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17.1 Introduction

Numerical simulations provide scientists and

engineers with an increasing amount of vector

and tensor data. The visualization of these large

multivariate datasets is therefore a challenging

task. Topological methods efficiently extract the

structure of the corresponding fields to come up

with an accurate and synthetic depiction of the

underlying flow. This approach takes its roots

and inspiration in the visionary work of Poin-

caré at the end of the 19th century. Practically,

it consists of partitioning the domain of study

into subregions of homogeneous qualitative be-

havior. Extracting and visualizing the corres-

ponding graph permits conveyance of the most

meaningful properties of multivariate datasets.

This has motivated the design of various top-

ology-based visualization schemes. This chapter

proposes an introduction to the theoretical

foundations of the topological approach and

presents an overview of the corresponding visu-

alization methods. Emphasis is put on recent

advances. In particular, the processing of turbu-

lent or unsteady vector and tensor fields is ad-

dressed.

Vector and tensor fields are traditionally

objects of major interest for visualization.

They are the mathematical language of many

research and engineering areas, for example,

fundamental physics, optics, solid mechanics,

and fluid dynamics, as well as civil engineering,

aeronautics, turbomachinery, or weather fore-

cast. Vector variables in this context are vel-

ocity, vorticity, magnetic or electric field, and a

force or the gradient of some scalar field like

e.g., temperature. Tensor variables might cor-

respond to stress, strain, or rate of deformation,

for instance. From a theoretical viewpoint,

vector and tensor fields have received much at-

tention from mathematicians, leading to a pre-

cise and rigorous framework that constitutes the

basis of specific visualization methods. Of par-

ticular interest is Poincaré’s work [20], which

laid down the foundations of a geometric inter-

pretation of vector fields associated with dy-

namical systems at the end of the 19th century;

the analysis of the phase portrait provides an

efficient and aesthetic way to apprehend the

information contained in abstract vector data.

Nowadays, following this theoretical inherit-

ance, scientists typically focus their study on

the topology of vector and tensor datasets pro-

vided by Computational Fluid Dynamics

(CFD) or Finite Element Methods. A typical

and very active application field is fluid dynam-

ics, in which complex structural behaviors are

investigated in the light of their topology

[14,27,19,3]. It was shown, for instance, that

topological features are directly involved in cru-

cial aspects of flight stability like flow separ-

ation or vortex genesis [4]. Informally, the

topology is the qualitative structure of a multi-

variate field. It leads to a partition of the

domain of interest into subdomains of equiva-

lent qualitative nature. Therefore, extracting

and studying this structure permits us to focus

the analysis on essential properties. For visual-

ization purposes, the depiction of the topology

results in synthetic representations that tran-
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scribe the fundamental characteristics of the

data. Moreover, it permits fast extraction of

global flow structures that are directly related

to features of interest in various practical appli-

cations. Further, topology-based visualization

results in a dramatic decrease in the amount

of data necessary for interpretation, which

makes it very appealing for the analysis of

large-scale datasets. These ideas are at the

basis of the topological approach, which has

gained an increasing interest in the visualization

community during the last decade. First intro-

duced for planar vector fields by Helman and

Hesselink [9], the basic technique has been con-

tinuously extended since then. A significant

milestone on the way was the work of Delmar-

celle [5], which transposed the original vector

method to symmetric, second-order tensor

fields.

The contents of this survey are organized

as follows. Vector fields are considered first.

Basic theoretical notions are introduced in

Section 17.2. They result from the qualitative

theory of dynamical systems, initiated by Poin-

caré’s work. Nonlinear and parameter-depend-

ent topologies are discussed in this section,

along with the fundamental concept of bifurca-

tion. Tensor fields are treated in Section 17.3.

Following Delmarcelle’s approach, we are con-

cerned with the topology of the eigenvector

fields of symmetric, second-order tensor fields.

It is shown that they induce line fields in which

tangential curves can be computed, analogous

to streamlines for vector fields. We explain how

singularities are defined and characterized and

how bifurcations affect them in the case of un-

steady tensor fields. This completes the frame-

work required for the description of topology-

based visualization of vector and tensor fields in

Section 17.4. The presentation covers original

methods for 2D and 3D fields, extraction and

visualization of nonlinear topology, topology

simplification for the processing of turbulent

flows, and topology tracking for parameter-

dependent datasets. Finally, Section 17.5

completes the presentation by addressing open

questions and suggesting future research direc-

tions to extend the scope of topology-based

visualization.

17.2 Vector Field Topology

In this section, we propose a short overview of

the theoretical framework of vector-field top-

ology, which we restrict to the requirements of

visualization techniques.

