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ABSTRACT

It is common to extract isosurfaces from simulation field data to visualize and gain

understanding of the underlying physical phenomenon being simulated. As the input

parameters of the simulation change, the resulting isosurface varies, and there has been

increased interest in quantifying and visualization of these variations as part of the

larger interest in uncertainty quantification. In this thesis, we propose an analysis and

visualization pipeline for examining the intrinsic variation in isosurfaces caused by simula-

tion parameter perturbation. Drawing inspiration from the shape modeling community,

we incorporate the use of heat-kernel signatures (HKS) with a simple finite-difference

approach for quantifying the degree to which a region (or even a point) on an isosurface

has undergone intrinsic change. Coupled with a clustering technique and the use of

color maps, our pipeline allows the user to select the level of fidelity with which they

wish to evaluate and visualize the amount of intrinsic change. The pipeline is described

with a simple example to walk the reader through the different steps, and experimental

validation of parameter choices in the pipeline is provided to justify our design. Then we

present canonical and simulation examples to demonstrate the pipeline’s use in different

applications.
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CHAPTER 1

INTRODUCTION

Numerical simulation as a tool for solving science and engineering problems has

become ubiquitous. With the growth of simulation science, there has arisen a renewed

emphasis on Validation, Verification and Uncertainty Quantification (VVUQ) within the

Computational Science and Engineering (CS&E) community. Simulation scientists are

interested not only in quantifying errors that come as a consequence of their modeling

and discretization choices, but also in quantifying the uncertainty in the solution (and

subsequent derived quantities) dictated by other simulation choices such as the simulation

input parameters (e.g. material parameters in a structural mechanics simulation). There

is a corresponding need for visualization techniques that both specialize in visualizing

the output of numerical simulations and are designed to aid the simulation scientists in

answering their uncertainty quantification questions. Isosurface extraction (level-sets of

a function evaluated at a particular value) is a common visualization technique used for

understanding the underlying phenomena expressed by a numerical simulation. From

the perspective of simulation uncertainty quantification, a common question posed by

simulation scientists is: given a set of input parameters and given an isosurface extracted

from a field generated from a specific setting of the parameters, what is the variation in

the isosurface due to parameter perturbations? Here, we primarily aim to address the

geometric variation of isosurfaces.

The visualization science community has taken some approaches in the last decade

or so that attempt to answer the above question, as described in Chapter 2. Some of

these methods are successful in answering parts of our design criteria for a visualization

pipeline that addresses the question above.

In our desired visualization system and related investigation, we aim to meet the

following goals and requirements:

• Characterize the intrinsic change in isosurfaces due to perturbation. As discussed in

more detail in Chapter 2, in a broad sense, intrinsic variations involve changes in the
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metric structure of an object (in our case, the isosurface) versus extrinsic changes

which deal with the embedding of the object in Euclidean space (8). Our work

complements and extends recent work in uncertainty quantification for isosurfaces

that has focused primarily on extrinsic changes in isosurfaces.

• Identifying an accurate way to generate an isosurface from a simulation, such that

the calculations done in the later stages to quantify and visualize the changes in

isosurfaces are consistent and not misleading. The choices made in each step of the

pipeline should also be verified to establish this robustness criteria further.

• An effective way to communicate the intrinsic quantitative change in isosurfaces by

means of visualization. Several works have addressed the problem of visualizing the

change or the comparative difference between two or more surfaces (refer to chapter

2). However, our pipeline should complement the current methods by visualizing an

entity that will reveal intrinsic changes in isosurfaces produced from a simulation

due to a perturbation.

• The investigation should choose a metric that will quantify the intrinsic change in

isosurfaces and will meet the requirements stated in the previous points. The metric

should be robust and informative, and at the same time efficient to calculate.

In summary. our main goal is to visualize a local, quantitative and robust measure of

intrinsic variation between isosurfaces. The visualization pipeline should also take into

account the following considerations.

• The pipeline should not take more than a reasonable amount of time to calculate and

produce the visualization. Here, by reasonable we mean a comparative timescale

according to the precision and complexity of the simulation output.

• The visualization should employ effective and easy means of showing the change in

isosurface that is easy for a simulation scientist to perceive. In our case, we focus

on effective color mapping using clustering to denote the areas that change. We

justify our choice of clustering that will convey the most amount of information to

the user.

There are some limitations that we must take into account when proposing a solution

for the stated problem.
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• We assume that the parameter perturbation does not cause any topology change

in the isosurface. For example, a sphere may evole into a bulged ellipse, but our

pipeline cannot handle scenarios where the isosurface changes from a sphere to a

hollow cylinder. This restriction is posed mainly due to our investigation on intrinsic

variation explicitly. This will be further explained in Chapter 2.

