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Ambient Occlusion Effects for Combined
Volumes and Tubular Geometry
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Abstract—This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for
visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing
streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented Directional Occlusion Shading
model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual
occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective
spline based interpolation and approximation scheme that avoids self intersection and maintains coherent orientation of the stream
tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the
stream tubes are discussed.

Index Terms—Volume rendering, ambient occlusion, stream tubes
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1 INTRODUCTION

Data sets arising in many scientific research areas are often
combinations of commonly used scalar fields and other
types of data. Vector fields typically arise while simulating
the mechanics of fluids or gases. A variety of methods
exist to render those directly, but often, streamlines are
traced through those vector fields in order to create a high
level abstracted visualization of those data sets. Similarly,
DTI fiber tractography is used to gain insight about the
configuration and orientation of neural pathways in the field
of neurosciences in order to increase the understanding of
the functioning of the brain.

It is desirable to combine the visualization of a scalar
field with that of streamlines or DTI fibers since they are
typically registered with respect to each other. This poses a
problem however since the visual interplay between those
rather different data modalities introduces additional context
that is key in comprehending the combined data sets. It is
especially important to be able to reason about the spatial
arrangement of the geometry with respect to the volume.
Existing visualization techniques are less suited to helping
users gain insight into those data sets, since commonly
available techniques employ only local information in the
form of Phong shading.
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In this paper, we present a method for interactive
direct volume rendering that allows the computation of
occlusion effects for volumetric data sets with both solid
and transparent features, combined with solid tube-like
geometry from DTI fiber tractography or streamline tracing.
The proposed method is an extension of the directional
occlusion shading model presented by Schott et al. [24] and
as such is based on incremental filtering, which has been
successfully used in the past to approximate integration
for computing advanced volumetric scattering and shading
effects [11], [18], [23], [24], [31].

The occlusion effects of the geometric structures are
incorporated straightforwardly by modifying the occlusion
buffer update of the volumetric occlusion shading method.
Additionally, a vicinity occlusion term is computed using the
depth buffer of the geometric structures in order to capture
more detailed occlusion effects introduced by the geometry.
The combined occlusion effects of both the geometry
and the volume provide additional context by increasing
the spatial comprehensibility due to the consideration of
neighboring structures of both volumetric and geometric
origin. The method in this paper is based on work presented
previously [22] and encompasses the following additions:

• Inclusion of more algorithmic details in Sec-
tions 3.2.4, 3.2.5 and 3.2.6.

• Derivation of an effective stream tube interpolation
and approximation scheme that avoids self-intersection
and maintains consistent orientation of the individual
stream tube segments in Section 4.

• Discussion of various anti-aliasing approaches in order
to reduce the geometric and specular aliasing of the
stream tubes in Section 5.

This paper is structured as follows: Section 2 discusses
methods related to screen space ambient occlusion and
rendering of streamlines and fibers. Section 3.1 motivates
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our approach, followed by a discussion of an integration into
a slice-based direct volume rendering system in Section 3.2.
Section 4 details the method for computing the geometry of
the stream tubes. Section 5 discusses various anti-aliasing
methods and results are presented and discussed in Section 6,
followed by conclusions and future work in Section 7.

2 RELATED WORK

The directional occlusion shading method presented by
Schott et al. [24] builds the foundation for the extension
considering the mutual occlusion of volumetric and geo-
metric structures. It computes volumetric occlusion effects
by maintaining and blurring an additional occlusion buffer
while traversing the slices.

Screen Space Ambient Occlusion techniques have recently
received considerable interest after details about commercial
implementations were presented publicly [17]. They use
the depth buffer of a scene in order to approximate
the geometry in the neighborhood of a pixel and use
this representation to estimate the occlusion, thus being
independent of the geometric complexity of the scene.
Shanmugam et al. [27] compute high and low frequency
occlusion by defining spheres at each pixel within which
they then sample the depth and normal buffers. Our proposed
method also computes high and low frequency occlusion
effects separately, but differs by capturing low frequency
occlusion effects in the volumetric occlusion buffer, instead
of approximating them with spheres. Horizon based ambient
occlusion methods [2] use the tangent plane of the surface in
order to avoid evaluating the occlusion in those parts of the
hemisphere that are known to be occluded. Loos et al. [12]
reformulate ambient occlusion as a 3D volumetric integral
which they then solve using line and area samples from the
depth buffer in order to reduce the under-sampling artifacts
inherent to the point sampling of other screen space methods.
The Alchemy screen space ambient obscurance method [15]
combines aspects of previous screen space ambient occlusion
methods with a different derivation of obscurance in order
to increase robustness and performance of their algorithm,
which captures obscurances from details of varying scale
and provides artist control over key parameters of their
model. Reinbothe et al. [20] combine image space and
object space techniques to compute ambient occlusion
effects that also consider geometry not rasterized using
other screen space ambient occlusion methods. Bavoil et
al. [1] propose to use depth peeling in order to consider
the occlusion from geometry not captured in the depth
buffer. Ambient occlusion effects are computed at lower
resolution and then up sampled in order increase the overall
performance. Huang et al. [9] separate the screen space
ambient occlusion computation along two directions in order
to increase the performance in conjunction with geometry
aware blurring and interleaved sampling. Vicinity Occlusion
Maps [5], a direct volume rendering method, use a similar
approach to shade a depth buffer derived from accumulated
opacities. Summed area tables are used to determine also
the low frequency, global occlusion effects of surface like

structures contained in the volumetric data set. In contrast,
our proposed method uses directional occlusion shading to
compute the occlusion effects for the volume and global
geometric structures, and a vicinity occlusion term based
on the depths of the geometry to determine the occlusion
of the high frequency, local geometric structures.