17.2.1 Basic Definitions

We consider a vector field y : U � IRn�
IR!TIRn’IRn, which is a vector-valued func-

tion that depends on a space variable and on an

additional scalar parameter, say time. The vector

field y generates a flow ft: U � IRn ! IRn,

where ft:¼ f(x, t) is a smooth function defined

for (x, t) 2 U� (I � IR) satisfying

d

dt
f(x, t)jt¼t ¼ u(t,f(x, t)) (17:1)

for all (x, t) 2 U� I . Practically we limit our

presentation to the case n ¼ 2 or 3 in the

following. The function f(x0, : ) : t! f(x0, t) is

an integral curve through x0. Observe that exist-

ence and uniqueness of integral curves are en-

sured under the assumption of fairly general

continuity properties of the vector field. In the

special but fundamental case of steady vector

fields, i.e., fields that do not depend on the

variable t, integral curves are called streamlines.

Otherwise, they are called pathlines. The

uniqueness property guaranties that streamlines

cannot intersect in general. The set of all inte-

gral curves is called phase portrait, according to

Poincaré’s original formulation. The qualitative

structure of the phase portrait is called topology

of the vector field. First we focus on the steady

case, and then we consider parameter-depend-

ent topology.

17.2.2 Steady Vector Fields

The local geometry of the phase portrait is char-

acterized by the nature and position of its crit-

ical points. In the steady case, these singularities
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are locations where the vector field is zero.

Consequently, they behave as zero-dimensional

integral curves. Furthermore, they are the

only positions where streamlines can intersect

(asymptotically). Basically, the qualitative study

of critical points relies on the properties of

the Jacobian matrix of the vector field at their

position. If the Jacobian has full rank, the

critical points is said to be linear or of first

order. Otherwise, a critical point is of higher

order. Next we discuss the planar and 3D cases

successively. Observe that considerations made

for 2D vector fields also apply to vector fields

defined over a 2D manifold embedded in three

dimensions, for example, the surface of an

object surrounded by a 3D flow.

17.2.2.1 Planar case

Planar critical points have benefited from great

attention from mathematicians. A complete

classification has been provided by Andronov

et al. [1]. Additional excellent information is

available in Abraham and Shaw [2] and Hirsch

and Smale [12]. Depending on the real and

imaginary parts of the eigenvalues, linear

critical points may exhibit the configurations

shown in Fig. 17.1. Repelling singularities act as

sources, whereas attracting ones are sinks.

Hyperbolic critical points are a subclass of

linear singularities for which both eigenvalues

have nonzero real parts. Thus, a center is

nonhyperbolic. The analysis of nonlinear criti-

cal points, on the contrary, requires us to take

into account higher-order polynomial terms in

the Taylor expansion. Their vicinity is decom-

posed into an arbitrary combination of hyper-

bolic, parabolic, and elliptic curvilinear sectors,

see Fig. 17.2. The bounding curve of a

hyperbolic sector is called a separatrix. Back

in the linear case, separatrices only exist for

saddle points, where they are the four curves
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Saddle Point:
R1<0, R2>0,
I1 = I2 = 0

Repelling Focus:
R1 = R2 >0,  
I1 = -I2 <> 0

Attracting Focus:
R1 = R2 < 0,
I1 = -I2 <> 0

Repelling Node:
R1, R2 > 0,
I1 = I2 = 0

Attracting Node:
R1, R2 < 0,
I1 = I2 = 0

Figure 17.1 Basic configurations of first-order planar critical points
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Figure 17.2 Sector types of arbitrary planar critical points

Topological Methods for Flow Visualization 333



that reach the singularity, forward or backward

in time. Thus, we obtain a simple definition of

planar topology as the graph whose vertices are

the critical points and whose edges are the

separatrices integrated away from the corre-

sponding singularities. This needs to be com-

pleted by closed orbits that are periodic integral

curves. Closed orbits play the role of sources or

sinks and can be seen as additional separatrices.

It follows that topology decomposes a vector

field into subregions where all integral curves

have a similar asymptotic behavior: they con-

verge toward the same critical point (resp.

closed orbit) both forward and backward. We

complete our overview of steady planar topol-

ogy by mentioning the index of a critical point

introduced by Poincaré in the qualitative theory

of dynamic systems. It measures the number of

field rotations along a closed curve that is

chosen to be arbitrarily small around the critical

point. By continuity of the vector field, this is

always a (signed) integer value. The index is an

invariant quantity for the vector field and

possesses several properties that explain its

importance in practice. Among them we have

the following:

1. The index of a curve that encloses no crit-

ical point is zero,

2. The index of a linear critical point is �1 for

a saddle point and þ1 for every other type

(Fig. 17.3),

3. The index of a closed orbit is always þ1,

4. The index of a curve enclosing several critical

points is the sum of their individual indices.