• We also assume that a correspondence between the two (initial and perturbed)

isosurfaces exist, and it can be computed trivially. The mapping between the two

surfaces needs to exist because we would like to quantify pointwise intrinsic change

between them.

In order to meet the stated goals and criteria for a visualization pipeline, we propose

the following pipeline. The key idea of this work is to construct a signature (essentially

a function sampled to generate a high dimensional vector) at each point of the isosurface

with the property that this signature captures the intrinsic geometry around that point.

By comparing the signatures from corresponding points on different isosurfaces using

a finite difference approach, we can then quantify the change in shape between the

surfaces at that point. This then allows us to identify points (and regions) where large

changes have occurred. The signature we use is the heat-kernel-signature (HKS) (51),

first developed in the shape modeling community. Once this is done, we develop a

framework based on clustering and the use of colormaps to visualize the regions that

have different change characteristics. The relevant choices of tunable parameters (and

particular methods that were chosen from a pool of candidates) in this pipeline are

validated using experiments to address the goals stated above. To evaluate such a

pipeline’s effectiveness and usefulness, we demonstrate it on some real world applications

where the visualization will shed some light on answering a science question.

Our overall analysis pipeline starts with a given parametrized procedure for generating

isosurfaces. We demonstrate step by step how to extract a high quality mesh, compute

robust signatures, and then visualize the difference as described above.

The thesis is structured as follows. In Chapter 2, we present the relevant previous

work. We focus our review on two areas: understanding the position of our work in

light of the current uncertainty visualization literature and on relevant concepts from

shape analysis upon which this work is built. In Chapter 3 we provide a brief review of

the mathematical concepts used in our work. We then proceed in Chapter 4 to present
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our analysis and visualization pipeline. We demonstrate our pipeline by walking the

reader through a canonical example in detail. The section is complemented by a series of

experiments to verify and validate the choice of parameters in the pipeline. In Chapter

5 we provide examples of using our pipeline for understanding simulation results. We

summarize and conclude in Chapter 6.



CHAPTER 2

RELEVANT WORK

In this chapter, we review the two relevant research fields that are related to our

problem formulation and solution. The current research developments in Uncertainty

Visualization are described, along with the development of intrinsic shape signatures and

shape matching algorithms in the Shape Analysis community.

2.1 Uncertainty Visualization

Uncertainty visualization has been cited as a key new challenge for visualization

research(24). Uncertain data that arise from physical measurements have been addressed

using fuzzy sets (56). (32) also addressed this issue for ensemble data sets. Texture

and/or color are employed to denote uncertainty through a modification of a direct volume

rendering technique in (14). Other proposed methods to visualize surface uncertainty

include fat surfaces (37), likelihood and confidence maps (38), and point primitives for

rendering uncertain isosurfaces (19).

Special attention has been paid to isosurfaces generated from uncertain scalar fields.

In the visualization community, the concept of Level Crossing Probability (LCP) was

introduced to quantify and visualize uncertain scalar fields (43), where they introduced a

model for uncertain spatial data and the corresponding spatial distribution of uncertain

isocontours. As an extension of this method, a probabilistic version of the marching cubes

algorithm was proposed in (44), where the authors take account of scalar field in which

the data points are possibly correlated. Pfaffelmoser et al.(40) proposed the isosurface-

first-crossing-probability (IFCP) algorithm as an efficient way to calculate the probability

incrementally along a ray cast through a correlated random variable field.

All of these works ask a fundamental and central question: how does the isosurface

geometry (both extrinsic and instrinsic properties) change as an error or a perturbation

is introduced in the input scalar field? The question has been partially answered by both

(43) and (40) by building mathematical models of uncertainty arising due to such pertur-
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bations. (43) defines numerical condition for isocontours, that describes the sensitivity

of isocontours to perturbations in the scalar field. (40) has shown how such sensitivity

can be calculated and rendered. However, certain aspects of the fundamental question

asked above have not been answered yet. For example, although effects of perturbations

in the scalar field has been studied, a study of isosurface sensitivity due to a parameter

perturbation in the simulation has not been done. Moreover, the investigations that are

carried out so far has taken an extrinsic approach when dealing with isosurface geometry.

Although there are some advantages of using an extrinsic measure to capture isosurface

sensitivity, certain advantages are endowed if an intrinsic measure is used, which will

be discussed in Section 2.1.2. The works done so far do not contribute towards an

understanding of the pointwise difference map between surfaces, that may tie a loose end

on quantifying the surface difference or sensitivity accurately. A pointwise correspondence

may provide useful insights for an accurate quantification of the isocontour uncertainty

arising due to a perturbation. To our knowledge, an attempt has not been taken so far

to address the issues we mention above.

