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Abstract—To exploit the capabilities of current and future
systems, developers must understand the interplay between on-
node performance, domain decomposition, and an application’s
intrinsic communication patterns. While tools exist to gather
and analyze data for each of these components individually,
the resulting information is generally processed in isolation and
presented in an abstract, categorical fashion unintuitive to most
users. In this paper we present the HAC model, in which we
identify the three domains of performance data most familiar to
the user: (i) the application domain containing the application’s
working set, (ii) the hardware domain of the compute and
network devices, and (iii) the communication domain of logical
data transfers.

We show that taking data from each of these domains
and projecting, visualizing, and correlating it to the other
domains can give valuable insights into the behavior of parallel
application codes. The HAC abstraction opens the door for
a new generation of tools that can help users more easily
and intuitively associate performance data with root causes
in the hardware system, the application’s structure, and in its
communication behavior, and by doing so leads to an improved
understanding of the performance of their codes.

Keywords-Performance Analysis and Visualization

I. MOTIVATION

By the end of this decade, exascale machines are expected

to support 500 million to 4 billion concurrent tasks. At the

same time the complexity of both architectures and appli-

cations will increase significantly, leading to often unex-

pected and unpredictable interactions between applications,

middleware, and underlying hardware. In order to exploit

such machines fully, programmers must be able to measure,

analyze, and understand the behavior of their applications

and its corresponding impact on the overall performance in

great detail.

Most current tools gather and present performance data

in the native hardware or MPI rank domain, relying on

the user to infer causal relationships and interdependencies.

However, neither of these two domains is intuitive or familiar

to the users. As a result, data appear as abstract or highly

discrete, and domain and performance experts must expect
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considerable effort to analyze it. At exascale the quantity

and complexity of performance data will grow by orders of

magnitude, rendering this traditional, manual performance

analysis infeasible. Traditional techniques for analyzing sci-

entific data have dealt with scale using approaches on con-

tinuous data. In this paper, we borrow from these techniques

and show that they can be used to present performance

data in more intuitive ways by projecting it, e.g., to the

simulated application domain. Doing so makes performance

data easier to visualize and analyze, and it allows us to

discover correlations of features across domains that would

otherwise not be apparent.

We introduce the HAC model (illustrated in Figure 1),

which breaks performance data into three distinct categories.

These are the Hardware domain consisting of network nodes

and physical links between them, the simulated Application

domain, understood by application scientists and mathe-

maticians and designed to represent the underlying problem

(e.g., matrices, unstructured grids, or 3D volumes), and the

Communication domain, which captures the communication

patterns of the application.

Using this basic HAC abstraction, we define and im-

plement mappings between the domains that enable us

to project data from one domain to another, emphasizing

correlations between performance data gathered in any two

of the three domains. Further, by projecting data from one
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Figure 1. Interplay between the three critical domains for performance
analysis.
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domain to another, we can then use the set of data analysis

techniques available in the destination domain to extract and

compare features. For example, we might project floating

point counts from the hardware domain into the application

domain and then analyze them by applying feature-finding

algorithms there. The correlation of hardware, communi-

cation, and application data allows application developers

to understand how structures in their simulated domains

correspond to real performance problems, and it also gives

systems engineers a new, more intuitive perspective on how

simulations map to physical hardware. This correlation is

not possible with existing approaches.

This paper makes the following contributions:

• We introduce the HAC model to describe three of the

most relevant data domains for performance analysis;

• We define and implement projections between these

domains that allow us to project data to new domains

and analyze it there;

• We present a measurement framework to allow concur-

rent, consistent data collection from multiple domains;

• We show how correlating data across domains provides

new insight into application performance; and

• We demonstrate our approach with three case studies,

each highlighting the use of one of the three inter-

domain mappings.

The remainder of this paper is structured as follows:

Section II briefly discusses the state of the art in performance

analysis tools, Section III introduces the HAC model and

corresponding data mappings in detail. Section IV presents

our experimental setup and Section V discusses the three

case studies and illustrates projections between domains. In

Section VI, we state our conclusions.

