3D Parallel Mesh Adaptivity: Data-Structures and
Algorithms *

P.M. Selwood T M.Berzins T P.M. Dew f

Abstract

The efficient solution of transient CFD problems on distributed memory computers
requires the use of parallel adaptive meshing. We will discuss issues arising in the
parallelisation of a general-purpose, unstructured, tetrahedral adaptivity code. In
particular, we will consider data-structure issues such as communications links and the
parallelisation of complex hierarchical data-structures. We will also discuss important
algorithmic and implementation aspects of the code such as the parallelisation of a
depth limited recursive search. Some results given demonstrate both the feasibility and
problems of the approach discussed.

1 Introduction

The need to solve ever larger and more realistic CF'D problems has made it necessary to use
distributed memory parallel computers to achieve acceptable solution times. For transient
problems, the present trend is to consider the use of mesh adaptation, both to retain the
efficiency of the solver as the solution develops and to introduce a measure of reliability
through the use of computed error estimates. The meshes used on parallel machines are
often so large that serial adaptivity, as well as introducing a bottleneck, is not feasible due
to single processor memory constraints. There is therefore a clear need for parallel adaptive
procedures. In order to address this issue, we are parallelising TETRAD (TETRahedral
ADaptivity), by Speares and Berzins [7] which is a general purpose serial code using
unstructured tetrahedral meshes. The technique used is that of local refinements/de-
refinements of the mesh to ensure sufficient density of the approximation space throughout
the domain. For many problems, the use of such an adaptive scheme can result in a large
saving in the number of elements used when compared to the uniform mesh required for
similar accuracy, and thus reduced solution times.

2 Data-structures

One of the major issues involved in parallelising an adaptive code such as TETRAD is how
to treat the existing data-structures. TETRAD utilises a complex tree-based hierarchical
mesh structure, with a rich interconnection between mesh objects. Figure 1 indicates the
mesh object structures used in TETRAD. In particular, note that the main connectivity
information used is ‘node to element’ and that the mesh hierarchy is formed by both element
and edge trees. Furthermore, as the meshes are unstructured, there is no way of knowing
a-priori how many elements share any given edge or node.

*Work funded by UK EPSRC Grant No. GR/J84915
fComputational PDEs Unit, School of Computer Studies, University of Leeds, UK

1

FACE

Nodes[3]
Element

ELEMENT
Parent
Nodes[4] -
Edgeso] 5y o+
Parent —_—
Child[Nc] Child

EDGE
Parent
Nodes{2] -
—o —o + o—o

Parent
child[2] Child

NODE
X.Y.Z ® (xy2)
Element[Nf]

Fiac. 1. Mesh Data-Structures in TETRAD

For parallelisation of TETRAD, there are two main data-structure issues. The first is
how to partition a hierarchical mesh, the second is that we require new data-structures to
support parallel partitioning of the mesh.

There are two main options for partitioning a hierarchical mesh. The first is to partition
the grid at the root or coarsest level. In this case, to achieve good load balance, the graph
of the coarse mesh need to be weighted by the number of leaf elements that are children of
the coarse mesh element. This approach has a number of advantages. The local hierarchy
is maintained on a processor and thus all parent/child interactions (such as refinement/de-
refinement) are local to a processor. The partitioning cost will also be low, as the coarse
mesh is generally quite small. The main disadvantage of this approach however, is that for
comparatively small coarse meshes with large amounts of refinement, it is difficult to get a
good partitioning, both in terms of load balance and communication requirements.

The second approach is to partition the leaf level mesh, i.e. the actual computational
grid. The pros and cons of this approach are the opposite of those with the coarse level
partitioning. In particular, the quality in terms of load balance and cut-weight of the
partition is likely to be better, albeit at the expense of a longer partitioning time. Also, the
data-structures have to be more complicated as hierarchical operations (such as multigrid
V-cycles) are no longer necessarily local to a processor. This may, for example, lead to
slower de-refinement as communication would now be required.

One may consider other partitioning strategies other than these, such as partitioning
at all levels of the mesh, but in many cases, this will not bring any advantage and will
introduce unnecessary complication. The approach taken for parallelising TETRAD is that
of partitioning the coarse mesh. The only disadvantage of this, that of possible suboptimal
partition quality, can be avoided if the initial, coarse mesh is scaled as one adds more

processors.

