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Abstract—The Uintah Software framework was developed to
provide an environment for solving fluid-structure interaction
problems on structured adaptive grids on large-scale, long-
running, data-intensive problems. Uintah uses a combination of
fluid-flow solvers and particle-based methods for solids together
with a novel asynchronous task-based approach with fully
automated load balancing. As Uintah is often used to solve
incompressible flow problems in combustion applications it is
important to have a scalable linear solver. While there are
many such solvers available, the scalability of those codes varies
greatly. The hypre software offers a range of solvers and pre-
conditioners for different types of grids. The weak scalability of
Uintah and hypre is addressed for particular examples of both
packages when applied to a number of incompressible flow
problems. After careful software engineering to reduce startup
costs, much better than expected weak scalability is seen for
up to 100K cores on NSFs Kraken architecture and up to
260K cpu cores, on DOEs new Titan machine. The scalability
is found to depend in a crtitical way on the choice of algorithm
used by hypre for a realistic application problem.

Keywords-Uintah, hypre, parallelism, scalability, linear equa-
tions

I. INTRODUCTION

In this paper we consider solving a pressure projection

formulation of the Navier-Stokes equations within Uintah

[6], [9], [25], [26], an open-source software framework.

In previous work we showed that Uintah scales well to

about 256K cores for some applications, [6], [20], including

a sympathetic explosion modeling problem, funded by the

NSF PetaApps Program, that is one of our main applications

driving examples. In these cases the solution techniques

were all fully explicit and did not require the solution of a

system of equations. In many of the Uintah applications the

flow is incompressible and chemically reacting [13], [14]

with the formulation of the governing equations requiring

the use of a linear solver at each timestep [10]. Such

problems arise at Institute for Clean & Secure Energy

Program, Utah, whose mission is to perform research to

utilize the energy stored in our domestic resources and do

so in a manner that will capture CO2. This Uintah-based

research is organized around the theme of validation and

uncertainty quantification through tightly coupled simulation

and experimental designs. Typical problems consist of the

prediction of the performance and stability of oxygen-fired

burners in boilers and industrial furnaces for CO2 capture

or determining flare combustion efficiency and VOC content

of flares through combination of online measurements and

high-fidelity codes, [13], [29]. In tackling such problems,

as we approach problem sizes requiring greater than 100K

cores on machines such as Kraken 1 and Jaguar, 2 it is

far from clear that the linear solvers available today will

perform efficiently on such large core counts, never mind

on architectures such as the Titan machine. 3 In this paper

we will address the scalability of the Uintah software applied

to incompressible flow problems when using one particular

class of solvers from the hypre software. [2], [3], [11].

The test problems used will be a model incompressible

flow problem and on a challenging example taken from

the modeling of Helium plumes. The rest of this paper

is organized as follows. The Uintah software, including

the ARCHES and Wasatch components used in this pa-

per to solve incompressible flow combustion problems, is

described in Section II. Section III describes the hypre

software and how it is used in conjunction with Uintah

1Kraken is an NSF supercomputer located at the University of Tennessee/
Oak Ridge National Laboratory with 112,896 cores.

2Jaguar is a DOE supercomputer located at the Oak Ridge National
Laboratory with 224,256 cores that was in service until December 2011.

3Titan is a DOE supercomputer at the Oak Ridge National Laboratory
with approx 299,008 cpu cores and 18,600 GPUs.
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including the improved performance obtained by avoiding

start-up costs by preserving data structures. In Section IV

the results of numerical experiments are given that show

the weak scaling obtained on two test problems. The first

problem is a straightforward test problem while the second

is a more challenging example that is representative of

real applications. Section V presents a model for the weak

scalability of the linear solver and shows that with our

improved use of hypre we can get clsoe to the expected

log(p) weak scaling, where p is the number of cores.

Section VI provides conclusions and described future work

in extending the ideas here to other applications and Uintah

components.