2.1.1 Comparative Visualization of Surfaces

Our problem of quantifying variation in isosurfaces due to a perturbation in a pa-

rameter in the simulation results in comparative surface visualization, as the variations

induced by the perturbation causes a change in the shape of the isosurface. Our end goal

is to effectively visualize the changes that occur during this process. Many efforts have

been taken in the visualization community to compare and visualize the difference (or

similarity) between surfaces. We review a few different categories of techniques that are

available in the research literature.

• In the area of shape and image retrieval, several methods have been proposed to

quantify surface difference, e.g. (54),(29),(36). However, many of these measures

are global in nature. Global signatures such as the Hausdorff distance are used

in these comparisons. We note that the visualization of local features may yield

important insights that may not be very obvious from global comparisons.

• To visualize local changes in shapes, methods like comparative local curvature maps

(17) are proposed. In order to visualize pointwise difference between shapes, some

methods establish different kinds of correspondence between surfaces, e.g. (34),(30).
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However, there are only a very few that establish pointwise correspondence between

surfaces to effectively quantify the difference in shape, e.g. (41).

• Instead of comparing any two isosurfaces, a group of isosurfaces can be compared

in an information theoretic sense, such as (10). Such algorithms have applications

in finding better isovalues and grouping similar isosurfaces together.

• There are many efforts taken to tackle the problem from the point of view of

perception. One way is to render the surfaces transparently and overlay them

in visualization, e.g the work done by Tory et al. (52) and Johnson and Sanderson

(25). This helps provide an understanding of the contextual information. However,

these do not explicitly show crucial information about the change in properties like

curvature. Such a task is often left to the user. To improve on these techniques,

textures have been used to improve the shape perception of transparent surfaces.

The work done by Interrrante et al. (21) show directions of the principal curvature

on a surface. Bair and House (2) used grid textures to aid in the perception of surface

shape. Alternatively, Weigle et al. (55) and Busking et al. (11) use constructive

solid geometry (CSG) operations to solve the perception problem of inside/outside

classification.

Although all of these methods are useful perception wise, they do not provide an

accurate pointwise difference map to understand exact intrinsic variations in surfaces.

For our problem formulation, it is important to visualize the difference in such level to

accurately find out the effect of parameter perturbation on isosurfaces.

2.1.2 Intrinsic versus Extrinsic Variation

In a broad sense, intrinsic variations involve changes in the metric structure of an

object (in our case, the isosurface) versus extrinsic changes which deal with the embedding

of the object in Euclidean space (8). In other words, when studying extrinsic variation

between shapes or surfaces, the ambient space surrounding the object of interest is

explicitly used to calculate relationships between the underlying surface properties. For

an intrinsic measure, the geometric properties are calculated individually based on the

metric structure of the shapes and compared through some correspondence between them.

Traditionally, the shape similarity problem has been handled in shape modeling com-

munity, either implicitly or explicitly, from an extrinsic point of view (for example, (27),



8

(22)). All the previous work described on the comparative visualization of surfaces also

rely on extrinsic measures according to the definition of extrinsic variation we have given

above. For our problem formulation, we need a robust way to characterize any change

in surfaces through pointwise correspondence. As noted before, global extrinsic measures

like Hausdorff distance do not provide such quantification. A local difference measure like

(41) does find pointwise correspondence and visualize the difference between intersecting

surfaces by solving a Laplace equation in the space bound by the surfaces. So, such

measures only provide us with extrinsic variations. The comparative visualization based

on CSG operations ((55), (11)) rely on the ambient space in between the intersecting

surfaces, thus this class of methods are also extrinsic in nature.

Although extrinsic variations have been used to characterize shape differences for

a long time, recently the shape modeling community has shown a growing interest in

intrinsic measures. There are a few flexibilities that are naturally introduced by the

virtue of this point of view.

Intrinsic similarity was explored in Elad and Kimmel’s paper (16), and since then

there has been a rising interest in the shape modeling community to define instrinsic

variation based shape signatures.

The main advantage of employing an intrinsic signature to study shapes is this

measure’s insensitivity to deformations that can be approximated by isometries, since

isometries maintain the metric structure of the shape. Extrinsic variation measures are

unsuitable for analyzing non-rigid objects that have high range of flexibility. Intrinsic

variations, on the other hand, are perfectly suitable in such situations. Isosurfaces that

undergo such deformations due to a parameter perturbation cannot be easily analyzed

with any extrinsic measure. Figure 2.1 shows a few typical shapes that can be used as an

example of the superiority of an intrinsic measure when the shapes are highly flexible.