17.2.2.2 Three-dimensional case

The 3D case lacks an analogous intensive

theoretical treatment. To our knowledge, there

exists no exhaustive characterization of arbi-

trary 3D critical points, i.e., there is no

generalization to 3D of the sector-type decom-

position achieved by Andronov. Therefore, we

address only linear 3D critical points. Like the

planar case, the analysis is based on the eigen-

values of the Jacobian. There are two main

possibilities: either the eigenvalues are all real or

two of them are complex conjugates.

. Three real eigenvalues. One has to distinguish

the case where all three eigenvalues have the

same sign, where we have a 3D node (either

attracting or repelling) from the case where

only two eigenvalues have the same sign: the

two eigenvectors associated with the eigen-

values of the same sign span a plane in which

the vector field behaves as a 2D node and the

critical point is a 3D saddle.

. Two complex eigenvalues. Once again there

are two possibilities. If the common real part

of both complex eigenvalues has the same

sign as the real eigen-value, one has a 3D

spiral, i.e., a critical point (either attracting

or repelling) that exhibits a 2D spiral struc-

ture in the plane spanned by the eigenspace

related to the complex eigenvalues. If they

have different signs, one has a second kind of

3D saddle.

Refer to Fig. 17.4 for a visual impression. Ana-

loguous to the planar case, a critical point is

called hyperbolic in this context if the eigen-
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values of the Jacobian have all nonzero real

parts. Compared to 2D critical points, separa-

trices in 3D are not restricted to curves; they can

be surfaces, too. These surfaces are called

streamsurfaces and are constituted by the set

of all streamlines that are integrated from a

curve. The linear 3D topology is thus composed

of nodes, spirals, and saddles that are intercon-

nected by curve and surface separatices emanat-

ing from saddle points. These are, in fact the

eigenspaces corresponding to the eigenvalues

with positive, resp. negative real part, started

in the vicinity of the critical point and integrated

away. Depending on the considered type, repel-

ling and attracting eigenspaces can be ID or 2D,

leading to curves and surfaces (Figs. 17.4b and

17.4d).

17.2.3 Parameter-Dependent Vector Fields

The previous sections focused on steady vector

fields. Now, if the considered vector field

depends on an additional parameter, the struc-

ture of the phase portrait may transform as the

value of this parameter evolves: position and

nature of critical points can change along with

the connectivity of the topological graph. These

modifications—called bifurcations in the litera-

ture—are continuous evolutions that bring the

topology from a stable state to another, struc-

turally consistent, stable state. Bifurcations

have been the subject of an intensive research

effort in pure and applied mathematics [7]. The

present section will provide a short introduction

to these notions. Notice that the treatment of

3D bifurcations is beyond the scope of this

paper, since they have not been applied to flow

visualization up till now. We start with basic

considerations about structural stability and

then describe typical planar bifurcations.

17.2.3.1 Structural stability

As said previously, bifurcations consist of

topological transitions between stable struc-

tures. In fact, the definition of structural

stability involves the notion of structural

equivalence. Two vector fields are said to be

equivalent if there exists a diffeomorphism (i.e.,

a smooth map with smooth inverse) that takes

the integral curves of one vector field to those of

the second while preserving orientation. Struc-

tural stability is now defined as follows: the

topology of a vector field v is stable if any

perturbation of v, chosen small enough, results

in a vector field that is structurally equivalent to

v. We can now state a simplified version of the

fundamental Peixoto’s theorem [7] on structural

stability for 2D flows. A smooth vector field on a

two-dimensional compact planar domain of IR2

is structurally stable if and only if (iff) the

number of critical points and closed orbits is

finite and each is hyperbolic, and if there are no

integral curves connecting saddle points. Practi-

cally, Peixoto’s theorem implies that a planar

vector field typically presents saddle points,

sinks, and sources, as well as attracting or

repelling closed orbits. Furthermore, it asserts

that nonhyperbolic critical points or closed

orbits are unstable because small perturbations
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can make them hyperbolic. Saddle connections,

as far as they are concerned, can be broken by

small perturbations as well.

17.2.3.2 Bifurcations

There are two types of structural transitions:

local and global bifurcations.

Local Bifurcations

There are two main types of local bifurca-

tions affecting the nature of a singular point in

2D vector fields. The first one is the so-called

Hopf bifurcation. It consists of the transition

from a sink to a source with simultaneous

emission of a surrounding closed orbit that

behaves as a sink, preserving local consistency

with respect to the original configuration (Fig.

17.5). At the bifurcation point there is a center.

The reverse evolution is possible too, as is an

inverted role of sinks and sources. A second

typical local bifurcation is called Fold Bifurca-

tion and consists of the pairwise annihilation or

creation of a saddle and a sink (resp. source).