Wenger et al. [32] employ a two level rendering method to
combine scalar volume rendering with rendering of vector
fields, represented by thin threads which are created by
filtering the lines into volumes using a cubic B-spline filter
spanning multiple voxels. The resolution of those derived
thread and halo volumes limits the maximal representable
thread radius. Attributes of threads and halos are stored in
those volumes and transfer functions are used to classify
those, allowing selective culling by setting opacity accord-
ingly. Melek et al. [16] use self orienting surfaces [25]
to render hundreds of thousands of threads interactively
on the GPU. Depth cuing and local lighting are used to
shade those surfaces. A non-interactive global illumination
rendering method based on hair rendering is proposed to
yield high quality images. There, opacity shadow maps
are used to provide self shadowing of the threads. An
ambient occlusion term for rectangular shaped volumes is
derived, based on the distance to the boundary of the volume.
Schussman et al. [26] render large amounts of dense line data
non-interactively by subdividing thin lines into voxels, which
store radiance and opacity anisotropically, compressed using
spherical harmonics, which are then rendered using direct
volume rendering. Stoll et al. [28] use a combined CPU /
GPU approach to splat lines as generalized cylinders with
local lighting and halos and texture and shadow mapping.
Tessellated geometry is rendered in areas where the splatted
impostors are parallel to the view direction. Zöckler et
al. [34] exploit fixed-function texture mapping hardware to
compute Phong lighting on transparent streamline segments.
Stompel et al. [29] render streamlines non-photo realistically
as strokes of varying lengths. Color gradients and semi-
transparency are used to indicate directional information.
Interrante et al. [10] perform 3D Line Integral Convolution
(LIC) to create a flow representing color texture. Variations
in hue are used to visually separate dense line bundles,
volumetric halos to increase depth perception. Li et al. [30]
scan convert streamlines into a 3D texture as a preprocessing
step, while extracting additional attributes. This allows an
interactive exploration by manipulation of a dependent
lookup into an appearance texture, which can be used to
give the effect of illuminated streamtubes, tone shading, or
silhouette enhancements. Everts et al. [7] use an illustrative
approach to render dense line data by creating halos around
line bundles, while also increasing the depth perception by
attenuating their widths. Their method could be combined
with scalar volume rendering, however it is unclear how to
maintain context between the volume and the geometry.

3 COMBINING OCCLUSION EFFECTS

The recently presented Directional Occlusion Shading (DOS)
method [24] extends a slice-based volume renderer to
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(a) Volume→Volume (b) Geometry→ Geometry

(c) Geometry→Volume (d) Volume→ Geometry

Fig. 1. Occlusion effects between the volume and
geometry, where each image introduces additional
interactions, beginning with the occlusion of a) the
volume , b) the geometry, c) between the geometry
and the volume and d) between the volume and the
geometry.

compute and store approximate volumetric occlusion effects.
There, view-aligned slices are traversed and composited in
front-to-back order, incrementally filtering and attenuating
an additional 2D image, the so called occlusion buffer, to
propagate through the volume the occlusion effects, which
are conceptually similar to soft shadows cast by structures
illuminated by a small circular area light source at the
viewer’s position. Using this approach, solid and semi-
transparent voxels act both as shadow casters and receivers.

3.1 Motivation of the Presented Approach
An algorithm aiming to provide combined rendering of
volumetric and geometric structures has to address their
mutual interactions, and how to incorporate them into
the overall rendering method. Volumetric shading methods
that consider only basic local shading models have a
minimal set of those interactions, such as determining the
visibility of voxels behind the geometry in order to avoid
computing their contributions, and properly attenuating
the background during compositing the volume on top
of the geometry. However, semi-global methods, such as
the volumetric directional occlusion shading method [24],
introduce additional interactions that need to be addressed
in order to provide for a visualization technique that renders
depth cues that plausibly combine the occlusion effects of
both volumetric and geometric structures.

Volumetric occlusion effects from the volume into the
volume can be computed using the directional occlusion

shading approach [24], and can easily be combined with
the Phong surface shading of the geometry, as Figure 1(a)
shows. Notable here is the lack of depth discrimination
between the geometric structures themselves. Occlusion
effects between the geometric structures can be computed
independently using a screen space ambient occlusion
approach, as Figure 1(b) demonstrates, which enhances the
depth perception of the geometry, due to the approximated
occlusion effects. This naive method however considers
each type of occlusion effects independently, thus missing
important interactions by ignoring occlusion shadows cast
from the geometry into the volume (Figure 1(c)) and those
from the volume onto the geometry (Figure 1(d)). Only
the combination of all the occlusion effects between the
volume and the geometry create a consistently shaded
rendering which enhances the depth perception across
the whole image, which is important in order to create
a comprehensive visualization. The proposed combined
method for rendering occlusion effects considers all the
occlusion effects highlighted in Figure 1 and encompasses:
• an adapted volumetric occlusion shading method that is

modified to consider the shadows cast by the geometry
into the volume in addition to those cast by the volume
onto the volume,

• an additional data structure, the so called partial
occlusion buffer, which stores the shadows cast by
the volume onto the geometry,

• an additional screen space ambient occlusion term, the
so called vicinity occlusion term, which computes the
occlusion effects between geometry and surrounding
geometry, based on inspiration by recently proposed
techniques [2], [5] and

• the combination of the volumetric occlusion term
with the partial occlusion term yielding a combined
occlusion term used to shade the geometric surfaces.

3.2 Integration into a Slice-Based Volume Ren-
derer

Algorithm 1 The main combined occlusion shading algo-
rithm

ComputeGBuffer()
eye_buffer⇐ background_color
volume_occl_bufnext⇐ volume_occl_bufprev⇐ 1
partial_occl_buffer⇐ 1
for all slice sin all slices do

UpdateEyeBuffer(s) {Algorithm 2}
UpdatePartialOcclusionBuffer(s) {Algorithm 4}
UpdateVolumetricOcclusionBuffer(s) {Algorithm 3}

end for
CompositeBuffers() {Algorithm 6}

The extended algorithm, as outlined in Algorithm 1 and
illustrated in Figure 2, is integrated into a slice-based volume
renderer which computes volumetric occlusion effects [24].