II. BACKGROUND AND RELATED WORK

There is a large body of existing research on perfor-

mance tools for parallel programs. Tools such as HPC-

Toolkit/HPCviewer [22], SCALASCA [38], its predecessor

Kojak [24], Paradyn [23], and Open|SpeedShop [32] perform

a wide range of performance measurements including tracing

application behavior over time and low overhead statistical

profiling. However, performance tools do not typically tie

their data directly to the application or communication

domains. Rather, they report performance measurements on

a per-source region or per-rank/process basis, leaving the

user to associate the reported data to application semantics.

Several tools provide sophisticated displays, allowing a

deeper insight into the performance an application. The

Vampir [26] and Vampir Next Generation (VNG) [5] trace

viewers offer a multi-scale display for large message traces.

HPCToolkit can scalably display large callpath traces [34].

Other analyses allow developers to associate scaling and load

balance problems with particular code regions [11], [35],

[36]. TAU’s PerfExplorer directly compares performance
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Figure 2. Mappings between domains in the HAC model.

metrics in 3D plots [17]. However, these tools restrict

performance data to its own domain and do not allow deeper

correlation with application or hardware data.

Kojak’s/SCALASCA’s Cube browser is closest to the

work presented here. It presents projections of performance

data onto the physical network topology of supercomputers.

Extensions of this work also explore opportunities to explain

performance results in application space [2] by exploiting

adjacency of processes in the application domain.

SvPablo was one of the earliest tools [27] to offer perfor-

mance visualization, with visualizations of communication

data in an animated tunnel.

Overall, existing tools have limited capabilities for cor-

relating performance data from different domains, and this

limits the insights that can be derived from visualizations.

III. THE HAC MODEL

Most traditional scientific data analysis techniques are

concerned with many quantities of interest (temperature,

pressure, etc.) defined on a single common domain such

as physical space. Performance data has many “natural”

domains describing different aspects of application or system

behavior. For example, hardware counter metrics are mea-

sured on a per-core or per-socket basis, and communication

patterns are tracked within the MPI rank space abstraction.

Understanding the meaning of these metrics typically re-

quires relating them to other domains. For example, the

performance of a particular core provides little information

without a description of the part of the application domain

to which it is assigned, or information about the portion of

global communication it performs.

The HAC model allows tools to account for the multi-

domain nature of this problem by identifying three key

domains for performance measurements and by defining

projections between them. Figure 2 illustrates this approach:

we gather data in each of the three domains in the form of

application data, performance metrics and communication

profiles, and we define projections of this data to the
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Figure 3. Domain decomposition of S3D.

other two. This not only allows us to directly compare

the data across domains, but also opens the door to using

data visualization and analysis tools available in the other

domains. We can now apply scientific visualization tools

to performance data projected into the application domain,

or we can apply graph-based techniques to the same data

projected into the communication domain.

The HAC model provides a structured characterization of

common performance analysis and optimization challenges

in terms of relevant source data/domains, the necessary

mappings, and the subsequent analysis requirements. This

structure will lead to new insights, more focused research

directions, and a common framework to describe, compare,

and combine different approaches. In the following we

briefly describe the three data domains and a set of mappings

among them using, as a reference, the combustion code

S3D [16] (see Figure 3).

Application Domain: The application domain repre-

sents the physical or other simulated system modeled by

an application code. Often it is a piece of physical space

with materials represented by some grid or mesh, but

more abstract domains such as sparse matrices or large,

abstract graphs are also possible. This is the domain most

familiar to domain scientists, and it generally provides the

mental reference frame during the code design stage. The

application is ideal for exploring performance problems

related to specific physical phenomena of the simulation.

As an example, consider S3D, which describes a flame with

some features of interest, as shown at top in Figure 3.

Correlating features of the flame with performance data,

such as unusually high cache miss counts, may highlight

problems with a specific chemistry kernel or with some

data structure in the application. There exist a large number

of scientific visualization and analysis tools for application

domains that can be exploited for performance analysis once

the data is mapped into this space.

Hardware Domain: The hardware domain describes

the physical hardware of a computer system in terms of

computing cores and network links. A common configura-

tion in today’s integrated HPC systems is a mesh or torus

network of multi-core compute nodes as shown on the left in

Figure 3. Commodity clusters often rely on Infiniband (IB)

networks with fat tree topologies. Each of these networks

has its own graph of hardware links connecting nodes.