Given a partitioned mesh, we will also need new data-structures in order to support
inter-processor communication and to ensure data consistency. Data consistency is handled
by assigning ownership of mesh objects (elements, faces, edges and nodes). As is common
in many solvers such as those used by [1] we use halo elements, a copy of inter-processor
boundary elements (with their associated data) used to reduce communication overheads.
In order to have complete data-structures (eg elements have locally held nodes) on each
processor, we also have halo copies of edge,node and face objects. If a mesh object shares
a boundary with many processors, it may have a halo copy on each of these. All halos have
the same owner as the original mesh object. In situations where halos may have different
data than the original, the original is used to overwrite the halo copies and thus is definitive.
This is used to help prevent inconsistency between the various copies of data held.

The updating of halo data (eg at the end of a time-step) requires communication
between a mesh object and its copies. We store the remote locations of halos in a one way
linked list. This is used (rather than an array) as it is not known a-priori how many many
halos any mesh object might have. Each link in the list consists of a processor-pointer pair
precisely locating a halo on a remote processor. This enables updates to proceed without
searching on the remote processor. When new elements are created in the inter-partition
boundary regions, these linked lists for fast communication need to be set up for the new
elements. This requires a pointer to be sent to the original mesh object from its halo to
be stored in the relevant linked list. This communication is in the opposite direction from
the links already set up. Without adding a communication link in this direction (from halo
to original), we would have to search for the mesh object for which we need to add the
link, because of the lack of inherent structure in the mesh. This is clearly not a scalable
approach and thus we insist that the links between boundary mesh objects and their halos
are two-way.

3 Parallel Adaptivity Algorithms

To understand the algorithms required for parallel adaptivity, we first need to outline those
required in the serial case. TETRAD uses a similar strategy to that described in [2]. Edges
are marked for refinement/de-refinement based on some criteria. This may be an error
estimate or may simply utilise gradients. Elements with all edges marked for refinement
are refined regularly into eight children. To remove the remaining hanging nodes, we use
so-called ‘green’ refinement. This places an extra node at the centroid of the element.
All nodes in the element are joined to this new node creating a varying number of child
elements. The types of refinement are illustrated in Figures 2 and 3. Green elements
therefore provide a link between regular elements of differing levels of refinement. One
restriction we make however is that green elements may not be refined further. This is
because so doing can adversely affect the mesh quality [4].

3.1 Green Tetrahedra and Recursive Searching

In the situation where we require further refinement of a green element, we will first de-
refine the green elements and re-refine regularly. Not surprisingly, this has a knock-on effect.
Consider Figure 4. If edge a is marked for refinement, the element 77 will have to be refined.
As Ty is green, we will have to de-refine it and re-refine. This leads to a need to refine edge b
which is shared with element T5. This will therefore need to be refined in a similar manner.
To check for situations like this, we use a depth-limited recursive search. This search runs

oy

Fia. 2. Regular Refinement dissecting interior diagonal

Fia. 3. Green Refinement by the addition of an interior node

through the list of green elements for de-refinement and subsequent refinement. For each
of these elements, we check all the surrounding elements with which we share an edge.
Any of these elements which are green and one level higher in the mesh hierarchy (the
situation in Figure 4) will also be marked for de-refinement and subsequent refinement.
We now recurse, using the newly found green as the base of the search. This search is
clearly limited in depth of recursion by the maximum depth of refinement in the mesh and
termination is therefore ensured.

The problem with parallelising this search is that the search progresses through the
domain spatially and may well leave the the subdomain held on any given processor.
Therefore, as we search, we construct a list of those elements that are found in the search
and have halos. We communicate globally to check whether all the lists are empty (the
termination condition) and if not, pass a message to each of the halos of the elements on the
list. The recursive search starts again on these halos. This not only ensures consistency of

Ty

Fic. 4. Knock on effect of refining green elements

Solver Time-Steps = Mark Edges

A

Synchronise Markings > Communication

Construct Adaptation Lists [Communication

. — Communication
Lists

Create Communication
Links
Synchronise Adaptation
Lists

—= Communication

—= Communication

Create Communication

Re-partitioning I E— Links ——= Communication

Fic. 5. The Parallel TETRAD algorithm

the mesh, as all elements marked for de-refinement and subsequent refinement will have their
halos similarly marked, but also ensures that the mesh matches across partition boundaries.
Again, the depth of the mesh provides a limit, this time on the number of exchanges of
halos that take place. However, not all processors will necessarily have elements on which
to start a search, and these processors will be idle until a global check of communication
list sizes is made. These processors are not permitted to continue with further parts of the
refinement process as the search may enter their sub-domain at a later stage.