Moreover, some of the extrinsic methods described above work only in the case of

intersecting surfaces. Often, parameter perturbations cause an isosurface to transform in

such a way (e.g. translation) that these methods cannot be used effectively. Methods like

(41) only seem to work with closed set of surfaces in order to calculate correspondence.

These issues arise due to the nature of the extrinsic point of view.

Intrinsic measures can also help in identifying and grouping isosurfaces that are similar

in metric structure and shape. Achieving this will let us find parameter clusters or ranges

in the simulation that give rise to different behaviors of isosurface. Although this is one
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Figure 2.1. An example of comparison between the advantages of intrinsic and extrinsic
measure. The right and middle shapes are suitable for comparison using an extrinsic
measure as the fingers touch and create a topology change, so no intrinsic measure can
be used. However, in the general case (left and middle shapes) where the shapes have
gone through quite a lot of deformations (but not a topology change), intrinsic measure
is the right way to quantify variations. Picture courtesy of (8).

of our future goals, we note that it is often quite hard to group a set of surfaces using

only extrinsic measures.

Therefore, in this paper we introduce a pipeline that relies on an intrinsic measure,

the HKS, to quantify the difference between a base surface and a perturbed surface.

This approach will complement the extrinsic study done in UQ visualization community

regarding quantification of isosurface sensitivity with input perturbations, and will take

advantage of the intrinsic point of view to handle isosurface geometry effectively. More-

over, we introduce pointwise correspondence between surfaces and tie this correspondence

with our intrinsic sensivity measure to answer the central question formulated in Chapter

1.

2.2 Shape Matching and Correspondence

Shape analysis is a vast area spanning disciplines such as graphics, vision, geometric

modeling, computational geometry, and structural biology. Shape matching research

is important in structure detection, symmetry matching, feature points selection etc.

problems, just to name a few. In any such application, shapes are defined to be similar

if they have an isometric transformation between them. Thus the main research problem

in the shape matching community revolves around developing shape signatures that are

invariant under isometric transformations. The signatures developed so far can be broadly

classified into two categories: those that are invariant under rigid motion, and those that

are invariant under non-rigid motion. For rigid-motion invariant methods, local point

signatures are taken into account by many, whereas for non-rigid motion, global shape
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matching algorithms have been proposed. While it is impossible to survey the numerous

approaches to shape analysis in the literature, we focus here on specific methods for

constructing invariants or signatures for shape.

A key idea in shape analysis is generating signatures for a shape that remain invariant

under “natural” transformations, and thus capture intrinsic aspects of the shape. For

example, there have been numerous approaches to defining signatures that are invariant

under rigid transformations (rotations/translations/reflections). These include producing

neighbor shape distribution representations (12; 6), spin images (23) or shape context (6).

Shape invariants for non-rigid motions (for example, the flexing of joints) have also

been investigated. Integral invariant signatures suitable for global shape matching were

proposed by (33). A popular technique to capture intrinsic geometry and suppress

topological noise due to geodesic distance based signatures is to use the Laplace-Beltrami

operator on the manifold. This technique was introduced in e.g., (28), (48) and more

recently in (51) where the heat-kernel signature (HKS) was introduced. A scale invariant

version was proposed in (9). The HKS is intrinsic and isometry-invariant, thus two

isometric shapes would have the same HKS. HKS is multi-scale in nature, and hence both

local and global features are detected using this signature. HKS has been proven useful

in finding significant features on a shape, and partial and global matching of deformable

shapes.

Finding correspondence between two similar shapes (in both extrinsic and intrinsic

sense) has been a core focus of research in the shape research community. We describe

the key categorization of calculating correspondence here, along with their suitability for

our stated problem’s solution.

For our stated problem, a preferable intrinsic method of correspondence should satisfy

one or more of the following criteria

• The method is as much robust as possible to big deformations,

• A correspondence is defined for all the elements (vertices or faces) of the shape.

This is called dense correspondence (as opposed to sparse correspondence).

• It can be probably a partial correspondence method (see the figure 2.2 below for

example) instead of full correspondence. An associated problem is that partial

correspondence is usually calculated for a set of feature points only.
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Figure 2.2. An example of the partial correspondence problem. The goal is to match
the similar regions between the two shapes while ignoring the parts in green and blue.
Picture courtesy of (53).

• If possible, then the method can produce group correspondence. The group cor-

respondence problem is to find what structures/parts are common to a group of

shapes, and which parts can be characterized as not belonging to the group. Such

correspondence methods can be useful if we are trying to characterize a family of

isosurfaces.

• One (future) extension can be time-varying registration. Time-varying registration

is the registration of (possibly continuously deforming) surfaces that are acquired

over several frames. This sort of goes with the idea of finding correspondence in a

family of isosurfaces produced due to the change of parameter(s).