Data analysis in the hardware domain poses inter-

esting challenges. Clearly, large scale graph algorithms

such as clustering can be helpful. However, many of the

largest supercomputers use regular grids connected into

three-dimensional tori. Future machines will use higher-

dimensional mesh/torus topologies. Given the large number

of nodes and the Cartesian scaling properties, it is reasonable

at scale to treat such a regular grid as a discrete represen-

tation of a continuous space. This allows the use of new

classes of algorithms such as local correlation analysis [18],

[29] or topological techniques [15], [19] to detect and extract

features from high dimensional manifolds.

Mapping between hardware and application domains is

application-specific, and it is typically done manually. Mesh-

based simulations, for example, distribute partitions of a

mesh across nodes, and particle systems group sets of

neighboring particles on each node. However, this mapping

does not need to be static. Adaptive simulation frameworks,

such as SAMRAI [37], dynamically create and destroy

mesh partitions and rebalance computational load by moving

partitions among cores.

In practice, mapping from the application to the hardware

domain will result in a downsampling or averaging of infor-

mation since there are fewer cores than mesh elements. For

the reverse mapping one typically works with two represen-

tations, the high resolution application domain and a lower

resolution representation carrying hardware information, as

shown in Figure 4.

Communication Domain: The communication domain

consists of a general graph. For MPI programs, such as

the one studied here, nodes correspond to MPI processes

and edges correspond to message exchanges between them.

During execution, most MPI applications will exhibit multi-

ple distinct communication patterns. For example, as shown

on the right of Figure 3, the S3D code uses primarily a

stencil-based neighbor exchange pattern resulting in a grid

that is almost identical to the hardware domain. This is

interleaved with global collective patterns, such all-to-alls

and the reduction shown in the figure.

Large-scale simulation codes explicitly decompose the

application domain over MPI processes. Typically, it is this

process decomposition that is specified in the application

code, rather than a hardware-specific decomposition over

the processors themselves. Together with a communication

to hardware mapping specified at runtime, these define the

application to hardware mapping. The mapping itself is of

particular interest, because it can severely affect performance

if it is constructed in a way that slows down inter-node com-
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munication. The problem of choosing the best-performing

mapping of MPI processes to physical processors is referred

to as the node mapping problem. The full search problem is

NP-hard, but given a mapping, we can embed the edges of

the communication graph into the hardware domain, and we

can use this to predict the expected network traffic on each

link in the hardware domain. This can help with locating

performance problems.

IV. EXPERIMENTAL SETUP

In the remainder of this paper, we present three case stud-

ies showing how inter-domain projections can be defined,

implemented and used to gain new insight into application

performance.

Experimental Platforms: For our experiments, we use

two systems at Lawrence Livermore National Laboratory:

Hera and DawnDev. Hera is an 864 node multicore cluster

with an Infiniband interconnect. Each node consists of four

AMD Quadcore 2.3 GHz processors (8,356 total), and each

core has its own L1 and L2 cache. The four cores share

a 2 MB L3 cache. Each node runs CHAOS 4, a high

performance Linux variant based on RedHat Enterprise

Linux. We rely on MVAPICH as our MPI implementation.

DawnDev is a Blue Gene/P system consisting of a single

rack with 1,024 compute nodes, of which 512 were available

to us at a time. Each node contains a quad-core 850 MHz

PowerPC 450 Processor and the nodes are connected by a

3D torus network. BG/P systems use a custom compute node

kernel and rely on IBM’s optimized MPICH2 implementa-

tion for communication.

Measurement System: To obtain data suitable for analy-

sis within the HAC model, we require a measurement system

that is capable of gathering data from multiple sources

and domains concurrently. This is necessary to guarantee

consistency between the different data sources and avoid

differences caused when measuring multiple executions.

