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Abstract
Modeling and animating complex volumetric natural phenomena, such as clouds, is a difficult task. Most systems
are difficult to use, require adjustment of numerous, complex parameters, and are non-interactive. Therefore, we
have developed an intuitive, interactive system to artistically model, animate, and render visually convincing vol-
umetric clouds using modern consumer graphics hardware. Our natural, high-level interface models volumetric
clouds through the use of qualitative cloud attributes. The animation of the implicit skeletal structures and inde-
pendent transformation of octaves of noise emulate various environmental conditions. The resulting interactive
design, rendering, and animation system produces perceptually convincing volumetric cloud models that can be
used in interactive systems or exported for higher quality offline rendering.

Keywords: cloud modeling, cloud animation, volume
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1. Introduction

Clouds, like other amorphous phenomena, elude traditional
modeling techniques with their peculiar patterns of intri-
cate, ever-changing volume-filling microstructures. To ad-
dress this challenge, we have created an interactive system
that allows artists to easily design and interactively animate
visually convincing clouds. Accelerating their rendering to
real-time extends their applications from static data visu-
alization and movies to interactive exploration and video
games. In addition, providing a responsive, interactive sys-
tem aids comprehension of synthetic environments and in-
creases the productivity of artists.

We have created a multi-level, interactive, volumetric,
cloud modeling and animation system using intuitive, quali-
tative controls. Our approach scales from entire cloudscapes
to detailed wisps appropriate for flythroughs. The cloud
models and key-framed animation parameters may be ex-
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ported to commercial animation packages for higher quality
offline rendering.

Our system is composed of four main components: a high-
level modeling and animation system, the low-level detail
modeling and animation system, the renderer, and the user
interface. We have designed an intuitive, multi-level inter-
face for the system that makes it easy to use for both novice
and expert users. To create cloud animations, the user in-
teractively outlines the general shape of the clouds using
implicit ellipsoids and animates them using traditional key-
framing and particle system dynamics. The implicits are
evaluated and shadowed over a grid in software, which is
sent as triangle vertices to the graphics card. The user de-
scribes the cloud details and type (low-level modeling) from
a collection of preset noise filters and animates them by
specifying the windy environment. This detailed modeling
and animation is actually performed using the graphics pro-
cessor through the use of volumetric textures and texture
transformations.

We begin with a brief survey of current cloud model-
ing techniques along with their implementations in commer-
cial applications, then introduce our procedural approach for
cloud formation and animation. Next, we describe our sys-
tem implementation and user interface. Finally, we conclude
by describing our planned future work.
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2. Previous Work

Approaches to cloud modeling may be classified as
simulation-based or procedural 1. Simulation methods pro-
duce realistic images by approximating the physical pro-
cesses within a cloud. Computational fluid simulations pro-
duce some of the most realistic images and movement of
gaseous phenomena. However, despite the recent break-
throughs in real-time fluid simulation 2, large scale high-
quality simulation still exhausts commodity computational
resources. Therefore, using simulation approaches makes
cloud modeling a slow offline process, where artists manip-
ulate low-complexity avatars as placeholders for the high-
quality simulation results. With this method, fine tuning
the results becomes a very slow, iterative process, where
tweaking physical parameters may have no observable con-
sequence or give rise to undesirable side-effects, including
loss of precision and numeric instability 3. Unpredictable re-
sults may be introduced from approximations in low reso-
lution calculations during trial renders. These physics-based
interfaces can also be very cumbersome and non-intuitive for
artists to express their intention and can limit the animation
by the laws of physics 4.

In contrast, procedural methods rely on mathematical
primitives, such as volumetric implicit functions 5, frac-
tals 6, 5, Fourier synthesis 7, and noise 8 to create the basic
structure of the clouds. This approach can easily approxi-
mate phenomenological modeling techniques by generaliz-
ing high-level formation and evolution characteristics. These
procedural modeling systems often produce more control-
lable results than true simulation in much less time. First,
these models formulate the high-level cloud structure, such
as fractal motion 9 or cellular automata 10. Then, the model
is reduced to renderable terms, such as fractals 5, implic-
its 11, 5, or particles 12, 9. Many approaches use volumetric
ellipsoids to roughly shape the clouds, then add detail pro-
cedurally 5, 13, 14. We build atop this approach, leveraging ad-
ditional control over the perturbation with noise to produce
realistic turbulent animation.

