can take some advantage of the repetitive communications patterns to
reduce the overall network traffic. The Reactive NUMA (R-NUMA) system
[?] is a cache coherency protocol which combines the advantages of a conven-
tional Cache Coherent NUMA (CC-NUMA) protocol with the Simple COMA
(S-COMA). CC-NUMA improve data locality by caching shared data accesses
(invoking the appropriate coherency protocol). S-COMA additionally allows the
local memory of the processor to be used to store pages of shared data (using the
same coherency protocol). This can potentially improve data locality by utilising
the larger size of the main memory, but operating system overheads make this
a more expensive option. An R-NUMA system combines the two approaches.
Reuse pages contain data which is frequently accessed locally and communica-
tion pages are mainly used to exchange data between processors. The former
can use the S-COMA protocol to reduce the network traffic caused due to cache
capacity misses, and the latter can use the CC-NUMA approach to allow the
sharing of sparse data at the cache-line level. The system can dynamically decide
when a page switches between reuse and communication by noting the number
of capacity and conflict misses. Applying the system to a partitioned mesh al-
lows internal mesh elements to be located on reuse pages and the shared (halo)
elements to use communication pages. This is under the assumption that these
two distinct types of mesh elements can be arranged to lie on distinct pages,
which would imply some form of domain-specific knowledge about the applica-
tion being executed.



Support at the intermediate level is characterised by the provision for a
generic framework for expressing irregular data structures and unstructured
computations. This is typically through the use of both static compiler analysis,
and cache coherency protocols which can take advantage of unpredictable but
repetitive communications patterns. As an example, the C** language uses data-
parallelism to perform parallel operations on a data collection within a global
namespace. The support for data-parallelism allows a static compiler analysis to
identify distinct phases of execution which require communications. However, the
compiler does not attempt to identify the communications patterns in each phase
- this is predicted by a run-time cache protocol. A sequentially consistent shared
memory is the standard model used by parallel machines, but unfortunately in-
troduces significant inefficiencies for typical producer-consumer sharing patterns
[?]. The C** coherency protocol is divided into two stages. The first stage in-
crementally builds a schedule to support the given communications, by using a
handler at each directory controller to note the incoming requests. The second
stage uses this schedule at the beginning of the subsequent phases of execution
in order to prefetch the expected data, with any unsatisfied requests being incre-
mentally added to the schedule. The protocol includes coalescing neighbouring
cache blocks, to be transferred using bulk messages. Limitations of the approach
include an initially empty schedule for each phase, resulting in no cache blocks
being requested, and schedule deletions only being supported by clearing the
current schedule. The protocol approach is similar to the Chaos runtime system
[?]. However, Chaos requires the protocol stages to be explicitly defined within
the application, and does not provide the facility for the incremental update of
a schedule, which is more appropriate to an adaptive code.

Support at the high level is typified by the use of the skeleton/template
approach, where domain-specific knowledge of the type of application to be
executed can be used to support high performance in a portable manner. An
example is the M-Tree abstract data type [10], which aims to capture the data
structure and computational structure of adaptive numerical problems, using
a regional mesh tree (in which each node represents a region of the domain
and children specify sub-domains). Example applications are in the area of the
adaptive-mesh heat flow problem, Adaptive Multigrid and Barnes-Hut. A num-
ber of first-order functions can be specified by the programmer to support basic
queries and updates on a tree node. Higher-order functions can specify particular
computational patterns for the given application, such as performing a reduction
on all nodes at a given level using some user-defined operator. This structured
abstraction provides the opportunity to investigate detailed issues which are
common to the application domain, such as the optimal dynamic load balancing
method and caching technique. Related studies have used the terms Distributed
Shared Abstractions (DSAs) [1] and Information Sharing Mechanisms [6], and
Shared Abstract Data Types, as described in Section 3. The common charac-
teristic 1s the representation of shared abstractions as structures that may be
internally distributed across the nodes of a machine, so that their implementa-
tions can be altered which maintaining software portability.
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Fig.4. The support of the PTetrad code using an SADT

4.2 The SOPHIA Interface

for each local element e, execute UpdateElement(e);
UpdateHalo();

4.3 Implementation Issues

Figure 4 demonstrates the current approach which is being taken to the support
of the PTetrad code in an efficient and portable manner. The Sophia interface
is reflected in the SADT interface, shown here by the UpdateElement() and Up-
dateHalo() functions. The figure shows two example implementations of these
functions, using either coarse-grain or fine-grain parallelism. In the coarse-grain
approach, all elements will be updated by the solver, followed by a communi-
cations phase in which a message containing updated halo information is sent
to each neighbouring mesh partition. The fine-grain approach updates the halo
information as the solver is applied to the local elements. In both cases, weak
data consistency is applied such that the halo updates are only guaranteed to



have completed after the processors barrier synchronise. The former approach is
typically used in conjunction with a message passing library, such as MPI, where
the overheads in accessing the network are substantial. The latter approach, us-
ing the SHMEM library in this case, can be used to overlap the network access
with subsequent local computation by the solver, given sufficiently low soft-
ware overheads for network access. Employing weak data consistency allows the
blocking of communications in the case of MPI, and the potential to pipeline
communications for SHMEM, supporting efficient network access.

4.4 Experiments

5 Concluding Remarks
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