II. OVERVIEW OF UINTAH SOFTWARE

The Uintah Software was originally a product of the

University of Utah Center for the Simulation of Accidental

Fires and Explosions (C-SAFE) [9]. C-SAFE, was Depart-

ment of Energy ASC center. The aim of Uintah was to be

able to solve complex multi-scale multi-physics problems,

with a particular emphasis on combustion and fluid-structure

interaction problems. Uintah is available as open source

software4 and extended to run on about 256K cores [6],

[20], Uintah makes use of a component design that enforces

separation between large entities of software and can be

swapped in and out, allowing them to be independently

developed and tested within the entire framework. This has

led to a very flexible simulation package that has been able to

simulate a wide variety of problems, see [5]. A novel feature

of Uintah, and one that directly leads to its scalability is its

use of a task-based paradigm, with complete isolation of

the user from parallelism. The individual tasks are viewed

as part of a directed acyclic graph (DAG) and are executed

adaptively, asynchronously and now often out of order [21].

Uintah uses a novel adaptive meshing approach, [19], as

well as a particle solution methods, however neither of these

components is necessary here.

Uintah currently contains five main simulation algorithms,

or components, the ICE compressible multi-material CFD

formulation (based upon [15]), the particle-based Material

Point Method (MPM) for structural mechanics, the com-

bined fluid-structure interaction algorithm MPMICE [12]

and the ARCHES combustion component. All the com-

putational experiments in this paper use the fixed-mesh

ARCHES and Wasatch components that are designed for

simulation of compressible turbulent reacting flows with

participating media radiation [22], [30] of particular interest

to the authors.

A. The ARCHES Combustion Component

ARCHES is a three-dimensional, Large Eddy Simulation

(LES) code developed by Prof. P.J. Smith and his group in

4see www.uintah.utah.edu

Utah. The ARCHES code is currently used for a broad class

of industrial and industrial-strength research simulations,

[5]. The ARCHES component uses a low-Mach number

(Ma< 0.3), variable density formulation to simulate heat,

mass, and momentum transport in reacting flows. The Large

Eddy Simulation algorithm used in ARCHES solves the

filtered, density-weighted, time-dependent coupled conser-

vation equations for mass, momentum, energy, and particle

moment equations in a Cartesian coordinate system [14],

[16].

This set of filtered equations is discretized in space and

time and solved on a staggered, finite volume mesh. The

staggering scheme consists of four offset grids, one for

storing scalar quantities and three for each component of the

velocity vector. Spatial discretization is handled with finite

volume schemes where appropriate for energy conservation

or flux limiters (e.g., scalar mixture fractions) to avoid

unphysical solutions. The low-Mach, pressure formulation

requires a solution of an implicit pressure projection at every

time sub-step. The solution of these equations has been

tackled with a number of different solvers. Most recently

both the PETSc [4] and the hypre packages [10] have been

used.

ARCHES uses a dynamic, large eddy turbulence closure

model for the momentum and species transport equations.

The dynamic model accounts for sub-grid velocity and

species fluctuations. Various combustion models exist within

ARCHES for doing gas phase and particle phase combustion

chemistry, including sub-grid turbulence and chemistry inter-

actions. For gas phase combustion, the dimensionality of the

problem is reduced by parameterizing the thermo-chemical

state space (ρ, T, x1, x2, ..., xn−1), where xi represents a

chemical species (from set n), into a small set of variables

which are tracked on the resolved mesh. These parameters

then map back the state space as a function of space in time

through the computational mesh. The combustion chemistry

is pre-processed in a tabular form for dynamic table look-

up during the course of the LES simulation. The energy

balance includes the effect of radiative heat-loss/gains in the

IR spectra by solving the radiative intensity equation using

a discrete-ordinance solver [16]. The solution procedure

solves the intensity equation over a discrete set of ordinances

and, like the pressure equation, is formulated as a linear

system that is solved using a linear solver package such as

hypre. Solid particulate fuel phases are represented using

the direct quadrature method of moments (DQMOM) This

Eulerian reference frame approach solves a discrete set of

moments of the number density equation using numerical

quadrature. The number density function is described by

the solid fuel properties including particle number, size, and

fuel properties (e.g., velocity, volatile mass fraction, fixed

fuel mass fraction, energy content, size). Various physical

models for coal combustion are implemented to include

the effect gas devolatilization, char oxidation, particle drag,
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and size changes, which in turn effect the coal number