Many of these methods use the Laplace-Beltrami shape descriptor to find correspon-

dence. Usually these are similarity based correspondence, i.e. in most cases they end up

solving a minimization problem. Some of the methods that make use of this direction

end up finding only sparse correspondence due to the heavy computation time for opti-

mization. If we consider a method that finds partial correspondence (or forcing a partial

correspondence algorithm to find full correspondence), then two possible approaches can

be:

1. A series of candidate correspondences is computed and votes are cast on the pairwise

assignment that constitute each candidate. At the end, highest number of votes for

certain correspondence emerges.
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2. Graph-based approach: feature points on a shape can be thought of nodes in

a graph, where every pair of nodes is connected with an edge whose weight is

proportional to some geometric quantity (e.g. distance between the nodes). Some

methods use this formulation to solve subgraph isomorphism and keep the nodes

that are not removed during the editing of the graph.

In our problem statement, we have mentioned that we would like to visualize the dif-

ference between the isosurfaces for each point present in the base surface for comparison.

From that point of view, we now discuss the problems of incorporating any of the above

correspondence method.

• While finding full correspondence, some methods cannot assign a correspondence

to every point.

• Some methods rely more on statistics and only give approximations.

• Some of the methods described above are quite expensive to calculate.

Given the shortcomings of the available correspondence method, we may have to resort

to other customized methods that suit our needs.



CHAPTER 3

MATHEMATICAL BACKGROUND

We will assume without loss of generality that we are given the results of a numerical

simulation as a real-valued function s(x) over a domain Ω ⊂ R3. Let us assume our

simulation is a function of (at least) one real-valued parameter α to which we want to

quantify variation in the output due to perturbation of our parameter. For some small

perturbation of α, let M1 and M2 denote the “exact” isosurfaces that exist with the

data for α1 and α2; let T (M1) and T (M2) denote isosurface triangulation extracted

from the simulation output respectively. The vertices of the tessellation are assumed

to lie on the manifold that the tessellation is approximating; further refinement of the

tessellation produces a more accurate representation of the manifold. In this work, we

assume that the variation in the field due to perturbation of our parameter does not cause

gross topological changes of our isosurface.

3.1 Laplace-Beltrami operator and HKS

Heat Kernels: We define the amount of heat at time t at a point x ∈ M ⊂ R3 on

a compact Riemannian manifold M without boundaries as u(x, t) : M× R+ → R+.

Assuming we have an initial heat distribution f :M→ R+ at time t = 0, u(x, t) is then

a solution of the heat equation
∂u

∂t
= ∇2

Mu

where ∇2
M denotes the Laplace-Beltrami (LB) operator (a generalization of the Laplacian

to manifolds where derivative are in manifold coordinates), and the condition

lim
t→0

u(x, t) = f(x)

is satisfied. The heat operator Ht is defined as u(x, t) = (Htf)(x) where Ht : L2 → L2

with L2 being the space of all smooth, square integrable functions on M.
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This operator is directly related to the solution of the heat equation. The solution to

the heat equation can be defined in terms of a heat kernel. The heat kernel kMt (x,y) :

R+ ×M×M→ R+ on M for x,y ∈M is a function such that for all f ∈ L2, t > 0:

u(x, t) =

∫
M

kMt (x,y)f(y) dA.

The physical intuition of the heat kernel(18; 20) is that it gives the amount of heat

transferred from a point x on M to point y on M in time t. These ideas are well

described in, e.g., (18) and (20). For a compact M, the heat kernel has the following

eigendecomposition:

kMt (x,y) =
∞∑
i=0

e−λitφi(x)φi(y)

where λi is the ith eigenvalue and φi is the ith eigenfunction of the LB operator.

The heat kernel has some essential properties that makes it useful in shape analysis.

It is symmetric, i.e. kMt (x,y) = kMt (y,x). Other important properties include isometric

invariance, multi-scalability and stability, as proved in (51).

Heat-Kernel Signature: The heat-kernel signature (HKS) was first proposed by Sun

et al. (51) as a local shape descriptor. It is the diagonal of the heat kernel kMt (x,y)

HKS(x) : R+ → R, HKS(x, t) = kMt (x,x).

The HKS is invariant under isometric deformations ofM and is lossless: the HKS vectors

for all points on a surface uniquely define the surface (up to isometry). The computation

of the HKS relies on the computation of the eigenvalues and eigenfunctions of the LB

operator, which is a well studied topic with many efficient algorithms available in the

literature.

Representation: At any point x ∈ M, the HKS is a function of t. In practice, we will

represent the HKS by sampling it at a finite set of values of t. The resulting object can

be viewed as either a functional approximation or a vector (we will switch viewpoints as

appropriate). In either case, we will visualize the HKS as a plot of HKS(x, t) versus t,

and use different curves to represent different values of x. Figure 3.1 illustrates two HKS

vectors for two different points on a dimpled sphere (see Figure 4.1 for an example) –

the blue line denoting a point on the sphere away from a dimpled area, and the red line

denoting a point on the dimple itself.