The geometric structures, such as DTI fiber tracts or
streamlines are rendered before the slice traversal to capture
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render G-Buffer

update 
eye buffer

update partial 
occlusion buffer

update volumetric 
occlusion buffer

compute vicinity 
occlusion term

compute Phong shading
for geometry

composite

G-buffer

eye buffer

partial occlusion 
buffer

final frame buffer

volumetric 
occlusion  buffers

swap volumetric 
occlusion buffers

Fig. 2. The extensions to the original DOS method are
denoted in orange: additional data structures (G-buffer,
partial occlusion buffer) and additional processing steps
(computing the G-buffer, updating the partial occlusion
buffer, computing surface shading and determining the
vicinity occlusion term)

their colors, positions, normals and depth values into images.
Those images, commonly referred to as a G-Buffer [21], are
used to defer computation of surface lighting and the vicinity
occlusion term until after the slice traversal. Deferring
those computations is necessary in order to incorporate
the volumetric occlusion term and the shaded volume into
the final compositing step.

As in the volumetric occlusion shading method, the
volumetric occlusion buffer is used to store and compute
the volumetric occlusion factor for each slice, additionally
incorporating the occlusion from the geometry. An additional
render pass then uses the volumetric occlusion buffer to
update the partial occlusion buffer, storing the occlusion
of the volume in front of the geometric structures. The
eye buffer and the volumetric occlusion buffers get updated
alternately during the slice-by-slice traversal of the volume.

The view-aligned slices are computed on the CPU and
then rendered from the eye’s point of view, projecting them
into the eye buffer, during which the volume is shaded
based on the volumetric occlusion buffer and the result of
the transfer function lookup.

The volumetric occlusion information is updated by
rendering the slice again, but now into the next volumetric
occlusion buffer. During this pass, the occlusion factors of
the previous volumetric occlusion buffer are integrated by
reading and averaging multiple samples.

The slice is rendered another time during which the
volumetric occlusion buffer is read and used to update the
partial occlusion buffer with the combined volumetric and
low frequency geometric occlusion. The current and next
occlusion buffers are swapped and the algorithm proceeds
to the next slice, until all slices have been processed.

Finally, the vicinity occlusion term for the geometric struc-

tures is computed and combined with the partial occlusion
term and the G-Buffer during the final compositing.

3.2.1 Rendering the G-Buffer
Before traversing the slices, the geometry is rendered to store
their colors, view space positions, view space normals and
view space distance in the individual 2D images comprising
the G-Buffer. The stencil buffer is used to mask all the
fragments covered by the streamlines geometry in order
to optimize updating of the partial occlusion buffer. The
data sets discussed in Section 6 are of static nature due to
their origin; this however is not a limitation of the presented
method, since one could easily stream time varying geometry
or even perform streamline tracing on the graphics card.

3.2.2 Updating the Eye Buffer

Algorithm 2 UpdateEyeBuffer(s)
BindTexture(volume_occl_bufprev, geom_linear_depth)
SetRenderTarget(eye_buffer, geom_depth_stencil)
EnableDepthTest(PASSIFLESS,DONOTWRITEDEPTH)
EnableBlending(ONEMINUSDESTINATIONALPHA,ONE)
for all fragments f of s do

(x, |∇x|)⇐ Texture3D(volume,f )
(σs,σt)⇐ Texture2D(transfer_function, (x, |∇x|))
occlusion⇐ Texture2D(volume_occl_bufprev, fclip)
delta = |fviewz−Texture2D(geom_linear_depth, fclip)|
sampling_distance = min(slice_distance,delta)
α ⇐ 1− e−σt ·sampling_distance

frame_buffer⇐ (La ·σs ·occlusion ·α,α)
end for

The eye buffer update, as detailed in Algorithm 2, is
performed similar to the volumetric occlusion shading
method. The volume and transfer function are evaluated
and the resulting color value is modulated by the current
volumetric occlusion buffer, additionally testing the front-
to-back composited slices against the depth-buffer.

3.2.3 Computing the Volumetric Occlusion Term

Algorithm 3 UpdateVolumetricOcclusionBuffer(s)
BindTexture(volume_occl_bufprev, geom_depth)
SetRenderTarget(volume_occl_bufnext)
DisableBlending()
for all fragments f of s do

(x, |∇x|)⇐ Texture3D(volume, f )
σt ⇐ Texture2D(transfer_function, (x, |∇x|))
if fdepth < Texture2D(geom_depth, fclip) then

σt ⇐ geometry_opacity
end if
occlusion⇐ ComputeDOS(volume_occl_bufprev, σt )
frame_buffer⇐ occlusion

end for
Swap(volume_occl_bufprev, volume_occl_bufnext)

The occlusion factors of the previous volumetric occlusion
buffer are integrated by reading and averaging multiple
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samples, as described in [24]. An additional look up into
the geometric depth image is used to determine whether
the current slice sample is behind the geometric structures,
and if so, a user specified, (high) opacity value is used
to replace the opacity resulting from the volume/transfer
function lookup in order to incorporate the occlusion of the
geometric structure into the volume. This pass, as detailed
in Algorithm 3, is computing the occlusion effects from
the volume into the volume and from the geometry into the
volume.

3.2.4 Computing the Partial Occlusion Term

Algorithm 4 UpdatePartialOcclusionBuffer(s)
BindTexture(volume_occl_bufprev,volume_occl_bufnext,
geom_linear_depth)
SetRenderTarget(partial_occl_buffer,
geom_depth_stencil)
DisableBlending()
EnableDepthTest(PASSIFLESS,DONOTWRITEDEPTH)
EnableStencilTest() {update pixels that contain ge-
ometry}
StencilFunc(EQUAL, 1, ∼ 0)
StencilOp(KEEP, DECREASE, KEEP)
for all fragments f of s−1 do

zsurface = Texture2D(geom_linear_depth, fclip)
zslice = fviewz, z∆ = |zsurface− zslice|
zratio =

min(slice_distance,z∆)
slice_distance

occlprev⇐ Texture2D(volume_occl_bufprev, fclip)
occlnext⇐ Texture2D(volume_occl_bufnext, fclip)
partial_occl = occlprev · (1− zratio)+occlnext · zratio
frame_buffer⇐ partial_occl

end for

d 

zΔ 

slice n-1 slice n 

volumetric occlusion from 

voxels traversed before 

surface 

zslice 

zsurface 

Fig. 3. Illustration of the basic geometric setup for
updating the partial occlusion buffer of a geometric
surface at a view space distance zsurface which is situated
between slices slicen−1 (at view space distance zslice)
and slicen, separated by the slice distance d. The partial
occlusion of the surfaces is approximated by interpo-
lating between volumetric_occln−1 and volumetric_occln
based on z∆.