We achieve this by layering the HAC measurement system

on top of PNMPI [31]. This infrastructure, once linked with

the code, allows the dynamic loading of multiple PMPI

profiling tools in a single run. Each measurement tool is

a separate component, loaded by PNMPI at program start

time. When necessary, these modules can leverage common

resources or services, such as request tracking or datatype

walking, keeping the implementation effort for each module

focused on the targeted data source only.

V. CASE STUDIES

We use the HAC model in three case studies from the

areas of fluid mechanics, multigrid solvers, and molecular

dynamics, each highlighting a different mapping in our three

domain HAC model.

A. Performance Data in the Application Domain (H → A)
Performance counters and other measurement devices

are present on most modern microprocessors, and these

provide measurements of architectural features, caches, on-

chip networks, and other components of computer systems.

This data is collected in the hardware domain, as it pertains

to system resources such as nodes, networks, and cores. For

parallel applications, the data is typically associated with

the rank of the MPI process taking these measurements, as

this is a readily available process identifier and MPI ranks

roughly correspond to measurements for single cores.
The MPI rank space is unintuitive, since it is a flat

namespace with no inherent locality semantics. MPI ranks

are distributed arbitrarily among cores on many systems,

and it is not always possible for tool users to obtain precise

network topology information easily.
In order to provide better attribution of hardware mea-

surements to application-domain structures, this first case

study maps performance data from the hardware domain to

the application domain. Here our hardware domain is the

machine structure of Hera, and the application domain is

the physical system simulated by a fluid dynamics code. We

correlate the features in the simulation with our performance

observations.
Application: We use Miranda [7], [30], a higher order

hydrodynamics code for computing fluid instabilities and

turbulent mixing in 2D and 3D domains. It is primarily used

to study Rayleigh-Taylor (R-T) and Richtmyer-Meshkov (R-

M) instabilities, which occur in supernovae and inertial con-

finement fusion. The application uses a massively parallel

spectral/compact solver for variable-density incompressible

flow, including viscosity and species diffusivity effects [6].
In our experiments, we simulate an ablator driving a shock

into an aluminum section containing a void and producing

a jet of aluminum. The simulation results of a 12 hour run

using a 2D grid running on 256 cores of Hera are depicted

in Figures 4a and 4b using nine selected timesteps in regular

intervals sorted from left to right. The figures clearly show

the aluminum jet on the left side as well as the created

shockwave traveling from top to bottom.
Measurement Setup: For this first experiment we con-

centrate on per-core performance information. We mea-

sure the total compute time spent per timestep as well as

three marquee performance counters: L1 miss rate, number

of floating point operations, and number of branch miss-

predictions. We measure this data using PAPI [25] from

within a PNMPI module loaded transparently at application

start. We take advantage of the application’s built-in visual-

ization capability, and we write out our performance data as

additional fields within periodic visualization dumps.
Projection (H → A): The simulation data is organized

in a 2D regular, dense grid, which is split into equal chunks

in all dimensions and distributed among the processors in

row major order. In our case study we use 256 cores split
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(a) Aluminum distribution. (b) Velocity distribution.

(c) Floating point operations. (d) L1 cache misses.

(e) Branch miss-predictions. (f) Compute time per timestep.

Figure 4. Simulation results (top row) and performance data mapped to the application domain (middle and bottom row) — left to right: simulation
progress, blue shows low and red high values.

into an 8 × 32 grid. We extract the mapping of grid cells

to processor cores from the application, and we store the

matching processor grid coordinates in the output files.

Then, we use this data to determine which parts of the

simulation grid are computed by which cores, and this

provides us with the necessary projection function between

the hardware and application domains.

Evaluation and Results.: Plots of these four perfor-

mance metrics are shown Figure 4c)-f). Despite the simplic-

ity of the experiment, the use of the HAC model provides

valuable insight not possible using MPI rank space alone.

Figure 5 shows a simple plot of FP counts per MPI rank,

but it provides little insight into the application’s behavior.

In contrast, the projections of both FP operation counts

and L1 cache misses clearly show features that mirror the

movement of the physical shockwave through 2D space. By

simple visual inspection we see that the shockwave itself

requires a higher number of FP operations to compute, but

in the wake of the wave we see significantly fewer operations

per iteration. Furthermore, while the areas not affected by
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Figure 5. MPI rank space visualization of number of floating operations
for rightmost timestep in Figure 4c.

the shockwave show a very steady number of operations,

the computation of the wave clearly shows more variation.