In order to calculate the HKS on a tessellated surface, the discrete LB operator needs

to be constructed over the tessellation T (M). In practice, tessellations may not be very
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Figure 3.1. Visualizing the HKS.

smooth, depending on the type of isosurface extraction technique employed. In order to

increase the accuracy of computation, we require a tessellation that respects the curvature

of M (45).

3.2 Discretization Schemes

In this section, we describe the formation of different discretizations of the LB oper-

ator.

Graph Laplacians: An important line of research involves using a graph Laplacian as

an approximation for the LB operator. In general, the idea behind the graph Laplacian

discretization involves creating a weighted graph based on neighborhood information of

each vertex, x1, ...,xk for k points, from T (M).

There are two variations on building such graphs from T (M). One is to use a ε-

neighborhood, where nodes (vertices) i and j are declared connected if

‖xi − xj‖2 < ε, ε ∈ R,

and the norm is usually the standard Euclidean norm. This is geometrically motivated

and intuitive. Another way to choose neighbors is to take the m nearest neighbors (for

some m) in the 1-ring neighborhood (or within a Euclidean distance cutoff), which is less

geometrically intuitive. After an adjacency graph of size k × k is created from either of

the methods, a k × k weight matrix W is formed by assigning weights in the (i, j) entry

if nodes i and j are connected (according to the adjacency matrix).

Once W is calculated, a diagonal weight matrix D is formed by summing the rows

(or columns, since W is symmetric) of W ,
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Dii =
∑
j

Wji.

The discrete Laplacian matrix L is then given by

L = D −W.

It is a symmetric, positive semi-definite matrix that can be thought of as an operator on

functions defined on vertices of the graph.

Belkin et al. (3) were among the first to use the graph Laplacian as a discrete

approximation for the LB operator on the manifold. Belkin et al.(4) also propose a

differently weighted graph Laplacian (the mesh Laplacian). Other weighting schemes

include the cotangent approximation (42). The Laplacian can also be estimated from

point cloud data directly (without meshing) (5).

In order to understand the different weighting schemes, here we describe the theory

behind the above approximation methods. Let M = (V,E, F ) be a triangular mesh with

n vertices, where V is the set of vertices, E is the set of edges and F is the set of faces.

The vertices are represented by the cartesian coordinates vi = (xi, yi, zi). The heart of

the idea of the discrete Laplacian stems from differential coordinates of a vertex vi, from

hereby called δ-coordinates. The δ-coordinates of a vertex vi is defined as the difference

between the absolute coordinates of vi and the center of mass of the immediate neighbors.

δi = (δ
(x)
i , δ

(y)
i , δ

(z)
i ) = vi − 1/di

∑
j∈N(i)

vj

where N(i) = {j|(i, j) ∈ E} and di = |N(i)| is the number of immediate neighbors of ith

vertex. The neighbors can be chosen according the methods described above.

Figure 3.2. Differential coordinate is formed from the local cartesian coordinates (50).
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The Laplacian matrix is built as a transformation of the local coordinates to the

differential coordinates system. Let A be the adjacency (connectivity) matrix of the

given mesh M .

A =

{
1 if (i, j) ∈ E
0 otherwise

Let D be the diagonal matrix such that Dii = di. Then the Laplacian can be

defined as the transformation matrix that transforms the absolute coordinates to relative

coordinates.

L = I −D−1A

In the summary formulation given at the beginning of the section, we have shown the

symmetric version of the Laplacian. The symmetric version is found by multiplying the

D matrix with the discrete Laplacian above.

DL = Ls = D −A,

where

(Ls)ij =


di if i = j

−1 if (i, j) ∈ E
0 otherwise

In other words, if we apply the matrix Ls on the vector of x, y and z coordinates of

V , then we will obtain the differential coordinates. Lsx = Dδ(x), Lsy = Dδ(y) and

Lsz = Dδ(z). The matrix Ls (or L) is called the graph Laplacian (that we have defined

at the beginning of the section). In this simple derivation, we have used a weighting

scheme of 1 or 0 (i.e. if a vertex is considered a neighbor then 1 is multiplied with with

the difference between the current vector and the neighbor vector). In other words, we

can rewrite the differential coordinate of the ith vertex as

δi = 1/di
∑
j∈N(i)

wij(vi − vj)

where wij is the associated weight of the differential coordinates.