The partial occlusion buffer is used to record the volu-
metric occlusion from the beginning of the volume up to

the surface, as Figure 3 and Algorithm 4 illustrate. It is
computed by interpolating between the volumetric occlusion
volumetric_occln of the current slice and the volumetric
occlusion volumetric_occln−1 of the previous slice, in order
to approximate soft shadows cast onto the surface at distance
zsurface in view space.

The previous slice slicen−1 is rendered instead of the
current slice slicen because the latter will be discarded by
the depth test due to it being occluded by the surface. The
interpolation factor zratio is determined by the difference z∆

between the surface and the slice, as shown in Equations 1
and 2. The difference z∆ is clamped by the slice distance d in
order to correctly handle the case where there is no surface
between two subsequent slices. The partial_occln of the
current slicen, is then computed as outlined in Equation 3:

z∆ = |zslice− zsurface| (1)

zratio =
min(z∆,d)

d
(2)

partial_occln = volumetric_occln−1 · (1− zratio)+

volumetric_occln · zratio (3)

The stencil buffer mask, which was created while computing
the G-Buffer, as discussed in Section 3.2.1, is used to
increase performance by restricting updating of the partial
occlusion buffer to pixels containing actual surfaces. The
partial occlusion buffer is repeatedly overwritten until
fragments of a slice behind the surface are discarded by
the depth test, at which point the stencil buffer will be
cleared for that fragment, preventing further updates. The
computation of the partial occlusion buffer completes after
traversing last slice and as such then contains the occlusion
shadows cast from the volume onto the geometry.

3.2.5 Computing the Vicinity Occlusion Term

Algorithm 5 VicinityOcclusion(geom_linear_depth)
occlusion⇐ 0
zsurface⇐ Texture2D(geom_linear_depth, ft)
biased_depth⇐ zsurface +depth_bias
for all samples ~pi within the vicinity occlusion extent
Rt do

project ~pi into texture space ~ti using zsurface
depth_sample⇐ Texture2D(geom_linear_depth,~ti)
if depth_sample > 0 ∧ depth_sample < biased_depth
then

occlusion⇐ occlusion+1
end if

end for
return 1− occlusion

|ti|

The vicinity occlusion term is determined by rendering a
full screen quad while comparing the depth of each pixel
with the depths of neighboring pixels in the geometric
depth buffer, counting neighboring pixels with greater depth
as occluded, as outlined in Algorithm 5. The ratio of
occluded to non-occluded pixels is an approximate geometric
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l

zsurface

surface

θ

r

Fig. 4. Illustration of the basic geometric setup for
computing the vicinity occlusion term of a geometric
surface at the view space distance zsurface.

occlusion term for the high frequency geometric details.
The depth value of the current pixel is offset to avoid self
occlusion, similar in spirit to the depth bias used to prevent
equivalent artifacts using shadow maps to compute shadows
of solid geometry [33].

The directional occlusion shading model only considers
the occlusion from structures within a cone with opening
angle θ , as illustrated in Figure 4. An occluder with view
space distance l from the surface must be within the base
of the cone of radius r = l · tan(θ) in order to impact the
surface at view space distance zsurface. The view space radius
rvolumetric_occl = d · tan(θ) used for blurring the previous
volumetric occlusion buffer, is thus determined by the cone
opening angle θ and the inter-slice distance d.

Computing the vicinity occlusion term, in contrast to
computing the volumetric occlusion term, however does
not intrinsically lead to values for l (and indirectly to the
radius of influence r). Other screen space ambient occlusion
techniques typically let the user specify r directly in order
to change the size of the occlusion effects. This however
would decouple the qualitative appearance of the vicinity
occlusion effects from the volumetric occlusion effects.
Instead, a “virtual” slice distance lvicinity is specified by
the user and utilized to compute the vicinity occlusion
extent rvicinity_occl = lvicinity · tan(θ). A “virtual”slice distance
lvicinity = 0.005 was used in Figures 5(b), 5(d) and 5(f) to
show occlusion effects both on the surface and the volume
which change depending on the values of the blur angle
θ ∈ {25◦, 45◦, 65◦}.

The view space vicinity occlusion extent rvicinity_occl for
a surface at view space distance zsurface is then projected
into image space by the (perspective) projection matrix P,
potentially non-uniformly scaling objects, especially when
the projection matrix aspect ratio is not corresponding to
the aspect ratio of the viewport. This transformation of a
circular radius of influence from view space into an ellipse
in image space is automatically handled by the following
computations.

The view space radius of influence rvicinity_occl is expressed
as the homogeneous point Rview which then is projected
from view space into clip space by the projection matrix P

(a) volumetric occlusion
term

(b) θ = 25◦

(c) vicinity occlusion term (d) θ = 45◦

(e) combined occlusion
term

(f) θ = 65◦

Fig. 5. Left column: DTI fiber tracts were rendered
where the transfer function was set to render all voxels
as transparent in order to emphasize the occlusion
effects on the geometric structures. a) shows the volu-
metric occlusion term, c) shows the vicinity occlusion
term and e) shows the combined occlusion term. The
right column shows the combined occlusion term for
various values of θ .

and then subsequently transformed into the [0, 1]2 range of
texture coordinates by the scale and bias matrix T , yielding
the texture coordinate space radius of influence ~Rc, which is
shown in Equation 4. Equation 5 then shows texture space
radius of influence ~Rt as the result of a perspective division:

~Rc =


xt
yt
zt
wt

= T ·P ·


rvicinity_occl(zsurface)
rvicinity_occl(zsurface)

zsurface
1

 (4)

~Rt =

( xt
wtyt
wt

)
(5)
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The texture space circle of confusion ~Rt , which is computed
in the fragment shader since zsurface varies per pixel, is used
to compute texture coordinate offsets for sampling the buffer
storing the view spaced depths of the geometric structures.