density function. The DQMOM description of the coal phase

is completely coupled with the gas phase description to

produce a completely coupled, gas/solid phase description of

the flow with closed mass, momentum, and energy balances.

The ARCHES finite volume code may be viewed as a

stencil-based p.d.e. code and so achieves good weak and

strong scalability for its discretization by making use of the

Uintah infrastructure [27], [28]. The potential bottleneck to

scalability arises from the use of parallel solvers like hypre

[2], [10] and PETSc, [17], as this is where most of the

compute time is spent on incompressible flow calculations.

B. Wasatch Component

The extension to ARCHES is an approach, named

Wasatch, proposed by one of the authors (Sutherland), see

[7] that is a Domain Specific Language (DSL) for the

very large and complex p.d.e. systems that arise is certain

combustion applications. The complexity of the combustion

problems to which simulation is applied naturally increases

with available computing power. For example, turbulent

combustion simulation of typical fuels involves perhaps hun-

dreds of species and quite possibly thousands of reactions.

Solving such large sets of highly coupled, nonlinear PDEs

may be problematic. In such highly dynamic, multi-physics

systems, one may not be able to determine a priori the

most appropriate models. One possible solution to this is to

make use of programming models which allow significant

flexibility in the complex couplings that may occur for

different model sets in multi-physics applications.

In the approach proposed by Sutherland, [23], the pro-

grammer writes code that calculates various mathematical

expressions, explicitly identifying what data the code re-

quires and produces/calculates. In order to create an algo-

rithm, the programmer selects one or more expressions to be

evaluated and the dependencies are recursively “discovered”

resulting in a dependency graph. The dependency graph may

be inverted to obtain the execution graph, which may be

traversed in parallel if desired. Wasatch uses an operator

approach over strongly typed fields to form a domain specific

language to achieve abstraction of field operations, includ-

ing application of discrete operators such as interpolants,

gradients, etc, so as to make sure that each task executes

as efficiently as possible on each core or accelerator. In this

work Wasatch was used to automatically generate code for

the discretization of the first examples used to test the Uintah

interface to hypre.

III. USING HYPRE WITH UINTAH

The hypre software [2], [3], [11] is a library of high

performance preconditioners and solvers for the solution

of large linear systems of equations on massively parallel

machines. The hypre library has an emphasis on multi-grid

preconditioners, including algebraic multigrid. While hypre

has three conceptual interfaces [2] the interface that is most

applicable here is the Structured Grid Interface (Struct). This

interface is designed for stencil-based p.d.e. codes that use

grids, such as those in Uintah, that consist of unions of

logically rectangular (sub)grids. The specialized structured

grid multigrid solvers in hypre make use of the conceptual

interface to introduce problem-specific algorithmic aspects

by taking advantage of the the structure of the problem and

are thus the most scalable part of hypre [2]. In particular

the structured multigrid solver used here, PFMG, adopts this

approach.

PFMG [1] is a semi-coarsening multigrid method for

solving scalar diffusion equations on logically rectangular

grids discretized with up to 9-point stencils in 2D and

up to 27-point stencils in 3D, [2] with anisotropies that

are uniform and grid-aligned throughout the domain. The

solver is designed to deal with anisotropies and so at-

tempts to automatically determine the best direction of semi-

coarsening. PFMG interpolation is determined algebraically.