There are many different weight schemes (other than the simple uniform weighting

approach) proposed that uses additional information for faster convergence and more

accurate representation of the discrete Laplace-Beltrami operator. A cotangent weight

scheme is proposed by Meyer et al.(? ) and Pinkall and Polthier (42) that uses angle

information between the edges.
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Figure 3.3. The angles used to calculate the cotangent weights for the differential
coordinates (50).

δi = 1/|ωi|
∑
j∈N(i)

1/2(cot(αij) + cot(βij))(vi − vj)

where |ωi| is the size of the Voronoi cell of i and αij and βij are the angles opposite to

the edge (i,j). These weights approximate the mean-curvature normals, as shown by the

authors. This has certain advantages and disadvantages. The advantages are that the

differential coordinates now only have normal components. With the uniform weighting

scheme, we would get tangential components too. These geometry aware weights thus

reflect the mean-curvature information in a succint but descriptive way.

There are other weighting schemes proposed that takes account of faster convergence,

inexpensive calculations and geometry aware accuracy. The Finite Element Method

(FEM) provides a better convergence and accuracy at a low cost. This is essentially

a different weighting scheme that is more complicated to calculate compared to the above

methods.

Finite Element Methods: A first-order finite element method (FEM) approximates

the LB operator by calculating linear weights for each vertex in T and later using them

to calculate a solution for each triangle. Suppose the two-dimensional surface M is

twice differentiable
(
C2
)

and we have a parameterization of M such that: X(u) =

{x1(u), x2(u), x3(u) : u = (u1, u2) ∈ D} for some planar domain D. The LB operator

acting on a function F is defined on this parametrized surface X as

∇2
XF =

1

|g|1/2
2∑

i,j=1

∂

∂ui

(
|g|1/2gij ∂F

∂uj

)
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where the inner products gij denotes the Riemannian metric tensor.

F (x, t) =

NT∑
i=1

Fi(x, t)

where NT is the total number of triangles in our discretization. It is shown (13) that

after calculating linear weights wi for each ith vertex from its neighboring triangles, the

LB operator is given by a form

∇̂2F (p) =
m∑
i=1

wi(F (pi)− F (p))

where p1, .., pm are the m neighboring vertices of the vertex p.

The approximation to the LB operator is generated by assembling (in the FEM sense)

the discretization of the individual parametrized surfaces into a global linear system.

Details of such a derivation can be found in (13).



CHAPTER 4

PROPOSED FRAMEWORK

With the mathematical formulation of HKS and implementation techniques described

previously, in this chapter we present our proposed pipeline which demonstrates how

intrinsic changes in curvature information can be captured by the HKS and visualized

using data clustering techniques. Several empirical choices have been made in the pipeline

that we justify using experimental evidence. Furthermore, we discuss the limitations and

constraints imposed by the design decisions made for this framework.

4.1 Pipeline Description

The proposed pipeline (see Figure 4.2) has several steps that we discuss in the following

sections. As a working example that will be used throughout this section, we will

demonstrate our method on two shapes: one represents our “base” surface and the second

one represents our perturbed surface. The shapes are a sphere and the same sphere with

two “dimples” that represent perturbation by a parameter α. These shapes are shown in

Figure 4.1.

(a) Unperturbed Shape:
Sphere

(b)Perturbed Shape: A
sphere with dimples.

Figure 4.1. Unperturbed and perturbed shapes that will be used as a working example
throughout this section.
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These spheres demonstrate a hypethetical situation where a perturbation has been

made to the original sphere shape. In this example, we assume that a sphere has been

produced as a zero level-set of a simulation’s output scalar field, and upon intriducing a

perturbation α in the simulation, the zero level-set changes to the perturbed shape. In

reality, we have only created a perturbation in the mesh using a custom tool that will be

explained in the next section. Although this is not an accurate portrayal of the problem

statement, we have chosen this simple example for demonstration.

Figure 4.2 shows the conceptual flowchart of our proposed framework.

Figure 4.2. A conceptual flowchart of our proposed pipeline.

In the following subsections, we will describe each step of the pipeline, along with the

design decisions made for each.

4.1.1 Isosurface Generation

Isosurfaces can be generated from 3D scalar fields by various methods, and each

approach has their advantages. Our pipeline relies on computing the eigenstructure of the

(discrete) Laplace-Beltrami operator on the surface. Therefore, it is important that the

meshing approach be curvature-sensitive, providing more resolution in regions of higher

curvature. However, in order for the approach to be efficient, it should be adaptive,

generating a coarser mesh in regions of low curvature.

The Marching Cubes approach (31) is one of the most popular and ubiquitous iso-

surface meshing algorithms due to both its simplicity and its computational efficiency.