A number of N sample offsets ~pi within the vicinity
occlusion extent ~Rt are then generated and added to the
projected texture coordinate ~ft of the currently processed
fragment f , yielding the set of texture space sample positions
~ti, as Equation 6 shows:

~ti = ~ft +~pi (6)

Incrementally filtering the volumetric occlusion buffers
allows minimization of the number of samples since each
individual filter step only covers a rather small number
of texels of the previous volumetric occlusion buffer. In
contrast, computing the vicinity occlusion requires the
consideration of a much larger area in the buffer containing
the view space distances of the geometry. Using a Poisson
distribution [6] with up to 118 samples proved to sufficiently
capture the high frequency surface-to-surface occlusion
effects and were thus used generating the results presented
in Section 6. The vicinity occlusion term is capturing
the occlusion effects received by the geometry from the
surrounding geometry.

Other, more general screen space ambient occlusion
techniques geared towards high performance shading of
screen covering geometric scenes often employ complex
approaches in order to achieve high visual quality at high
frame rates. The vicinity occlusion term however is only
computed for pixels that contain geometric structures; pixels
not covered by the geometric structures are shaded by
the direct volume rendering term, which is the major
performance limiting part of the presented algorithm. This,
combined with the sparsity of the DTI fiber tracts and
streamlines reduces the contribution of the vicinity occlusion
term to the overall performance and allows an easy to
implement vicinity occlusion term that also emphasizes the
high frequency details of the geometric structures.

This approach works especially well for the high fre-
quency tube models, since those are typically bundled close
together, where the vicinity occlusion term is capturing
their mutual occlusion effects with sufficient fidelity. This
is not always the case when considering general geometry,
which often cover large spans of the domain. The vicinity
occlusion term is not adequately considering those, due to its
local nature; more general screen space ambient occlusion
approaches should be used to for those types of geometry.
Changing the blur angle of the volumetric occlusion term
can also capture the occlusion effects of remote structures
to a certain extent, namely those that are within the blur
cone.

3.2.6 Final Compositing and Shading
The last step of our proposed shading method is to combine
the partial occlusion term with the vicinity occlusion term
in order to yield a final combined occlusion term for
shading the geometric surfaces. Figure 5(a) shows the
volumetric occlusion term that captures only the shadows

of low frequency geometric details plausibly, which is in
contrast to the vicinity occlusion term (Figure 5(c)) that
approximates occlusion effects for high frequency local
geometric structures. The combination of the volumetric
occlusion term containing occlusion effects from the volume
and the low frequency geometric structures with the vicinity
occlusion term then provided for both local, high frequency
and global low frequency occlusion effects, as demonstrated
in Figure 5(e).

We experimented with two approaches, specifically using
the minimum or the product of both occlusion terms, as
Equations 7 and 8 show:

combined_occl = min(partial_occl,vicinity_occl)(7)
combined_occl = partial_occl · vicinity_occl (8)

Multiplying the volumetric and the vicinity occlusion terms
has the advantage over taking their minimum, since it
allows the vicinity occlusion terms of partially occluding
voxels to continue providing depth cues on the surface,
as Figures 6(a) and 6(b) demonstrate, and as such was
used to create the results presented in Section 6. This is
especially important for geometry embedded inside homo-
geneous regions of the volume, since there, the volumetric
occlusion term is rather low, thus effectively discarding any
variation in contrast when "minimum" combining it with the
vicinity occlusion term. However, the product between the
volumetric and vicinity occlusion terms will maintain some
subtle variation in image contrast in those homogeneous
regions.

The G-Buffer is then used to compute the amb, diff and
spec terms of the surface lighting, which are then blended
together with the combined_occl term and the surface_color,
as summarized by Equation 9 and detailed in Algorithm 6:

shaded_surface = combined_occl · surface_color ·
(amb+diff )+ spec (9)

The shaded_surface is composited on top of the shaded
volume (volume_colorrgb and volume_colora), which is
shown in Equation 10:

final_color = shaded_surface · (1− volume_colora)

+ volume_colorrgb (10)

The final color final_color is then copied into the frame
buffer of the window.

4 COMPUTING THE GEOMETRY FOR THE
STREAMTUBES

This section discusses the generation of the streamtubes
which are used to represent and render the streamlines.

Given a volumetric dataset Ω ⊂ R3 and an associated
vector field V : Ω→R3, a streamline is defined as the path a
particle p∈Ω takes along V. It either ends at a sink point or
when the extent of Ω is reached. To compute the streamline
emanating at p, one has to solve the ODE ∂x(t)/∂ t =
V(x(t)), where x(0) = p. In the context of visualization,
as we have it here, this ODE is generally discretized in
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(a) minimum, Equation 7

(b) product, Equation 8

Fig. 6. Illustration of different ways of combining the
volumetric and vicinity occlusion terms. a) The minimum
of the volumetric and the vicinity occlusion term is
used as the combined occlusion term, reducing the
impact of the vicinity occlusion terms in the regions
where the surface is occluded by partially transparent
voxels. b) The volumetric and the vicinity occlusion
terms are multiplied together in order to yield the
combined occlusion term, maintaining the depth cues
of the surface through in the partially occluded voxels.