This evolution is depicted in Fig. 6. Observe

that the index of the concerned region remains 0

throughout the transformation.

Global Bifurcations

In contrast to the cases mentioned above,

global bifurcations do not take place in a

small neighborhood of a singularity, but entail

significant changes in the flow structure and

involve large domains by modifying the con-

nectivity of the topological graph. Actually,

global bifurcations still remain a challenging

topic for mathematicians. Consequently,

we mention here just a typical configuration

exhibited by such transitions: the unstable

saddle–saddle connection (see Peixoto’s theo-

rem). This is the central constituent of basin

bifurcations, where the relative positions of two

separatrices emanating from two neighboring

saddle points are swapped through a saddle–

saddle separatrix.

17.3 Tensor-Field Topology

Making use of the results obtained for vector

fields, we now turn to tensor-field topology. We

adopt for our presentation an approach similar

to the original work of Delmarcelle [5,6], and

focus on symmetric second-order real tensor

fields that we analyze through their eigenvector

fields. We seek here a framework that permits us

to extend the results discussed previously to

tensor fields. However, since most of the re-

search done so far has been concerned with the

2D case, we put the emphasis on planar tensor

fields and point out the generalization to 3D

fields. A mathematical treatment of these

notions can be found in Tricoche [28], where it

is shown how covering spaces allow association

of a line field with a vector field. In this section,

we first introduce useful notations in the steady

case and also show how symmetric second-

order tensor fields can be interpreted as line

fields. This makes possible the integration of

tangential curves called tensor lines. Next, sin-

gularities are considered. We complete the pre-

sentation with tensor bifurcations.

17.3.1 Line Fields

17.3.1.1 Basic definitions

In the following, we call a symmetric second-

order real tensor of dimension 2 or 3. This is a
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geometric invariant that corresponds to a linear

transformation and can be represented by a

matrix in a cartesian basis. By extension, we

define a tensor field as a map T that associates

every position of a subset of the euclidean space

IRn with a n� n symmetric matrix. Thus, it is

characterized by 1
2
n(nþ 1) independent, real

scalar functions. Note that an arbitrary second-

order tensor field can always be decomposed

into its symmetric and antisymmetric parts.

From the structural point of view, a tensor field

is fully characterized by its deviator field, which

is obtained by subtracting from the tensor its

isotropic part, that is D ¼ T� 1
n
(tr T)In, where

tr T is the trace of T and In the identity matrix

in IRn. Observe that the deviator has trace zero

by definition. The analysis of a tensor field is

based on the properties of its eigensystem. Since

we consider symmetric tensors, the eigenvectors

always form an orthogonal basis of IRn and the

eigenvalues are real. It is a well known fact that

eigenvectors are defined modulo a nonzero

scalar, which means that they have neither

inherent norm nor orientation. This character-

istic plays a fundamental role in the following

process. Through its corresponding eigensys-

tem, any symmetric real tensor field can now be

associated with a set of orthogonal eigenvector

fields. We choose the following notations in

three dimensions. Let l1 > l2 > l3 be the real

eigenvalues of the symmetric tensor field T (i.e.,

l1, l2, and l3 are scalar fields as functions of the

coordinate vector x). The corresponding eigen-

vector fields e1, e2, and e3 are respectively called

major, medium, and minor eigenvector fields.

In the 2D case, there are just major and

minor eigenvectors. We now come to tensor

lines, which are the object of our structural

analysis.

17.3.1.2 Tensor lines

A tensor line computed in a Lipschitz contin-

uous eigenvector field is a curve that is every-

where tangent to the direction of the field.

Because of the lack of both norm and orienta-

tion, the tangency is expressed at each position

in the domain in terms of lines. For this reason,

an eigenvector field corresponds to a line field.

Nevertheless, except at positions where two (or

three) eigenvalues are equal, integration can be

carried out in a way similar to streamlines for

vector fields by choosing an arbitrary local

orientation. Practically, this consists of deter-

mining a continuous angular function y�

defined modulo 2p that is everywhere equal to

the angular coordinate y of the line field,

modulo p. Considering the set of all tensor

lines as a whole, the topology of a tensor field is

defined as the structure of the tensor lines. It is

interesting to observe that the topologies of the

different eigenvector fields can be deduced from

another through the orthogonality of the

corresponding line fields.
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17.3.2 Degenerate points

The inconsistency in the local determination of

an orientation as described previously only

occurs in the neighborhood of positions where

several eigenvalues are equal. There, the eigen-

spaces associated with the corresponding eigen-

values are no longer 1D. For this reason, such

positions are singularities of the line field. To

remain consistent with the notations originally

used by Delmarcelle, we call them degenerate

points, though they are typically called umbilic

points in differential geometry. Because of the

direction indeterminacy at degenerate points,

tensor lines can meet there, which underlines

the analogy with critical points.