Correct atmospheric illumination and shading is another
difficult problem that must be addressed to produce convinc-
ing cloud images and animations. Early work discussed ac-
curately modeling light diffusion through clouds, account-
ing for reflection, absorption, and scattering 15. Further re-
search has explored accurate volumetric light scattering
and interreflection for clouds 16, 17, 12, 5, 18. While full self-
shadowing, translucent volume rendering is approaching in-
teractive rates 14, we elect to implement a visually convinc-
ing approximate volumetric lighting model utilizing graph-
ics acceleration to achieve true interactive performance.

Commercial software packages present cloud modeling
systems as diverse as their underlying implementations.
Many terrain generation programs, such as Corel Bryce, per-
mit tweaking of single or multiple noisy fractal layers. In
these cloudscapes, users interactively edit basic noise and

raster filtering parameters, e.g., contrast, persistence, bias,
and cutoff.

In commercial modelers such as Alias|Wavefront Maya,
basic clouds may be simulated with particles. These particles
serve as placeholders for offline rendering of high-quality
cloud media. This cloud media may sometimes be substi-
tuted with high-resolution imposters, which typically use re-
gions of transparent volumetric noise. Developing the inter-
relation between particle and renderable regions within the
modeler involves building a dependency graph of attributes
and filters (known as a shader graph) and assigning numer-
ous variables and bindings to the tree’s nodes. Shading sys-
tems of this complexity are a ramification of generality and
customization. In fact, a non-realtime model of our render-
ing scheme may be implemented using such a system.

Our system addresses three shortcomings to these ap-
proaches. First, developing complex shader networks is
a difficult, iterative task. Besides developing the required
shader schematic, many hours are usually spent tweak-
ing non-intuitive, technical parameters with indirect conse-
quences. Second, the consequences of manual adjustment
is often only apparent after offline, high-quality rendering.
Finally, millions of particles may be needed for large-scale
cloudscapes or fly-throughs. In contrast, with our interactive
interface, a variable’s effect becomes apparent with exper-
imental adjustment, and this immediate response promotes
understanding and exploration of the shader’s numerous pa-
rameters.

3. A Phenomenological Approach to Modeling and
Animation

The evolving structure of a cloud represents numerous atmo-
spheric conditions 19, 20, which we model using the two-level
approach proposed by Ebert 5. At the high-level, we use vol-
umetric implicits for general shaping control. For low-level
cloud detail, we use volumetric procedures based on noise
and turbulence simulations 8, 21.

3.1. High-Level Modeling & Animation

Visible clouds form based on the condensate interface be-
tween warm and cool fronts. Some models use an isosur-
face between temperature gradients or use surface-based el-
lipsoids 7, 13. However, this approach does not capture the
volumetric detail of the cloud. Volume data is important, not
only for close-ups and fly-throughs, but for proper illumina-
tion as well. We, therefore, use volumetric implicits to model
the clouds. These implicit functions have the beneficial at-
tributes of smooth blending, simple computation, and mal-
leability.

For rendering these models, we use Wyvill’s cubic blend-
ing function to calculate the potential at a given point 22 and
evaluate implicits on the vertices of tessellated planes slicing
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the volume to perform volumetric rendering. The implicit
field value defines the density, transparency and shadowing
of the cloud, as described in Section 4. We elect to calcu-
late these values in software and vertex programs to balance
utilization with the fragment-level texture look-ups.

Artists begin shaping their cloud by positioning and siz-
ing implicit ellipsoid primitives to define the cloud volume.
Though optional indicators may assist the artist, the cloud
forms within these primitives in real-time, so users immedi-
ately see the actual result.

Implicit ellipsoids may be animated with a variety of ef-
fects. The implicits form the basic element, or particle, that
can be used with particle system dynamics. Simple parti-
cle system techniques can be used to control the macroscale
cloud shape and dynamics, with procedural animation con-
trolling the finer detail and cloud evolution. For example,
gradual translation along user defined paths emulate prevail-
ing wind effects. Combining various particle motions while
increasing the implicit’s radii simulates the evolution of nat-
urally occurring cloud structures, which can be interactively
key-framed. Key-framing enables more specific animation
to be defined, such as clumping and rising primitives resem-
bling stormy environments, and slowly expanding or shrink-
ing implicits simulating growth or dissipation.

3.2. Low-Level Detail Modeling & Animation

Noise has historically provided a means to mimic natural
phenomena. Perlin noise 8, 23 bears ubiquity in procedural
modeling for its continuity and uniform randomness. Fil-
tering this noise exposes new features. Our implementation
uses a variety of noise filters to produce various types of
clouds. Furthermore, users can adjust these filters with intu-
itive transformation widgets and high-level attribute param-
eters.