Algorithm 6 CompositeBuffers
SetRenderTarget(window_frame_buffer)
for all fragments f of full screen quad do

volume_color⇐ Texture2D(eye_bufferfclip)
position⇐ Texture2D(geom_position, fclip)
normal⇐ Texture2D(geom_normal, fclip)
surface_color⇐ Texture2D(geom_color, fclip)
partial_occl⇐ Texture2D(partial_occl_buffer, fclip)
if f covers geometry then

vicinity_occl⇐ VicinityOcclusion(geom_linear_depth)
{Algorithm 5}
occlusion⇐ vicinity_occl ·partial_occl
(amb,diff ,spec)⇐ Phong(position , normal )
shaded_surface⇐ occlusion · surface_color · (amb+
diff )+ spec
frame_buffer ⇐ (shaded_surface · (1 −
volume_colora)+ volume_colorrgb,1)

else
frame_buffer⇐ volume_color

end if
end for

respect to time t using Euler’s method, i.e., one evaluates
xi+1 = xi + ε V(xi), where i≥ 1 and x1 = p. To reduce the
integration error, ε is usually set to a small value, appropriate
to the given dataset Ω. This results in a piecewise linear
curve with coefficients X = {x1,x2,x3, . . . ,xn} representing
the streamline. To simplify the following discussion, let
us assume that each line segment has equal length, i.e.,
||x2−x1||2 = . . .= ||xi+1−xi||2 = . . .= ||xn−xn−1||2.

From X, a streamtube is constructed in three steps:

1) A parametric curve γ : [0,1] → R3 is computed
approximating the coefficients in X.

2) A parametric surface σ : [0,1]× [0,1]→ R3 is gener-
ated by sweeping a circle along γ(u).

3) The final streamtube is generated by uniformly trian-
gulating σ(u,v).

To reduce the number of patches which need to be
tessellated, γ(u) and hence σ(u,v) should only approximate
the data X. γ(u) is chosen to be a C(2) B-spline curve,
because higher order curve properties are needed to construct
σ(u,v). σ(u,v) is chosen to be a C(2) B-spline surface
because it enables one to evaluate visually pleasing smooth
surface normals and geometry. The books [4], [19] give a
detailed overview of B-spline curves and surfaces, as they
are used in this paper. The final streamtube mostly depends
on the construction of γ(u), therefore, step 1 is discussed
in more detail in Section 4.1.

Step 2 constructs σ(u,v) by sweeping a circle along γ(u),
i.e., σ(u,v) is a swept surface (see [4]). The swept circle
is oriented along the Frenet frame of γ(u). Note that the
normal of the Frenet frame flips when an inflection point of
γ(u) is reached, i.e., a consistent orientation of the Frenet
frame has to be maintained in order to avoid severe twists
in the resulting σ(u,v). To avoid self-intersections in the
streamtube, the radius of the circle should be chosen to be
smaller than 1/κmax, where κmax is the maximum curvature
of γ(u). Also note that both, γ(u) and σ(u,v) have the same
parameterization in u, implying that both have the same
number of patches in the parameter direction u.

Step 3 constructs the streamtube by uniformly triangu-
lating a uniform grid of samples for each surface patch of
σ(u,v) (see [4]). The main advantage of this tessellation
strategy is that the resolution of the grid only depends on the
degree of σ(u,v), i.e., it is independent of the length of γ(u)
and also makes sure that all features of the approximated
streamline are captured.

4.1 Streamline approximation

The goal of this step is to compute a B-spline curve γ(u)
approximating the coefficients in X from which σ(u,v) and
the final streamtube is constructed.

Various interpolation or approximation methods exist
which fit a curve to a set of samples such as X. In the context
of visualization, an approximation method is often desired,
since interpolation methods generally introduce features
(e.g., oscillations) into the resulting interpolant which were
not present in the true curve, x(t), from which the samples
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Fig. 7. Streamline approximation: (a) Sampled stream-
line; (b) Least-Square Approximation; (c) Our method

Fig. 8. Interpolation (orange) may introduce oscillations.
Our scheme moves an initial curve (black) iteratively
closer to the input points (blue). Intermediate curves
are shown as well (thin, black curves).

were generated. However, even with an approximation
method such as least-squares approximation (see [19]),
perturbations could be introduced in the resulting curve
approximation producing wriggles in the final streamtube.
For an example, the reader is referred to Figure 7b. In many
applications, these artifacts do not present a significant
issue. However, in a visualization scenario, firstly, these
wriggles challenge the generation of the tubular geometry,
and secondly, streamlines are visualized which contain
features which are not present in the original data.

Based on these observations we propose the following
approximation method. Following the method introduced
in [14], an initial cubic (C(2)) B-spline curve γ1(u) is
constructed with the samples in X as its coefficients. Given
the variation diminishing properties of B-splines, γ1(u)
approximates X without introducing new curve perturbations
(Schönberg’s approximation, see [4]). Then, as illustrated
in Figure 8, the coefficients of γ1(u) are iteratively updated
so that the curve moves closer to the samples in X till a
user-specified accuracy is achieved. The reader is referred
to [14] for the details of this iterative curve fitting algorithm
and its convergence properties.

For the shown datasets in this paper, X generally contains

more samples than necessary resulting in a large number
of coefficients in γ1(u). Therefore, starting from γ1(u), we
apply the following data reduction scheme to compute the
final γ(u).

The intermediate curve γi(u) with i > 1 is computed by
applying the approximation algorithm as discussed above
to the set of samples Xi. Xi is constructed by regularly
sampling the parameter space of γi−1(u) with mi = bn/2i−1c
samples, i.e., at each data reduction step the number of
samples is halved, where γi−1(( j − 1)/(mi − 1)) is the
jth sample in Xi. Note that at each step a C(2) curve
is sampled, smoothing out high-frequency features, but
due to the applied approximation algorithm, as discussed
above, the curve approximates the data reasonably well. The
data reduction scheme terminates when εmax > ε , where
εmax := max1≤ j≤n ||x′j−x j||2. x′j is the projection of x j ∈X
onto γi(u) and || · ||2 is the L2-norm.