17.3.2.1 Planar case

The deviator part of a 2D tensor field is zero iff

both eigenvalues are equal. For this reason,

degenerate points correspond to zero values of

the deviator field. Thus, D can be approximated

as follows in the vicinity of the degenerate point

P0:

D (P0 þ dx) ¼ rD (P0)dxþ o(dx) (17:2)

Where dx ¼ (x, y)T , and where a and b are real

scalar functions on IR2,

D(x, y) ¼
a b

b �a

� �
, and rD (P0)dx ¼

@a
@x

dxþ @a
@y

dy
@b
@x

dxþ @b
@y

dy

@b
@x

dxþ @b
@y

dy � @a
@x

dx� @a
@y

dy

0
BB@

1
CCA

If the condition @a
@x

@b
@y � @a

@y
@b
@x 6¼ 0 holds, the de-

generate point is said to be linear. The local

structure of the tensor lines in this vicinity

depends on the position and number of radial

directions. If y is the local angle coordinate of a

point with respect to the degenerate point,

u ¼ tany is the solution of the following cubic

polynomial:

b2u
3 þ (b1 þ 2a2)u

2 þ (2a1 � b2)u� b1 ¼ 0

(17:3)

with a1 ¼ @a
@x , a2 ¼ @a

@y, and the same for bi. This

equation has either one or three real roots,

which all correspond to angles along which the

tensor lines asymptotically reach the singularity.

These angles are defined modulo p, so one

obtains up to six possible angle solutions.

Since we limit our discussion to a single

(minor/major) eigenvector field, we are finally

concerned with up to three radial eigenvectors.

The possible types of linear degenerate points

are trisectors and wedges (Fig. 17.7). In fact, the

special importance of radial tensor lines is ex-

plained by their interpretation as separatrices.

As a matter of fact, like critical points, the set of

all tensor lines in the vicinity of a degenerate

point is partitioned into hyperbolic, parabolic,

and elliptic sectors. Separatrices are again de-

fined as the bounding curves of the hyperbolic

sectors (compare Fig. 17.7). In fact, a complete

definition of the planar topology involves closed

tensor lines too. However, they are rare in prac-

tice. The analogy with vector fields may be

extended by defining the tensor index of a de-
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generate point [5,28] that measures the number

of rotations of a particular eigenvector field

along a closed curve surrounding a singularity.

Notice that tensor indices are half integers, due

to orientation indeterminacy: trisectors have

index � 1
2

and wedges have index 1
2
. The nice

properties of Poincaré’s index extend here in a

very intuitive fashion.

17.3.2.2 Three-dimensional degenerate
points

In the 3D case, singularities are of two types:

eigenspaces may become 2D or 3D, leading to

tangency indeterminacy in the corresponding

eigenvector fields. To simplify the presentation,

we restrict our considerations to the trace-free

deviator D ¼ (Dij)i, j. The characteristic equa-

tion is �l3 þ blþ c ¼ 0, where �c is the

determinant of D and b ¼ 1
2

P
i Dii þ

P
i<j D

2
ij.

The quantity D ¼ ( c
2
)2 � ( b

3
)3 determines the

number of distinct real roots of the equation:

D < 0 yields three distinct real roots, while there

are multiple roots iff D ¼ 0 (complex conjugate

roots are impossible, since D is symmetric).

Thus, degeneracies correspond to a maximum

of D, which is everywhere negative, except at

points, lines, or surfaces, where it is zero. Here a

major difference with 3D vector-field topology

must be underlined: The loci of singularities are

not restricted to points. Refer to Hesselink et al.

[11] and Lavin et al. [16] for additional

information.

17.3.3 Parameter-Dependent Topology

Again, the natural question that arises at this

stage is the structural stability of topology

under small perturbations of an underlying

parameter. We restrict our considerations to

the simplest cases in 2D of local and global

bifurcations to remain in the scope of the

methods to come. The observations proposed

next are all inspired by geometric consider-

ations.

Following the basic idea behind Peixoto’s

theorem, we see that the only stable degenerate

points must be the linear ones. As a matter of

fact, the asymptotic behavior of tensor lines in

the vicinity of a degenerate point is determined

by the third-order differential rD (thus leading

to a linear degenerate point) except at locations

where it becomes singular. This is, by essence,

an unstable property, since arbitrary small per-

turbations in the coefficients lead to one of the

linear configurations. Continuing our analogy

with the vector case, we conclude that integral

curves are unstable if they are separatrices for

both of the degeneracies they link together. This

is because a small-angle perturbation of the

line field around any point along the separatrix

suffices to break the connection. Using these

elementary results, we review typical planar

bifurcations.