As a preprocess, the system computes and loads a volume
texture of periodic noise to the graphics hardware. During
run-time, the graphics hardware vertex program calculates
each octave as a texture coordinate, and the hardware frag-
ment program (commonly referred as a pixel shader 24) com-
posites the look-ups together, similar to Green 25.

This final value of noise modulates the opacity interpo-
lated between vertices during rasterization. In essence, noise
volumetrically “subtracts” away the volume, creating the de-
sired detailed features.

Animating the cloud media simulates various atmospheric
conditions. While high-level animation controls the general
direction of cloud structure, noise animation depicts why the
action occurs. If the finer octave’s motion proportionally de-
creases, the cloud appears to be moving against some force;
wisps strip away from the cloud edges and disappear. Con-
versely, accelerating coarser octaves conveys propulsion of
the cloud with an auxiliary jet, blowing off tufts in its head-

Hardware Operation

CPU Generate slicing geometry
Sample implicit functions
Optional coarse noise evalua-
tion
Shadow accumulation

GPU: Vertex Program Interpolate colors
Calculate texture coordinates

GPU: Fragment Program Transparency cut-off
Composite noise octaves

Table 1: Distribution of Operations

ing. Combining this animation with the decay of the implicit
power depicts the cloud blowing apart.

We also allow the user to create atmospheric tiers with dif-
ferent noise characteristics and animation. The different tiers
simulate different atmospheric layers and allow the clouds to
move and evolve differently as their elevation varies.

4. Rendering

To visualize our primitives, we use a modified slice-based
volume rendering scheme 26. To render our scene quickly,
we balance processing between the CPU, the vertex, and the
fragment processing units on advanced hardware accelera-
tors by sampling lower frequency functions on vertices. Ta-
ble 1 outlines the processing distribution, and Figure 1 sum-
marizes the rendering procedure.

4.1. CPU Operations

We begin by creating planes slicing through our volume.
The planes are oriented parallel or orthogonal to the light
vector in the orientation, minimizing the difference between
the plane normal and the eye. By insisting on these orienta-
tions, vertices remain colinear along parallel rays of the light
source.

The slicing planes are uniformly subdivided and the CPU
calculates the implicit functions at each vertex. This magni-
tude is mapped to vertex opacity:

opacityi = plane opacity×∑ implicits (1)

Iterating across vertices colinear to a light ray, a fraction of
this magnitude accumulates into the shadow buffer, which is
mapped temporarily as the vertex color:

colori = colori−1 +(shadow magnitude×opacityi) (2)

Since our shadows may broadly change with larger, low fre-
quency noise octaves not considered yet, we may sample the
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Figure 1: Schematic diagram of operations

first octave in system memory along with the implicit func-
tions. Our rendering system was designed to produce visu-
ally convincing results at interactive rates. A resulting limita-
tion with our vertex-shadowing scheme incorrectly darkens
the cloud when higher octaves of noise later subtracts por-
tions of the volume. Furthermore, shadowing resolution is
limited to tessellation density, a trade-off between accuracy
and performance. However, using the deterministic variables
establishing the cloud scene, we may easily export it to other
offline renderers for more accurate results.

The CPU also generates transformation matrices that later
determine the texture coordinates. These matrices represent
the transformations necessary to produce each octave of
noise in each atmospheric tier. As described above, animated
noise transforms higher octaves exponentially faster:

trans f ormoctave = scale( f )× rotate( f )× translate( f )

f = octavelacunarity (3)

Each vertex has a world space coordinate, color (shadow
depth), and opacity. In implementation, we initially build
the tessellated planes and store them as static geometry on
the graphics card. During run-time, only a single 32-bit
color/opacity value per vertex needs refreshing. Employ-
ing graphics hardware’s programmable stream model 27, we
minimize data transmission to these dynamic values.

4.2. Vertex Operations

For every iteration, the CPU sends the necessary vertex in-
formation above to the vertex processor, along with “lit”
and “shadowed” colors, tier altitudes, and noise transforma-
tion matrices. A linear transfer function evaluates the ver-
tex’s color. The vertex processor linearly interpolates from
the lit to shadowed color varying along shadow depth. The
vertex processor selects the appropriate set of noise trans-
formations by comparing the vertex’s world position against
the specified altitudes. Texture coordinates are subsequently
produced by multiplying the world position by these chosen
matrices.

The vertex program produces new vertices with their final
color and a set of texture coordinates. The hardware raster-
izer interpolates these values.