The coarse-grid operators are also formed algebraically,

either by Galerkin or by the alternative method [1] for 5-

point (2D) and 7-point (3D) problems. PFMG has many

options to deal with solution anisotropies. Baker et al. [2]

report that various version of PFMG are between 2.5 and 7

times faster than the equivalent algebraic multigrid (AMG)

options inside hypre because they are able to take account

of structure.

In general a multigrid method such as PFMG has a

setup phase and a solve phase. The setup phase consists of

defining the coarse grids and the interpolation and coarse

grid operators. This phase can be computationally very

intensive as will be demonstrated below. In contrast the

solve phase which performs the multigrid cycles is often

less expensive.

Note that in the use of hypre described here multigrid

methods are not used as linear solvers but are used as

as a preconditioners for Krylov or other iterative methods

provided by hypre. In the cases considered here, the Con-

jugate Gradient (CG) method was used with the PFMG

preconditioner based upon a Jacobi and red-black Gauss

Seidel relaxation methods used as part of the structured

multigrid approach.

A. hypre Setup Costs

As mentioned above, hypre setup (preconditioning and

communication) time is significant at large core counts

upwards to twenty times that of the solve phase. The

setup phase is slower than the solve phase, due primarily

to the assumed partition and global partition components

of the code, [2]. The global partition requires O(plog(p))
communications in the setup phase, where p is the number

of cores, while the current implementation of the assumed

partition requires O((log(p))2) communications, [2] and

also scales quite poorly, likely due to the O((log(p))3)
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number of coarse grids. It is thus important to configure

hypre to not use a global partition especially for very large

core count runs.

Table I show the start-up costs for a simple Poisson

equation solve in two space dimensions, a simpler version

of the three dimensional problem in equation (3). We see

a considerable growth in start-up costs in this weak scaling

case in which each core has roughly the same computational

load in terms of equations and unknowns. Experiments were

performed on both the old XT5 and new XK6 configurations

of Jaguar/Titan. At the time of the experiments this system

consists of approximately 262,144 AMD Interlagos cores

arranged so that there are 16 cores per node and connected

through the new Cray Gemini interconnect. It is interesting

to note that the set-up costs are greater for the slower

interconnect found on the older XT5 configuration. The

set-up overhead is a significant component of the overall

solution time for each linear solve.

Titan Cores 2K 4K 8K 16K 32K 64K 128K
and Start-Up 0.02 0.13 0.25 0.25 0.50 0.75 3.89

Jaguar Cores 3K 6K 12K 24K 48K 96K 192K
and Start-Up 1.54 1.10 1.22 2.04 2.4 2.9 22.11

Table I
HYPRE START-UP TIMES (SECONDS) FOR TITAN AND JAGUAR

Our first experiments using hypre with Wasatch and

ARCHES involved doing matrix allocation and setup at

every timestep. The high setup costs on each solve made

both weak and strong scalability impossible to achieve. As

a result work was undertaken to ensure that the interface for

the pressure solve to the external hypre library is handled

efficiently. This led to code speed-up through the removal

of redundant operations in the setup phase.

B. Avoiding hypre Setup Costs Using Uintah’s Data Ware-
house

The key observation is that in the incompressible formu-

lation for the pressure solve found in both ARCHES and

Wasatch, the matrix did not change between timesteps and

so the setup only needed to be done as often as the mesh

changed. In the case of the fixed mesh calculations reported

here the setup only needed to occur at the beginning of the

simulation.

While allowing hypre to completely control the memory

allocation allowed for a certain simplicity in the initial

implementation of the integration of hypre with Uintah,

ultimately a more cooperative memory management strategy

needed to be implemented. Within Uintah, the DataWare-

house is the key component for storing data for all cal-

culations. The DataWarehouse is essentially a large hash

table that stores pointers to allocated blocks of memory.

From an application point of view, the vast majority of data

are represented by one of four types of grid variables, i.e.

node, face, cell, and particles. The node, face, and cell grid

variables present a high level interface to the underlying

I,J,K block of raw memory that represents the patch/patches

on a given processor. The DataWarehouse manages the com-

plete lifetime of data including the allocation, deallocation,

reference counting, and ghost data exchanges which greatly

simplifies data management for the simulation algorithm

implementations [18].