17.3.3.1 Pairwise creation and annihilation

Since a wedge and a trisector have opposite

indices, a closed curve enclosing them has index

0. This simple fact is the basic idea behind

pairwise creations or annihilations. Indeed, the

zero index computed along this closed curve

shows that the combination of both degenerate

points is structurally equivalent to a uniform

flow. Therefore, a wedge and a trisector can

merge and disappear: this is a pairwise annihila-

tion. The reverse evolution is called a pairwise

creation. Both are the equivalent of the fold

bifurcations for critical points. An example is

proposed in Fig. 17.8

17.3.3.2 Homogeneous mergings

When two linear degenerate points of the same

nature merge, their half-integer indices are

added and the resulting singularity exhibits a

pattern corresponding to a linear critical point,

e.g., two trisectors lead to a saddle point.

However, according to what precedes, these

new degenerate points are nonlinear and thus

unstable. Details on that topic can be found in

Delmarcelle [5].

17.3.3.3 Wedge bifurcation

Both existing types of wedges have the same

index, 1
2
. As a consequence, the transition from

Topological Methods for Flow Visualization 339



one type to the other can take place without

modifying structural consistency of the sur-

rounding flow. From a topological viewpoint,

this evolution corresponds to the creation (resp.

disappearance) of a parabolic sector along with

an additional separatrix.

17.3.3.4 Global bifurcations

To finish this presentation of structural transi-

tions in line fields, we briefly consider the

simplest type of global bifurcation. It is

intimately related to the unstable separatrices

defined above. It occurs when the relative

positions of two separatrices are changed

through a common separatrix.

17.4 Topological Visualization of Vector
and Tensor Fields

The theoretical framework described previously

has motivated the design of techniques that

build the visualization of vector and tensor

fields upon the extraction and analysis of their

topology. We start with a recall of the original

method of Helman and Hesselink [9,10] for

vector fields, later extended by Delmarcelle [5]

to symmetric second-order tensor fields. After

that, we focus on recent advances in topology-

based visualization. New methods designed to

complete the visualization of planar steady

fields are discussed first. Nonlinear topology is

addressed next. Techniques for reducing topo-

logical complexity in turbulent fields are con-

sidered, and the presentation ends with the

topological visualization of parameter-depend-

ent (e.g., unsteady) datasets. Throughout the

presentation, we privilege a simultaneous treat-

ment of vector and tensor techniques, making

natural use of the profound theoretical relation-

ships between their topologies.

17.4.1 Topology Basics

17.4.1.1 Original methods

Helman and Hesselink pioneered topology-

based visualization in 1989 [9]. They proposed

a scheme for 2D vector fields, restricting the

characterization of critical points to a linear

precision. Remember that this leads to a graph

where saddles, spirals, and nodes are the vertices

and separatrices at the edges, integrated along

the eigendirections of the saddle points. They

extended their technique to tangential vector

fields defined over surfaces embedded in 3D

space [10]. Streamsurfaces [13,22] are started

along the separatrices. This was shown to permit

the visualization of separation and attachment

lines in some cases. At the same time, Globus et

al. [8] suggested a similar technique to visualize

the topology of 3D vector fields defined over

curvilinear grids. They do not provide the

separating surfaces associated with 3D saddles,

but use glyphs to depict their structure locally

and draw streamlines from them. Observe that

all these methods require the integration of

streamlines, which is typically carried out with

a numerical scheme, e.g., Runge-Kutta with

adaptive stepsize [21]. Analytical methods exist

for piecewise linear vector fields over triangula-

tions, resp. tetrehedrizations [18].
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The topological approach for vector fields

inspired Delmarcelle, who extended the original

scheme to symmetric, second-order planar

tensor fields [6] within his work on general tech-

niques for tensor-field visualization [5]. Here,

too, analysis is restricted to linear precision.

The missing quantitative information carried

by eigenvalues is inserted into the representa-

tion by means of color coding. Existing at-

tempts to generalize this method to 3D tensor

fields suffer from the inherent difficulty of locat-

ing 3D degenerate points [11,16]. Typically they

lead to complicated polynomial systems of high

degree and lack surfaces to partition the domain

conveniently.

17.4.1.2 Closed orbits

The original topological method neglects the

importance of closed orbits. As mentioned

previously, these features play a major role in

the flow structure, acting like sinks or sources

and playing the role of additional separatrices.