Similar observations, although with smaller differences, can

be made for the L1 cache miss counts. Combined, these

observations allow predictions of load imbalance.
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Figure 6. L1 cache data for leftmost timestep in Figure 4d) mapped to
the architecture of the machine (2x2 blocks indicate a Quadcore socket,
columns 4-way SMP nodes).

The number of branch mispredictions shows a different

picture. We see higher numbers on the boundary of the

domain caused by specialized code to handle boundary

conditions. Over time, this effect is reduced, showing that the

branch predictor was able to learn the application’s behavior.

The actual compute time per iteration (which includes

time spent blocked within an iteration and hence is not

a good measure for load balance) also shows increased

computation time at the top and bottom boundary conditions.

More importantly, though, we clearly see a gradual increase

in runtime per iteration caused by the increasing complexity

of the simulated problem.

In addition to these application-related observations,

which enable users to quickly reason about application-

dependent performance, the L1 miss rates show a secondary

effect. Mapping this information into and visualizing it in the

architectural space of the hardware domain (Figure 6), we

see that one fixed core per node has a significantly higher

L1 miss rate as indicated by the series of red dots. This

stems from processing overhead within MPI on that core

for collective operations, in particular from large message

broadcasts. As additional experiments verified, this core acts

as a local leader for optimized collectives in MPI, which first

gather on-node data to the leader and then use this buffer

for broadcast [21].

This example shows how important it is to look at

the data from different perspectives in multiple domains.

It not only enables users to fully understand application-

dependent overheads, identify correlations between appli-

cation behavior and observed performance metrics, and

with that establish a realistic baseline to detect anomalous

behavior, but it also provides the necessary information to

distinguish system overheads due to their lack of correlation

with application data.

B. Logical vs. Physical Message Flow (C → H)

Communication is a critical part of every parallel ap-

plication. The rising complexity of both the application’s

communication patterns and the topologies of the underlying

networks makes a proper understanding of the impact of

application communication on physical network structure

essential. This forms the foundation for a wide range of

optimizations in the application, the network architecture,

and mappings of processes to nodes.

Figure 7. MPI trace using Vampir of the coarsening phase of a single AMG
V cycle: fine levels are computation bound and can overlap computation
and communication (left), coarser levels are dominated by communication
(right).

Application: Algebraic multigrid (AMG) methods [4],

[28], [33] are popular in scientific computing due to their

robustness when solving large, unstructured sparse linear

systems. In particular, hypre’s BoomerAMG [1], [8], which

we use in our experiments and which is also part of the

Sequoia benchmark suite [20], plays a critical role in a

number of diverse simulation codes, such as elastic and

plastic deformations of explosive materials and structural

dynamics codes.

AMG methods operate on a V or W cycle, which means

they start with a fine grid, which is iteratively coarsened

through multiple levels until it can be solved directly. After

this step, the result is successively interpolated through the

same levels back to the fine grid. This process is then

repeated until the system converges.

While finer levels of the AMG computation are compute-

dominated and have regular communication structures with

a limited set of neighbors, coarser levels are communication

bound and exhibit more random and input-dependent com-

munication pattern with a large set of neighbors [10]. This

can be seen in traditional MPI traces, such as the one shown

in Figure 7. However, MPI traces do not show the impact

of such communication on the network hardware.

Measurement Setup: To provide more insight into the

communication structure of AMG we perform a series of

experiments on DawnDev, our Blue Gene/P system, and

contrast measurements from the hardware and the com-

munication domain. We use a complete midplane of 512

nodes, which are connected in an 8 × 8 × 8 torus. The

Blue Gene/P provides network performance counters that

can be used to measure the number of packets sent to each

of the six outgoing links of a torus node. This includes

packets stemming from messages initiated on the local

node as well as packets from messages passing through the

node. We measure the actual communication in the AMG

application by intercepting all MPI calls and aggregating

the communication volume into a communication matrix

covering all communication pairs.
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Both measurement approaches are implemented as sepa-

rate PNMPI modules and loaded concurrently at the start of

the execution. Additionally, we added minimal instrumenta-

tion to the core solver of AMG to distinguish the coarsening

levels and partition our measurements in one group per level.