The algorithm for the parallel version of TETRAD is shown in Figure 5. In general,
the parallel version follows the same pattern as the serial code, but with many extra
communication steps which ensure consistency of the distributed data. Note that we
use a BSP style of programming [5]. FEach processor works in ‘supersteps’ where no
communication is done. These are separated by communications where the data is updated
acCross Processors.

3.2 Parallel Mesh Consistency

The structure of the parallel version of TETRAD is shown in Figure 5. In general,
the parallel version follows the same pattern as the serial code, but with many extra
communication steps which ensure consistency of the distributed data. Note that we
use a BSP style of programming [5]. FEach processor works in ‘supersteps’ where no

communication is done. These are separated by communications where the data is updated
acCross Processors.

Unlike the BSP paradigm, however we do not have all the data held consistently at each
of the superstep boundaries. For example, in the de-refine phase, an edge may be de-refined
on one processor, whilst its halo copies may be left intact on others. This inconsistency
may persist throughout the regular refinement phase, together with the related creation
of communication links. Green refinement is in some sense a ‘patching-up’ of the regular
mesh: making sure we have no hanging nodes. It is therefore appropriate that it is in this
phase we ensure all our original and halo edges match up.

Another problem with mesh consistency is that of making sure we adapt all halos in the
same manner as the original elements. There are two approaches to tackling this problem.
The first proceeds by adapting the original elements and later having an update phase
that adapts the halos in a similar manner. The second, which we use is to note that as
the serial code creates lists of elements and edges to be adapted, we only have to ensure
that if these lists contain a boundary element, its counterpart on neighbouring processors
contain the halos. Once both these adaptations have taken place, we need to put in place
the communication links between the original element and its halos. As there is no way
of directly locating the new halos from a remote processor, we utilise the existing links
for the parent elements in the hierarchy. Despite this however, the cost of creating these
communication links is high.

A further issue is that of load balancing. Any partition should be chosen to optimise
the solver’s load balance and to minimise the solver’s communication. An adaptive
scheme will therefore inherit this partition. It would be inappropriate to repartition
the mesh for adaptation as in general, the partitioning required for balanced adaptivity
would be quite different from that required for a balanced solver. Adaptivity tends to
concentrate on regions where the solution is developing rapidly, with the rest of the
mesh unaffected. Furthermore, the cost of re-partitioning would far outweigh any gain
in adaptivity performance. The use of adaptivity will destroy existing load balance. It is
therefore necessary to re-partition the mesh after an adaptive step to ensure solver efficiency.
This would ideally utilise a tool such as Jostle [8, 9] which is designed for distributed meshes.

The communications patterns used in adaptivity are of vital importance given the
high proportion of communication to computation. In order to retain portability we use
MPT [3] with non-blocking communications to perform our message passing. Nonblocking
communication is known to be vital for efficient communication and is also necessary to
avoid deadlock. When we construct new inter-processor links, we do so for many elements
at the same time. For most current machines, the communications cost model in [6]
would indicate that the latency involved in sending each element link separately would
be overwhelming. We therefore use packing to send one large message per processor rather
than many small ones. This maximises the used bandwidth and minimises the incurred
latency.

4 Results

In order to demonstrate both the feasibility and some of the problems of the approach
described above we report on some early computational studies. The adaptivity is driven
by marking edges to some prescribed formula rather than by error estimates for a given
solution. This allows us to concentrate on the adaptivity without the need to consider
solver specifics. We also do not include interpolations. Interpolation from the old solution

I =]
= | ===
= = :]
= l
Fia. 6. Problem 1 - slice through mesh at z = 0.17
- o - - e | | — ‘g:] -~ o Pl s
= =) = = =

Fia. 7. Problem 2 - slice through mesh at z = 0.1

to the solution on the new mesh is one of the most computationally intensive parts of the
adaptation procedure. Thus the results obtained are just dependent on the core adaptivity
and communication routines.