Moreover, they represent a challenging issue for

numerical integration schemes used in practice,

since every streamline that converges toward a

closed orbit will result in an endless computa-

tion. A traditional but inaccurate way to solve

this problem is to limit the number of integra-

tion steps. However, this does not permit us to

distinguish a closed orbit from a slowly

converging spiral, i.e., a spiral with high

vorticity. Furthermore, this might be very

inefficient if the number of iterations is set to

a fairly large value to avoid a premature

integration break. To overcome this deficiency,

Wischgoll and Scheuermann [34] first proposed

a method that properly identifies and locates

closed orbits. Their basic idea is to detect on a

cell-wise basis a periodic behavior during

streamline integration. Practically, once a cell

cycle has been inferred, a control is carried out

over the edges of the concerned cells. This

ensures that a streamline entering the cycle will

remain trapped. If this condition is met and no

critical point is present in the cycle, the

Poincaré-Bendixon theorem [7] ensures that a

closed orbit is contained in it. Precise location is

obtained by looking for a fixed point of the

Poincaré map [2]. The method was generalized

to 3D by Wischgoll and Scheuermann [35].

Note that the extension to tensor fields is

straightforward even if closed tensor lines are

rare in practice.

17.4.1.3 Local topology

The definition of topology given previously

does not specifically address vector fields

defined over a bounded domain. As a matter

of fact, the idea behind topology visualization is

to partition the domain into subregions where

all streamlines exhibit the same asymptotic

behaviour. If the considered domain is infinite,

this is equivalent to looking for subregions

where all streamlines reach the same critical

point both backward and forward. Now,

scientific visualization is typically concerned

with domains spanned by bounded grids. In this

case, the boundary must be incorporated into

the topology analysis: outflow parts behave as

sinks, inflow parts as sources, and the points

separating them as half-saddles. Scheuermann

et al. proposed a method that identifies these

regions along the boundaries of planar vector

fields [23]. It assumes that the restriction of the

vector field to the boundary is piecewise linear.

Half saddles are located and separatrices are

started there, forward and backward, to com-

plete the local topology visualization. Observe

that the same principle can be applied in 3D:

half saddles are no longer points but closed

curves from which stream surfaces can be

drawn.

17.4.2 Nonlinear Topology

The methods introduced so far are limited to

linear precision in the characterization of singu-

lar points. We saw previously that nonlinear

critical or degenerate points are unstable. How-

ever, when imposed constraints exist (e.g., sym-

metry or incompressibility of the flow), they can

be encountered. To extend existing methods,
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Scheuermann et al. [25] proposed a scheme

for the extraction and visualization of higher-

order critical points in 2D vector fields. The

basic idea is to identify regions where the

index is larger than 1 (or less than �1). In

such regions, the original piecewise linear inter-

polant is replaced by a polynomial approximat-

ing function. The polynomial is designed in

Clifford algebra, based on theoretical results

presented by Scheuermann et al [24]. This per-

mits us to infer the underlying presence of a

critical point with arbitrary complexity, which

is next modeled and visualized as shown in

Fig. 17.9.

An alternative way to replace several close

linear singularities by a higher-order one is

suggested by Tricoche et al. [29]. It works

with local grid deformations and can be ap-

plied to both tensor and planar vector fields.

Moreover, it ensures continuity over the whole

domain. Based on a mathematical background

analoguous to that of Scheuermann et al. [25],

Mann and Rockwood presented a scheme for

the detection of arbitrary critical points in three

dimensions [17]. Geometric algebra is used to

compute the 3D index of a vector field, which

is obtained as an integral over the surface of a

cube. Getting back to the original ideas of

Poincaré in his study of dynamical systems,

Trotts et al. [26] proposed a method to extract

and visualize the nonlinear structure of a ‘‘crit-

ical point at infinity’’ when the considered

vector field is defined over an unbounded

domain.

17.4.3 Topology Simplification

Topology-based visualization usually results in

clear and synthetic depictions that ease analysis

and interpretation. Yet turbulent flows, like

those encountered in CFD simulations, lead to

topologies exhibiting many structures of very

small scale. Their proximity and interconnec-

tion in the global picture cause visual clutter

with classical methods. This drawback is

worsened by low-order interpolation schemes,

typical in practice, that confuse the results by

introducing artifacts. Therefore, there is a need

for post-processing methods that permit clarifi-

cation of the topologies by emphasizing the

most meaningful properties of the flow and sup-

pressing local details and numerical noise. The

problem was first addressed by de Leeuw et al.

[15] for vector planar fields. Pairs of intercon-

nected critical points are pruned along with the

corresponding edges while preserving consist-

ency. The importance of sinks and sources is

evaluated with respect to the surface of their
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inflow (resp. outflow) regions. Since the method

is graph-based, the resulting simplified topology

lacks a corresponding vector-field description.