For our particular example problem size of N = 3203, AMG

required eight levels of coarsening.

Projection (C → H): In order to compare the mea-

surements in the hardware and network domains, we must

first project the information onto a common domain. In this

case, the data in the hardware domain lacks the necessary

information to be mapped to the communication domain

since bandwidth on individual links is shared by several

communication paths. We therefore project the communi-

cation onto the hardware domain.

To accomplish this, we first studied the behavior of the

Blue Gene/P network for various torus locations and mes-

sages sizes and, based on this data, developed an accurate

model of the network communication between two arbitrary

node pairs under the assumption of no contention. We apply

this model individually to all data transfers recorded in

the communication domain, i.e., the communication matrix

introduced above, and use the sum of the modeled traffic

between all communication pairs as an estimate of the

complete communication traffic. Once complete, we can

directly compare the estimate data with the measurements.

Evaluation and Results: This estimate will not be

fully accurate, particularly in high traffic scenarios, since

it assumes infinite bandwidth links. However, it provides

us a good estimate how the traffic should flow through

the interconnect. Further, by comparing the estimate with

the measurements on each links, we can now identify links

that are saturated beyond capacity and we can also analyze

which communication pairs contribute to this overload and

hence cause bottlenecks. We further illustrate this with three

visualizations: the measured network counters, the estimated

traffic, and the ratio between the two.

Figure 8 shows the results of an AMG run with an 8 ×
8 × 8 and a 2 × 4 × 16 processor grid in the application

projected onto DawnDev’s 8× 8× 8 torus. For the 8× 8×
8 topology (Figure 8a-d) ), we can clearly see the regular

neighbor or stencil communication in AMG’s finer levels.

The ratio graphs show that communication on z links is more

likely overloaded (and hence appears hotter in the graph)

than in the other two dimensions, although the difference is

small.

The behavior becomes more irregular and sparse for

coarser levels until we hit an interesting point in level 6.

Here, we begin to see potential performance penalties from

hot links. However, we also see that these hot links exist

in both the estimate and the measurements, meaning that

the hardware still satisfied the communication requirements.

Only a few edges show a difference between simulated and

measured traffic, in this case mostly due to inaccuracies in

our network estimation for links with low utilization.

The situation is different for the execution of the same

problem split into a 2× 4× 64 processor grid, as shown in

Figure 8e-f). Here the estimate shows a serious of hot links

(red), while the measurements do not expose a hot edge.

In this case, the machine’s router automatically adjusted

the paths of messages to correct this problem, but with a

potential performance penalty. The ratio graph shows that

these differences are rather small and appear mostly for high

y coordinates.

In all cases we can retain the projection information itself

and use it to determine which node pairs use this edge

for their communication. This will allow us to modify the

mapping of processes to nodes such that such hotspots are

no longer present.

C. Identifying Communication Groups on Application Struc-
tures (C → A)

Our experience with AMG illustrates the potential com-

plexity of communication patterns in HPC applications.

Many developers struggle with mapping their own appli-

cations’ communication to high performance networks. In

many cases, they could also benefit greatly by optimizing

the communication patterns of third-party libraries. AMG,

for example, is used as a solver library by many application

codes, and its performance can dominate that of an entire

run. Other codes make extensive use of parallel numerical

linear algebra libraries, such as SCALAPACK [3].

Typically, application developers are not familiar with the

communication patterns of the sophisticated algorithms used

in parallel numerical libraries, and this poses a problem as

networks become larger and have higher long-distance hop

latencies. Meshes and tori are very scalable, but this comes at

the cost of nonuniform latency and bandwidth. It has been

shown that performance improvements of up to 65% are

possible by remapping processes on a torus network [14],

but this was achieved only through lengthy manual analysis.

In this section, we describe our mapping from the com-

munication domain to the application domain. We have

developed a PNMPI tool to extract the major communication

patterns of MPI applications in order to project them onto

the application domain. This allows developers to tailor their

own node mappings based on the network behavior of code

they depend on, without having to understand all of the

details of its communication.