The curve which is then used for the subsequent stream-
tube generation steps is γk(u), i.e., γ(u) := γk(u), where k is
the number of iterations. For the datasets shown in this paper,
k < 4 with ε = 10−4. Figure 7 shows the streamtube which
was constructed based on this curve fitting method applied to
a sampled streamline. The figure also shows the equivalent
streamtube generated using least-square approximation. The
reduction of wriggles in comparison to least-squares is
visually apparent. Figure 9 shows a streamline dataset, where
the tubular geometry was generated from curves which were
generated using least-squares versus our proposed method.
As seen in the figure, the wriggles in the least-square curve
approximation causes unwanted visual artifacts which are
potentially amplified whithin an ambient occlusion context.

It has to be noted that since the number of coefficients of
the final curve is significantly smaller than the number of
initial points, a compromise between approximation accu-
racy and introduction of additional features has to be made.
Our method iteratively computes an approximating curve
by maintaining features which are present in the original
data as much as possible till a user-specified accuracy has
been achieved. Incorporating uncertainty information in
the approximated curve representation will be addressed in
future work.

5 ANTI-ALIASING

The generated stream tubes have a high amount of geometric
detail, and as such suffer from aliasing of both the geometry,
but also of the specular highlights, as demonstrated in
Figure 10. Graphics hardware provides multi-sampling to
reduce the aliasing at polygon edges, which however is not
very well suited to the aliased specular highlights, since
those are introduced by the fragment shader itself. However,
recent GPU generations allow to render the geometry into
multi-sampled textures where attributes, such as normals or
positions, can be optionally evaluated at each sub-sample
of a fragment. We employ such a multi-sampled G-buffer
with per sample normals and view positions in order to
compute the specular lighting during compositing at higher
effective resolution, thus reducing the specular aliasing, as
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Least-Squares 
Approximation

Our Method

Fig. 9. Detail of our streamline approximation, com-
pared to a Least-Square Approximation

Figures 10(a) and 10(b) illustrate. Another anti-aliasing
method, Fast Approximate Anti-Aliasing (FXAA) [13],
instead operates on a color buffer and performs edge-
detection with perceptually correct edge filtering. This
approach has the benefit of also providing anti-aliasing of
the volume, since it can be applied to the final composited
image, as Figure 10(c) shows. The anti-aliasing quality can
be improved even further, by combining both anti-aliasing
methods, as Figure 10(d) demonstrates.

6 RESULTS AND DISCUSSION

The method was implemented using OpenGL and Cg
running on an NVIDIA GeForce GTX 580 GPU with 1.5
GB of video memory. The images were rendered into 16-
bit precision floating-point buffers. The tube geometry was
computed by sweeping a circle along a B-spline curve
approximating the individual line segments. The surface
positions, colors and normals were evaluated on the CPU
along the curve and then stored in video memory.

Figure 11 shows a chemical simulation data set where
two chemical reagents are mixed in order to accelerate
their reaction. The streamlines were color mapped with the
mixture fraction denoting the relative ratio of two chemical
agents shown in red and blue. A 2D transfer function was
used to highlight the boundaries of the mixing pipe colored
white, while at the same time showing the concentration
of the product as the result of the chemical reaction.
Figure 11(a) shows the combined data set using volumetric
Phong shading with on-the-fly gradient estimation together
with streamlines rendered with Phong surface shading which
make it difficult to gain insight into the complex turbulent
behavior of the streamlines. Figure 11(b) combines the
vicinity occlusion term with the volumetric occlusion of the
scalar field to obtain mutual occlusion effects which provide
additional context between the mixture fraction, visualized
on the streamlines, and the concentration of the chemical
product, visualized by the volume rendered scalar field.

Figure 12 shows an MRI data set with registered DTI fiber
tracts rendered without occlusion effects in Figure 12(a),
which makes it hard to gain insight about the relative

spatial arrangement between the geometric structures and
the volumetric features. Figure 12(b) uses the combined
occlusion shading to render physically plausible occlusion
effects which impact both the volume and the geometry, thus
enhancing the depth perception and visual comprehension
of the data set. Being able to precisely reason about the
arrangement of structures (neural fibers, sensitive tissue)
within the brain is of key importance to surgical planning,
where surgical instruments must be placed with uttermost
precision, since minimal deviations could damage sensitive
tissues, especially when considering brain surgery.

Figure 13 demonstrates a single time step of an astro-
physical data set showing the magnetic field of a Sun-
like star undergoing an inversion of its magnetic poles [3].
The magnetic field lines were color mapped with the
polarity of the longitudinal magnetic field with red and blue
showing positive and negative polarity respectively. The
scalar volume shows the magnitude of the magnetic field
mapped to red, orange and white. Figure 13(a) shows the
combined data set rendered with volumetric Phong shading,
which makes it difficult to gain insight into the complex
configuration of the magnetic field lines with respect to the
magnetic field strength. Volumetric Phong shading is also
dependent on the volume gradient for its shading, which
is problematic for homogeneous or noisy regions since
there, the gradients are either not defined, or point into
incoherent directions, as observable in the top right part of
Figure 13(a). The combined rendering with occlusion effects,
as shown in Figure 13(b), visualizes the volume showing
the magnetic field strength together with the magnetic field
lines illustrating the polarity of the magnetic field on the
field lines themselves. The occlusion effects allow better
comprehension of the structure of the field lines, while
at the same time benefiting from the context providing
scalar volume. Its independence from the volumetric gradient
avoids the artifacts of using volumetric Phong shading.