While this simplifies native Uintah application develop-

ments, it does complicate the interaction between external

third party software packages such as hypre. To provide a

more cooperative memory management strategy, we devel-

oped a new C++ templated variable type named SoleVariable

for Uintah that acted as a container object for the raw

memory pointers from within the DataWarehouse. Unlike

the typical Uintah variable, the SoleVariable variables are

not dependent on the underlying grid/patch layout, instead

they represented data that encompassed the entire grid.

For maximal memory efficiency and reuse, the following

hypre data structure needed to be allocated with its lifetime

intelligently managed by the DataWarehouse. At the begin-

ning of the simulation and then reused on all subsequent

linear system solves: solver, preconditioner, A matrix, B and

X vectors. These five data types can be combined into a

straightforward reference counted C++ structure:

s t r u c t h y p r e s o l v e r s t r u c t {
HYPRE StructSolver s o l v e r ;

HYPRE StructSolver p r e c o n d s o l v e r ;

HYPRE StructMatr ix ∗ HA;

HYPRE StructVector∗ HB;

HYPRE StructVector∗ HX; } ;

From within the Uintah, this data structure would be the

template argument to the SoleVariable as in:

S o l e V a r i a b l e <s t r u c t h y p r e s o l v e r s t r u c t >

The pointers to the matrix and vectors are then used in the

native hypre APIs to do the initial memory management

and the set-up of the communication patterns. Once the

various hypre data structures were created, the SoleVariable

container object managed the lifetime and reuse. For the

computational experiments presented below, the setup phase

and data structure creation phase were done prior to the

first timestep. In the case of combustion problems involving

radiation, the external hypre solves for the pressure and

radiative intensity equations represent the bulk of the overall

execution time.

IV. COMPUTATIONAL EXPERIMENTS

In this section we describe two computational experi-

ments that illustrate the weak scalability that is possible

when using hypre as the linear solver for incompressible

flow calculations. For each experiment, the solution of the
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Navier-Stokes equations is required where the Navier-Stokes

equations describe the spatio-temporal motion of a fluid and

are given by
∂ρ

∂t
+∇ · ρu = 0 (1)

∂ρu
∂t

= F−∇p; F ≡ −∇ · ρuu + ν∇2u + ρg (2)

Here, u = (ux, uy, uz) is the velocity vector describing the

speed of fluid particles in three orthogonal directions, ν is

the kinematic viscosity - a fluid property that reflects its

resistance to shearing forces, ρ is the fluid density, and p is

the pressure.

The numerical solution of the Navier-Stokes equations

requires evaluation of the pressure field while enforcing the

continuity constraint given by (1). One standard approach

for deriving an explicit equation for the pressure is to take

the divergence of (2) and make use of (1) to act as the

constraint. At the outset, one obtains a Poisson equation for

the pressure

∇2p = ∇ · F +
∂2ρ

∂t2
≡ R (3)

Equation (3) is known as the pressure-Poisson-equation

(PPE). Its solution requires the use of a solver such as hypre

for large sparse systems of equations.

A. Taylor Green Vortex Example

The Taylor-Green vortex is a well-known benchmark for

the verification of CFD codes [8]. It simplifies the system

by assuming constant density so that the continuity equation

reduces to

∇ · u = 0. (4)

The initial condition is a divergence-free (solenoidal) veloc-

ity field that evolves in time according to the Navier-Stokes

equations.

To test this formulation, we call upon the 3D Taylor-

Green vortex. The initial condition is given by the following

specification

ux(x, t = 0) = 2√
3

sin(θ + 2
3π) sin x cos y cos z (5)

uy(x, t = 0) = 2√
3

sin(θ − 2
3π) cos x sin y cos z (6)

uz(x, t = 0) = 2√
3

sin θ cos x cos y sin z (7)

where θ is an arbitrary phase angle. If the PPE equation is

correctly implemented, then the evolution of the flow from

this solenoidal initial condition should remain solenoidal for

all subsequent times.