4.3. Fragment Operations

From the rasterizer, the fragment processor receives the frag-
ment’s screen space coordinate, color, opacity, and texture
coordinates. The fragment program uses each of the texture
coordinates to index a pre-computed noise volume. These
samples are weighted by a default fractal persistence of one
half, and summed. This harmonic series is bound from 1 to 0.
The fragment processor multiplies the opacity by this value
and conditionally blends the fragment into the frame buffer,
if it is above the alpha cutoff. To blend, we use a painter’s
algorithm, drawing planes back to front.

Currently, our implementation uses four octaves of noise,
as it produces enough visual detail for fly-throughs. The lat-
est generation of graphics hardware is capable of more oc-
taves, at the cost of computing another transformation ma-
trix, texture coordinate, and volumetric texture look-up. Dis-
torted noise shearing may develop between tiers from dis-
continuous noise transformations. This aberration may be
resolved by separating slicing geometry between tiers and
blending over the gap. Additionally, we uniformly transform
the lowest octave across all tiers because its low frequency
most dramatically sculpts the volume and subsequently pro-
duces the most apparent discontinuity.

5. User Interface

We organize variables hierarchically through a tree of
GLUI 28 roll-up groups. At the top-most groups, we expose
the most common and general controls, and more detailed,
specific controls under successive groups. Novice users can
design complete clouds using the most basic controls, while
advanced users can customize properties deeper in the tree.

Some rendering parameters influence the image in mul-
tiple ways. For example, increasing the number of slicing
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Figure 2: The interface hierarchically organizes the con-
trols to expose the most common first, and more specific cus-
tomizations in successive levels.

Attribute Function

Opacity plane opacity = Opacity÷ slicing planes
Adjusts the overall transparency of the cloud.

Quality slicing planes = Quality
Increasing the total slicing planes by resolving a finer
image with greater continuity, but at the expense of
performance.

Detail lacunarity
The fractal scaling of texture coordinates.

Dirtiness shadow magnitude = Dirtiness÷ plane opacity
Adjusts how fast the cloud darkens.

Sharpness al pha cuto f f = Sharpness× plane opacity
Adjusts the alpha cutoff (cloud fuzziness, or blurri-
ness), while compensating for opacity. Without com-
pensation, adjusting opacity can shrink or expand the
cloud.

Cloud
Media

Noise range [0,1]
cumulus = |noise|
stratus = noise
wispy = 1−|2×noise|
cumulus = (1 + |10×noise|)−1

Presents noise filters in a user-friendly qualitative
manner.

Wind texture translation
A direction and magnitude widget to express “wind”
direction.

Torque texture rotation
A direction and magnitude widget to express fractal
texture rotation.

Table 2: Cloud Attributes

planes integrates the volume in smaller steps, increasing the
visual opacity of the cloud. We have developed a system
of equations exposing qualitatively independent parameters,
summarized in Table 2. These attributes adjust the image
along a single visual dimension without side-effects in an-
other dimension.

We group controls into four general groups: global ren-
dering parameters, cloud media shaping controls, cloud me-
dia animation, and high-level particle animation tools. Basic
position, shaping, and media sculpting controls are located
on the bottom of the render window, as shown in Figure 2.
For simple scenes, clouds may be designed without using the
more detailed control panels.

5.1. Rendering Controls

We express the number of slicing planes in terms of qual-
ity, where increasing this value resolves a finer image with
greater continuity, but at the expense of performance.

The accumulated opacity increases with the addition of
slicing planes. Therefore, we scale the transparency of the
slicing planes by the user-defined opacity divided by the
number of slicing planes.

Advanced settings permit finer adjustments to plane tes-
sellation and selective octave rendering to balance image
quality and performance. All variables can be saved and re-
stored system-wide to revisit work.

5.2. Media Controls

Cloud media are sculpted with a set of controls modeling and
rendering noise. We have developed a set of filters useful for
various cloud textures. Sharpness adjusts the transparency
cutoff (qualitatively, the blurriness toward cloud edges) mul-
tiplied by the plane opacity. By accounting for plane opacity,
the clouds do not shrink and grow when it is adjusted. Dirt-
iness adjusts how the cloud darkens with depth. As slicing
planes increase, the accumulated shadow grows, so this term
is divided by the number of slicing planes. The actual cloud
and shadow colors, along with the background, may be spec-
ified to simulate special lighting conditions such as sunset.

Cloud size is conveyed by the scale of the first octave. The
fractal step in noise, lacunarity, is modified as the detail con-
trol. The visual effect of adjusting detail modifies the size of
the smallest characteristics, and is useful for creating smooth
or rough cloud detail.