Application: Our experiments in this section use QBall,

an implementation of First-Principles Molecular Dynamics

(FPMD), an accurate atomistic simulation approach used to

predict the properties of materials without experimental data

or variational parameters. QBall is widely used in many

areas, including solid-state physics, chemistry, biochemistry,

and nanotechnology. The FPMD approach combines a quan-

tum mechanical description of electrons with a classical
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(a) 8x8x8, level 2, counter (left), estimate (right.) (b) 8x8x8, level 2, ratio.

(c) 8x8x8, level 6, counter (left), estimate (right) (d) 8x8x8, level 6, ratio.

(e) 2x4x64, level 1, counter (left), estimate (right) (f) 2x4x64, level 1, ratio.

Figure 8. Network traffic measured in HW domain (left), estimate (middle), and ratio (right) for AMG.

Figure 9. Communicators detected in QBox projected onto the application
domain.

description of atomic nuclei. To reduce the exponential com-

plexity of the many-body Schrödinger equation to O(N3)
scaling, a plane wave, pseudopotential density functional

theory (DFT) formalism is used [12], where N is the number

of chemically-active valence electrons.

QBall inherits its structure from QBox [14], its predeces-

sor that won the Gordon Bell award for peak performance in

2006 partly due to heavy node mapping optimizations. It is

written entirely in C++, and it uses the FFTW library [9] as

well as the ScaLAPACK and BLACS libraries for the bulk

of its computation and communication [13].

Measurement Setup: For QBall, as for QBox, the key

to a good node mapping is the structure of row and column

communicators and the tradeoff between nearest-neighbor

and local collective communication. QBall makes heavy

use of MPI_Comm_split to create communicators. We

use our PNMPI tool to intercept MPI_Comm_split and

MPI_Comm_create and to record new communication

configurations.

One problem with existing profiling tools is that they are

not able to effectively track identical communicators created

at different times. Parallel numerical libraries often create

special communicators that live for a single function call.

The function is then called again later, and the communicator

is re-created for the same communication patterns. A tradi-

tional PMPI tool attempting to track communication patterns

by MPI communicator identifiers would not be able to detect

this, as communicators are transient.
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Our PNMPI tool creates canonical identifiers for commu-

nication patterns created by MPI_Comm_split and identi-

fies identical communicator groups at runtime, enabling their

profile information to be grouped together. This allows us

to detect the structure of application communication and to

present it intuitively to application developers.

Projection (H → A): Figure 9 shows two auto-

matically detected communication configurations in QBall.

These patterns arise from the behavior of the SCALAPACK

and BLACS libraries that QBall uses to do its computation.

In the figure, the data is projected onto QBall’s application

domain, which is a matrix of particle wave functions where

each column contains the full set of coefficients for a

particle.

Evaluation and Results: Unlike traditional molecular

dynamics, where performance and communication have

a strong spatial correlation with the application domain,

QBall’s behavior more precisely mimics its solvers.

To better optimize solver performance, in addition to

the communicator structure we show here, we can also

record, per unique communicator set, a profile of the amount

of time spent in particular MPI operations within these

configurations (e.g., the rows or the columns). We have

omitted these profiles due to space restrictions, but this

information is particularly useful for optimizing the node

layout of QBall, as it tells us not only the communication

neighborhoods, but also what type of communication is

typically executed within these neighborhoods.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents the HAC model, which provides a

structured approach to leverage the multi-domain nature

of performance data. By collecting performance data in

three key domains and describing projections of data be-

tween them, our framework provides new intuitive ways

to analyze and visualize performance data. By extending

and combining maps and analysis techniques in different

domains, we showed that the HAC model enables users

to differentiate between application-specific and system-

specific performance problems, to detect hot links in network

profiles, and to automatically detect communication patterns

for use in node mapping optimizations.

We have described a structured framework to guide future

research and highlight underdeveloped or missing compo-

nents of a complete performance analysis toolkit. We are

currently working to develop new types of scalable, auto-

mated analysis techniques using the foundational techniques

presented here.
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