In the current study, we set θ = 0 and solve the Navier-

Stokes equations on the domain 0 ≤ (x, y, z) ≤ 2π with

periodic conditions. We used a first-order forward-Euler

method for time integration. This may be summarized as

follows

un+1 = un + Fn − 1
ρ
∇pn (8)

with the following PPE

∇2pn = ρ∇ · Fn (9)

For spatial discretization, we used second order central

differencing on a staggered grid. A staggered grid is one

on which the velocity components are located on staggered

cells while all scalars (including pressure) are located at cell

centroids. Furthermore, all fluxes are stored at the faces of

scalar or staggered volumes.
For each simulation, the mesh was composed of multiple

patches with 323 cells per patch. One patch per core was

used and the resolution and domain sizes were increased to

achieve a constant workload as the core count increased. For

the smallest core count case of 192, the approximately 6.2

million (192×323) unknowns were solved using hypre with

the PFMG pre-conditioner and the Jacobi smoother. The

largest core count case of 192K cores required the solution

over 6.4 billion (196, 068× 323) unknowns.
In the experiments that follow not only was the new Titan

machine used but the calculation was also done but also the

older Jaguar machine at Oak ridge before it was upgraded

to Titan. For the older XT5 configuration, the core count

increased as multiples of 12 reflecting the 12 cores per

node. Results for core counts ranging from 192 cores up to

196,068 cores were obtained prior to the transition from the

XT5 configuration to the XK6 configuration. The new Titan

machine did not have its GPUs yet and so has only 16 cores

per node and thus the nodes may be viewed as XE6 nodes

with only half the cores or XK6 nodes without the GPUs.

For simulations running on the new XK6 configuration, the

core count increased by multiples of 16 reflecting the 16

cores per node up to a maximum of 131,072 cores that were

available at the time of the experiments. Figure 1 shows the

Figure 1. Weak scalability of Wasatch with hypre using the the PFMG
pre-conditioner for the Taylor-Green Problem

weak scalability of Wasatch on a test incompressible flow

problem - The Taylor-Green Vortex problem as described by

equations (1-3).
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Not only is the new machine faster per core but the

improved communications network results in better weak

scaling (constant workload per core) than on the original

Jaguar. The top line shows the total average cpu time per

timestep on Jaguar with a roughly constant load per core.

The amount of time spent in the hypre solver is the next line

down. The bottom two lines correspond to the same times

on the new XK6 type nodes (as mentioned above without

GPUs) in the Titan machine. In these and other runs we do

observe non-monotone timings due to machine loads with

multiple users.

B. Helium Plume problem

Although the Taylor-Green vortex illustrates of simple in-

compressible flow problem, it neglects the effects of density

variation which are paramount in combustion applications.

The second example is a Helium plume problem, which

requires the full solution of Equations 1 and 2 including

the density variations. In addition, various sub-models are

used to account for any unresolved turbulence scales that

are not directly resolved by the computational mesh.

The helium plume represents the essential characteristics

of a real fire without introducing the complexities of com-

bustion and thus serves as an important validation problem

for the ARCHES code. Experimental data collected [24] at

the Sandia FLAME facility in Albuquerque, NM wer used

to validate the ARCHES simulations.

The computational scenario consists of a 3m3 domain

with a 1m opening that introduces the helium into a qui-

escent atmosphere of air with a co-flow of air. Velocity

and density conditions at these boundaries are known. The

sides and top of the computational cube are modeled using

pressure and outlet boundary conditions respectively. The

outlet boundary condition allows flow to leave the domain

while the pressure conditions make it possible for air flow

to enter (as driven by the buoyancy forces) through the

side of the domain. Both the outlet and pressure conditions

are driven by the resulting pressure field solution. The

CFD solution procedure exercises major components of

the overall ARCHES algorithm, including the modeling of

small, sub-grid turbulence scales. Additionally, the coupled

problem combines the effects of fluid flow and turbulent

scalar mixing for a full spectrum of length and time scales

without introducing the complications of combustion reac-

tions. CFD results are compared to time-averaged velocity

of both vertical and horizontal components, mixture fraction

variables, and turbulence statistics. For this more complex

problem the XK6 does not show such an advantage over

the XT5 per core unless we factor in the smaller number of

floating point units per core on the XK6.