Tricoche et al. [29] proposed an alternative ap-

proach for both vector and tensor fields defined

in the plane. Close singularities are merged,

resulting in a higher-order singularity that syn-

thesizes the structural impact of small-scale fea-

tures in the large scale. This reduces the number

of singular points as well as the global complex-

ity of the graph. The merging effect is achieved

by local grid deformations that modify the

vector field. There is no assumption about grid

structure or interpolation scheme. The same

authors presented a second method that works

directly on the discrete values defined at the

vertices of a triangulation [31]. Angle con-

straints drive a local modification of the vector

field that removes pairs of singularities of op-

posite indices. This simulates a fold bifurcation.

Results are shown in Fig. 17.10 for a vortex

breakdown simulation. A major advantage

compared to the previous method is that the

simplification process can be controlled not

only by geometric considerations but by arbi-

trary user-prescribed criteria (qualitative or

quantitative, local or region-based), specific to

the considered application.

17.4.4 Topology Tracking

Theoretical results show that bifurcations are

the key to understanding and thus properly visu-

alizing parameter-dependent flow fields: they

transform the topology and explain how the

stable structures arise that are observed for dis-

crete values of the parameter. Typical examples

in practice are time-dependent datasets. This

basic observation motivates the design of tech-

niques that permit us to accurately visualize the

continuous evolution of topology. A first at-

tempt was the method proposed by Helman

and Hesselink [10]. The 1D parameter space is

displayed in the third dimension (2D vector

fields). However, the method is restricted to a

graphical connection between the successive

positions of critical points and associated sepa-

trices, leading to a ribbon if consistency was

preserved. Thus, no connection is made if a

structural transition has occurred: bifurcations

are missed. The same restriction holds for the

transposition of this technique to tensor fields by

Delmarcelle and Hesselink [6]. Tricoche et al.

[32,30] attacked this deficiency. The central idea

of their technique is to handle the mathematical

space, made of the euclidean space on one

hand and the parameter space on the other

hand, as a continuum. The vector or tensor
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data are supposed to lie on a triangulation that

remains constant. A ‘‘space–time’’ grid is con-

structed by linking corresponding triangles

through prisms over the parameter space. The

choice of a suitable interpolation scheme permits

an accurate and efficient tracking of singular

points through the grid along with the detection

of local bifurcations on the way. With the

scheme of [34], closed orbits are tracked in a

similar way. Again, the technique results in a

3D representation. The paths followed by crit-

ical points are depicted as curves. Separatrices

integrated from saddles and closed orbits span

smooth separating surfaces. These surfaces are

further used to detect modifications in the global

topological connectivity: consistency breaks cor-

respond to global bifurcations. Examples are

proposed in Fig. 17.11.

17.5 Future Research

So far, the major limitation of many existing

topological methods is their restriction to 2D

datasets. This is especially true in the case of

tensor fields. In fact, the basic idea behind top-

ology, i.e., the structural partition of a flow into

regions of homogenous behaviour, is definitely

not restricted to two dimensions. However, the

theoretical framework requires further research

effort to serve as a basis for 3D visualization

techniques. Now, in the simple case of linear

precision in the characterization of critical

points, topology-based visualization of 3D

vector fields still lacks a fast, accurate, and robust

technique to compute separating surfaces. This

becomes challenging in regions of strong vorti-

city or in the vicinity of critical points, in particu-

lar for tur-bulent flows. In addition, topology-

based visualization of parameter-dependent, 3D

fields must overcome the limitations human

beings experience in apprehending the informa-

tion contained in 4D datasets.

Dealing with time-dependent vector fields,

there is a fundamental issue with topology.

The technique described in Section 17.4.4 ad-

dresses the visualization of the unsteady stream-

lines’ topology. Remember that streamlines are

defined as integral curves in steady vector fields.

In the context of time-dependent vector fields,

they must be thought of as instantaneous inte-

gral curves, i.e., the paths of particles that circu-

late with infinite speed. This might sound like a

weird idea. Actually, this is a typical way for

fluid dynamicists to investigate the structure of

time-dependent vector fields in practice. Ob-

serve that there is no restriction to this tech-
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nique for the visualization of parameter-de-

pendent vector fields, this parameter not being

time. Nevertheless, if one is interested in the

structure of pathlines, i.e., the paths of particles

that flow under the influence of a vector field

varying over time, one has to rethink the notion

of topology. As a matter of fact, the asymptotic

behaviour of pathlines is not relevant for analy-

sis, since there is no longer infinite time for them

to converge toward critical points. Thus, a new

approach is required to define ‘‘interesting’’ be-

haviors. Furthermore, a structural equivalence

relation must be determined between pathlines,

upon which a corresponding topology can be

built. This seems to be a promising research

direction, from both a theoretical and a prac-

tical viewpoint, to extend the scope of topo-

logical methods in the future.
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