Table 1 shows the performance behavior of the combined
geometric and volumetric occlusion shading method com-
pared to volume shading with an emission-absorption or
Phong shading model with on-the fly gradient estimation.
The performance of the combined shading method is reduced
compared to the traditional volume shading methods, which
is similar to the performance behavior of the original
purely volumetric occlusion shading method. Introducing the
geometric structures into the occlusion shading computation
reduces the performance by about 25% compared to com-
puting volumetric occlusion shading alone, by about 86%
compared to computing emission/absorption and by 71%
compared to computing combined Phong shading. Despite
this, sufficiently high performance is maintained and as
such allows interactive exploration of the data sets. The
computation of the vicinity occlusion term alone performs
at interactive frame rates, despite the high number of samples
taken and does not constitute the performance limiting aspect
of the presented combined shading method, which instead is
the incremental filtering inherent to the directional occlusion
shading method. The image space approach for computing
the vicinity occlusion term is especially beneficial for the
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(d) MSAA + FXAA

Fig. 10. Comparison of a) no anti-aliasing, b) multi-sample anti-aliasing with per-sample normal evaluation, c)
FXAA and d) multi-sample anti-aliasing with per-sample normal evaluation combined with FXAA.

(a) Phong volume shading with Phong surface shading

(b) combined occlusion shading with Phong surface shading

(c) color map for the mixture fraction of the two reagents (d) color map for the concentration of the chemical
product

Fig. 11. Stream lines (127k triangles) of a mixing pipe and a scalar volume (1800×121×121 resolution), of which
the front half was removed by a clipping plane. The images were rendered with a) Phong volume shading with
on-the-fly gradient estimation and Phong surface shading and b) the presented combined surface and volumetric
occlusion shading method. Figure c) shows the color map of the steam lines illustrating the mixture fraction and
Figure d) shows the color map of volume which displays the concentration of the resulting chemical product.

astrophysical data set with its 7.9 million triangles which
renders only at half of the speed, compared to the DTI data
set which has a fifth of the number of triangles. Noticeable
however is the lack of scaling for the mixing pipe data set
for the GeForce GTX 580 GPU, indicating that the bottle
neck is in other parts of the system, possibly caused by the
internal memory layout of the anisotropic 3D texture used
to store the volume.

7 CONCLUSION AND FUTURE WORK

An extension to the volumetric directional occlusion shading
method has been presented which renders occlusion effects
of geometric structures combined with those of volumetric
origin. Both geometric and volumetric structures act as
shadow casters and shadow receivers and their shadows are
computed by modifying the occlusion buffer update of the
original directional occlusion shading method [24].

An additional surface based vicinity occlusion term is
computed to capture high frequency shadowing effects be-
tween fine detailed geometric structures, such as streamlines
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(a) Phong volume shading with Phong surface shad-
ing

(b) combined occlusion shading with Phong surface
shading

Fig. 12. DTI fiber tracts (720k triangles) and a registered MRI volume (96×96×81 resolution) rendered with a)
Phong volume shading with on-the-fly gradient estimation and Phong surface shading and b) combined directional
occlusion shading and Phong surface shading.

TABLE 1
Performance for various rendering methods and data sets, in FPS on an NVIDIA GeForce GTX 580 GPU.

data set mixing pipe (Figure 11) DTI fibers (Figure 12) astrophysical (Figure 13)

slices, resolution, triangles 574, 1800×121×121 , 137k 512, 96×96×81 , 720k 961, 256×512×512 , 7.9M
θ , volumetric samples, vicinity samples 45◦, 2×2, 118 45◦, 4×4, 81 65◦, 2×2, 81
image resolution 768×128 1153×256 512×512 1024×1024 512×512 1024×1024

vicinity occlusion shading only 102.87 102.35 106.66 103.78 67.05 54.41
volumetric occlusion shading only 16.75 16.67 11.24 3.49 10.61 5.78

combined occlusion shading 11.73 11.79 9.73 3.09 7.31 4.54

emission/absorption & Phong 101.26 101.1 82.61 26.9 36.31 22.75
volumetric Phong & Phong 101.93 51.76 32.22 8.82 18.41 9.43

or DTI fibers, thus supplementing the volumetric occlusion
term which captures the low frequency occlusion effects of
the geometry and volume contained in the scene.

The extended method, similar to the volumetric direc-
tional occlusion shading algorithm, does not rely on pre-
computation and thus enables interactive manipulation of
camera position, transfer function and the geometry as
well, which are all taken into account during the occlusion
computation. The required extensions reduce the rendering
performance by about 25% compared to only computing the
occlusion shading of the volumetric structures and as such
allow interactive exploration of geometric and volumetric
data sets while increasing the depth perception and scene
comprehension. Stream tube geometries are computed from
stream lines by an effective approach that reduces wiggles
and orientation flips inherent to other approaches. Various
hardware anti-aliasing approaches were discussed and used
to reduce the aliasing inherent to the geometric detail and

per-pixel lighting of the stream tubes.

In the future, we would like to allow the user to change
the light position instead of itbeing fixed at the viewer. The
multi-directional occlusion shading method by Šoltészová et
al. [31] could be incorporated into the combined rendering
method by changing the filtering of the volumetric occlusion
buffer appropriately. Similarly, weighting of the samples
could be done for the vicinity occlusion term as well in order
to qualitatively match the shadowing of the volume and the
geometry. Alternatively, a more generic soft shadow method
could be used in order to compute soft shadows for the high
detail geometry [8]. It would also be interesting to apply
the presented method to combined data sets with arbitrary
geometry and evaluate the effects of large scale geometric
structures to the vicinity occlusion term. Another venue for
future research would be a GPU-based implementation of
our stream tube approximation to facilitate the visualization
of time-dependent data sets.
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(a) Phong volume shading with Phong surface shad-
ing

(b) combined occlusion shading with Phong surface
shading

(c) color map for polarity of the magnetic field (d) color map for the magnetic field magnitude

Fig. 13. An astrophysical data set was used to compute magnetic field lines (7.9M triangles) with Phong surface
shading and a scalar volume (256×512×512 resolution) showing the magnitude of the magnetic field, rendered
with a) Phong volume shading with on-the-fly gradient estimation and Phong surface shading, and b) combined
directional occlusion shading and Phong surface shading. Figure c) shows the color map for polarity of the
magnetic field and Figure d) shows the color map for the magnetic field magnitude.
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