V. LINEAR SOLVER WEAK SCALABILITY MODEL

A model for the weak scalability of the linear solver time

as a function of the number of cores (p) can be described

by a simple power law:

time = a ∗ Cm (10)

taking the logarithm of each side

log(time) = log(a) + m ∗ log(p). (11)

and performing a linear least squares fit yields the coeffi-

cients for each problem shown in Table II. Figure 2 shows

Problem a m
Taylor-Green (xt5) 0.496 0.165
Taylor-Green (xk6) 0.182 0.179

Helium Plume (xk6) 0.0095 0.447

Table II
LEAST SQUARES COEFFICIENTS FOR a AND m IN (10)

the linear least squares fit of equation 11. The results suggest

that the scalability of the linear solver depends significantly

on the system of equations that are being solved for and

on the methods being used. What is interesting to note is

that while the network infrastructure is quite different from

the XT5 and the XK6 machines, the scalability of the linear

solver for the Taylor-Green case is quite similar and scales

roughly to the power of 1
6 . The scalability of the Helium

Plume problem is quite different scaling approximately to

the power of 1
2 . It is also interesting that the different

linear solve algorithms perform differently at large and small

core counts. The power law relationship for linear solver

scalability demonstrates a remarkably accurate predictive

model over a very wide distribution of core counts. It

appears to be suggestive of the scalability of the linear

solvers for future machines. In order to try and improve

Figure 2. Scalability of hypre with a Least Squares Fit for (11)

the scalability of the Helium Plume Problem experiments

were undertaken with the different options in hypre. These

experiments included using non-symmetric red black Gauss

Seidel preconditioner and skipping levels during the multi-

grid solves. Instead of solving at every level during the
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multi-grid, results were interpolated to the ”skipped” levels.

This reduced the amount of work being done and improved

the solve times. These experiments also made it possible

to improve the scalability of the Taylor-Green Problem as

shown in Figure 3 Applying these algorithmic improvements

Figure 3. The Effects on Performance of Different hypre Options

to the Helium Plume Problem gives rise to the results shown

in Figure 4. In particular when running the Helium Plume

problem with he improved options on the old XT5 Kraken

machine we see that its performance scales better than when

running on the newer Jaguar XK6 with the original Jacobi

method. The same figure also shows a plot of a log(p)
curve that shows that the Helium plume with appropriate

algorithms has a scaling that is close to log(p), where p is

the number of cores, as would be expected from the global

communications used in hypre.

Figure 4. The Effects on Performance of Different hypre Options

VI. CONCLUSIONS AND FUTURE WORK

The overall conclusion of this paper is that it is possible

to get quite reasonable weak scaling at large core counts

when using hypre with Uintah. The only provisos are that

care has to be taken with the start-up costs of hypre and in

the choice of algorithms. In the case of Uintah this involved

some careful software engineering to ensure continuity of the

hypre work spaces and considerable experimentation with

the different hypre options. The results show that effective

use of the hypre linear solver package has led to better-

than-expected weak scalability on 256K cores of Uintah

on incompressible flow problems that range from a simple

example problem to an industrial-strength helium plume

problem.

In addition, a simple power law relationship for the weak

scalability of the linear solver is developed and shows a

good range of applicability from the smallest core counts to

the full machine capacity. The closeness to expected log(p)
scaling is also shown. Further work is needed to determine

the applicability of the results to the scalability of the linear

solvers for future machines.
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