5.3. Media Animation Controls

As mentioned previously, we smoothly evolve the noise vol-
ume by fractally transforming sequential octaves. For global
cloud movement (translation), the user controls a directional
and magnitude widget for ambient wind. We provide a sim-
ilar interface to control torque, the fractal rotation of texture
space.
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These transformation controls influence the selected tier
of noise. In this way, users can model unique flow condi-
tions at different altitudes. A special tier, Base, applies the
transformation over all tiers’ first-octave noise, which con-
veys large-scale cloud evolution and cohesion between tiers.

5.4. Particle Animation Controls

As low-frequency noise effectively conceals the primitives’
shape, our particle tools visualize this geometry for early de-
sign. We have implemented a set of traditional particle ani-
mation mechanisms to evolve the cloud in a variety of ways.
Users can project particles along a uniform wind field, useful
for slowly scrolling cloudscapes. Finer control is achievable
through individually key-framing particles, and interpolating
their position and shape properties over time.

6. Results

As seen in Figures 3 through 7, our system can create and an-
imate various cloud types and cloudscapes. For a Pentium IV
processor with a NVIDIA GeForce4 Ti4600, performance
varies with the quantity of geometry and projected size on
screen, but typically runs between 5 and 30 frames per sec-
ond. We provide a balance between performance and ren-
dered complexity with a “Quality” attribute that adjusts total
slicing planes. In design, we begin cloudscape rendering at
lower slicing resolutions to temporarily increase the frame
rate, and later increase it for fine-tuning and proofing.

Compositing eight-bit values can result in quantization
artifacts, particularly with many slicing planes with high
transparency. More recent hardware supports 32-bit floating-
point textures, capable of resolving this limitation.

In Figure 5, several basic motions govern the evolution of
cumulonimbus clouds 29. Simple ascending implicits model
convection, while a combination of rising and rotating noise
transformations model the mixing entrainment. If the rising
thermal reaches a layer that its thermal buoyancy cannot pen-
etrate, it spreads under the surface forming the familiar anvil
head. A flat, growing ellipsoid emulates this expansion over
the troposphere. To indicate the spreading motion in our me-
dia, we slow the rolling turbulence motion and begin scaling
out noise to coincide with the widening plume.

In Figure 6, several scattered implicits emulate sunset
light scattering. By setting the shadow color to bright pink,
and the tops to a darker grey, we convey a setting sun “un-
der” the cloud layer.

Figure 7 shows specially filtered “cirrus” noise to model
the icy media, and scale it along the desired wind direction.
Because they sit at or above the tropopause, cirrus clouds
don’t exhibit the interesting convection motion of cumulus
clouds. This simplifies animation to translation across the
sky.

7. Conclusion

We have demonstrated an interactive system for artisti-
cally modeling, animating and rendering visually convinc-
ing clouds using low-cost PC graphics hardware. Using a
procedural-based two-level approach for modeling and ani-
mation creates a more intuitive system for artists and anima-
tors and allows the designers to interact with their full cloud
models at interactive rates. The interactive cloudscapes cre-
ated with this system can be included in interactive appli-
cations or can be exported for offline photorealistic high-
resolution rendering.

8. Future Work

Our renderer design sought performance before accuracy.
The lighting model is a simple shadowing model performed
at the vertex level without the contributions of the detailed
noise effects. Since clouds are amorphous, this is suffi-
cient to create approximate clouds for interactive applica-
tions and to convey to the artist the approximate look of
off-line higher quality rendering. We plan to utilize the ex-
tensive texture mapping possible in a single pass on the new
graphics hardware to enable us to perform high-quality volu-
metric noise and interactive physics-based atmospheric illu-
mination, shadowing, and translucency per fragment 14. We
also plan to optimize the placement of our slicing geome-
try based on the location of the implicits and their projected
screen area.

We are also exploring the use of our system to visualize
atmospheric volume data. Various values of the volume may
be interpreted as cloud attributes in the current system. For
example, the wind field might be mapped to texture transfor-
mation, and moisture to its opacity.

The particle system might serve as a basis for future sim-
ulation. Commercial modeling tools use a variety of particle
techniques to emulate fluids which, combined with our sys-
tem, may produce an effective method to integrate clouds
into a scene.
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Figure 3: A cumulostratus layer

Figure 4: Detail of cumulostratus layer

Figure 5: A developing cumulus

Figure 6: A stratus cloud at sunset

Figure 7: A cirrus plane
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