We give results for a small network of SGI Indys with R4000 processors, connected by
ethernet. We have also run the same experiments on a 4 node (R8000) SGI Power Challenge
for which we obtain qualitatively similar results as for the workstation network. This is not
surprising as although the Power Challenge has significantly better communications, it also
has similarly improved computational speeds. We are currently porting the code to other
machines (e.g. the Cray T3D).

We consider two simple examples, both based on a simple cuboid domain with an
initial mesh of 3,675 elements at a uniform density. We use an initial partition formed by
recursive co-ordinate bisection. Problem 1 involves refinement in regions near the corners
of the domain. We refine the mesh twice in these areas. This provides a test where most
(but not all) of the adaptation is away from inter-processor boundaries. A 2D slice through
the mesh is shown in Figure 6.

The second example is that of two levels of refinement in an area around a line which
goes through the middle of the domain. This corresponds with a partition boundary given
by co-ordinate bisection and thus many of the elements created will be in the halo region.
This case would therefore not be expected to perform well. A 2D slice through the mesh is
shown in Figure 7.

As would be expected, the algorithm does quite well for the first problem, even on
this rather limited hardware setup. Two processors takes 3.3 seconds which is reduced to
1.8 seconds by using four processors. This quite surprising as two processor job does no
refinement in the inter-partition boundary regions whereas there is moderate refinement in
these areas for the four processor job. The refinement for this problem is also quite well
balanced for both cases, the imbalance after adaptivity being less than 1%.

The algorithm does rather worse for the second problem. Two processors take 8.04 secs
whilst four take 10.24 secs. Note that in this case adding more processors slows down the
adaptivity. It is easy to see why this is the case. For this second example, the partition

boundary introduced when we move from two to four processors corresponds with the region
being refined. Therefore most of the boundary elements in the four processor case are being
refined and need to communicate.

These two examples represent the two extremes likely to be encountered in real
situations. Omne has hardly any refinement of halo elements and the other has a large
proportion of halo to normal elements refined. One would expect adaptivity in a normal
solution process to lie somewhere between these two extremes. Furthermore, there is little
de-refinement in the examples shown. Whilst de-refinement is computationally inexpensive,
it also involves no communication, due to the hierarchical nature of our data-structures.
We can thus only gain performance for problems with more de-refinement. Similarly, the
addition of interpolation would also increase the computation to communication ratio and
give more improvement.

5 Conclusion

The use of adaptive unstructured mesh algorithms on distributed memory machines requires
the use of complex data-structures with rich inter-processor communication links. The
algorithms used involve many communications to ensure consistency of the distributed
mesh as it evolves. Despite this, initial results are encouraging.

References

[1] J. Cabello, Parallel Ezplicit Unstructured Grid Solvers on Distributed Memory Computers,
Advances in Eng. Software, Vol. 23, No. 3, 1996, pp 189-200

[2] R. Lohner and J. D. Baum, Adaptive H-Refinement on 3D Unstructured Grids for Transient
Problems, J. Num. Meth. Fluids, Vol. 14, 1992, pp 1407-1419

[3] The Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Int. J.
Supercomputing App., Vol. 8, No. 3/4, 1994

[4] M. E. G. Ong, Uniform Refinement of Tetrahedron, SIAM J. Sci. Comp., Vol 15, No. 4, 1994

[5] L. Valiant, A Bridging Model for Parallel Computation, Communications ACM, Vol. 33, No.
8, 1990

[6] P. M. Selwood, N. A. Verhoeven, J. M. Nash, M. Berzins, N. P. Weatherill, P. M. Dew and K.
Morgan, Parallel Mesh Generation and Adaptivity: Partitioning and Analysis, Proc. Parallel
CFD ‘96, 1996 (in press).

[7] W. Speares and M. Berzins, A 3D Unstructured Mesh Adaptation Algorithm for Time-
Dependent Shock Dominated Problems, Submitted to Int. J. of Num. Meth. in Fluids.

[8] C. Walshaw, M. Cross and M. Everett, A Localised Algorithm for Optimising Unstructured
Mesh Partitions, Int. J. Supercomputing Appl, Vol. 9, No. 4, 1995.

[9] C. Walshaw, M. Cross and M. Everett, Parallel Partitioning of Unsiructured Meshes, Proc.
Parallel CFD ‘96, 1996 (in press)