However, it is not by construction sensitive to curvature, and requires significant over-

sampling to extract surfaces with reasonable error in high curvature regions. In our
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pipeline, the accuracy of the computation of HKS depends on the accuracy of eigenvalues

and eigenfunctions of the discrete LB operator, which in turn depend on how close we

can get to the true representation of the surface in critical curvature regions - regions

where we have high curvature or regions where changes from a high to low curvature

occur. We require more resolution at those regions in order to capture the curvature

information properly. The resolution of the mesh can be increased uniformly by applying

the marching cubes algorithm on a highly sampled 3D scalar field. However, we would like

to save computation time at the places of low curvature compared to the places of high

curvature. Thus it is better to use a meshing system that assigns a general tesselation

to the regions of low curvature (each edge is given a minimum length to ensure that the

regions are not too coarse) and puts a finer tesselation otherwise.

Approaches like DistMesh (39) and Biomesh (35) use force-based relaxation meth-

ods and sizing fields to adapt the meshing to the local “shape” of the manifold. These

“curvature-sensitive” methods are designed to give, for a set number of vertices, nearly

optimal vertex positions on the surface such that the corresponding triangulation of the

surface captures high-curvature regions.

In the DistMesh algorithm, the geometry (shape of the region) is described using

a signed distance function that is negative inside the region. For mesh generation, an

iterative technique is employed by treating the initial mesh as a truss structure. The

meshpoints are considered nodes in the truss. The algorithm solves for equilibrium at

each iteration, assuming a force-displacement function for the bars in the truss. The forces

move the nodes and a Delaunay triangulation algorithm adjusts the edges in the process.

Usually, such force based simulation produces very high quality meshes. Biomesh uses a

particle based simulation where a sizing field calculation maitains the proper distribution

of the particles on the surface of the mesh. This method also produces curvature sensitive

meshing.

Although curvature-sensitive meshing approaches like Biomesh and DistMesh give

more accurate results in this pipeline, as long as the Marching Cubes method is run at

sufficiently high resolution, it can be used as well.

4.1.2 Laplacian Approximation

Once we have a mesh that represents the isosurface, we compute the eigenstructure of

the induced Laplace-Beltrami (LB) operator. As discussed in Section 3.2, there are two

main approaches to computing the eigenpairs of the operator: the graph Laplacian which
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is a discrete approach and finite element method (FEM) which is considered a continuous

approach. As has been shown by Reuter et al. (45), the FEM approach is superior

to the graph-based approach as it attempts to build a numerical approximation of the

continuous LB operator directly rather than indirectly (by considering a tessellation to

merely be a graph). In this way, the discretized LB operator generated by the FEM

method is designed (by construction) to converge to the continuous LB operator.

An experimental validation is provided in section 4.2 that demonstrates the accuracy

of FEM compared to the Graph Laplacian.

4.1.3 HKS Computation

Given the eigenpairs of the Laplace-Beltrami operator, we can now compute the HKS

vectors. These are defined at each point at a particular time t as

H(x, t) =

∞∑
i=0

e−λitφi(x)2.

In practice, the energy of the spectrum dissipates after the first few hundred eigen-

values (sorted in decreasing order). This phenomenon is illustrated in Figure 4.3. The

two groups of curves represent HKS vectors at two points on the dimpled sphere (one

on the dimple, and one elsewhere). The curves for varying number of eigenpairs are

superimposed: as we can see, increasing the number of eigenpairs used does not signifi-

cantly change the curve behavior. While the FEM-based Laplacian gives us stable results,

HKS vectors based on the graph Laplacian do not converge as quickly. Based upon the

experiment in figure 4.3, we use 300 eigenpairs for all our results.

For practical use of the HKS vectors, two more approximations are necessary, and are

described in the original paper by Sun et al.(51). Each eigenfunction is a function of the

position x and the time parameter t. In order to represent the eigenfunctions effectively,

we store it as a sequence of sampled values at specific values of t. Since the coefficients

exp(−λit) decay exponentially with t, we sample t on a logarithmic scale, so that we can

capture effects at long-range (large t) as well as short range. In our experiments, we use

t = 100 samples (as in (51)).

4.1.4 Constructing Correspondence

As discussed in section 2.2, there are many correspondence methods that can be

useful in our framework. However, it is hard to find any method that can construct

intrinsic correspondence between two surfaces that work for open surfaces. Moreover,
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Figure 4.3. HKS vectors at two points on dimpled sphere. The corresponding vectors
for varying numbers of eigenpairs (ranging between 10 and 500) are superimposed.

many correspondence methods, as pointed out before, are expensive to calculate. In light

of these issues, we have decided to come up with a correpondence method that lets us

take advantage of the nature of the particular signature (HKS) we have chosen.

Our approach captures intrinsic changes between isosurfaces by measuring the change

in HKS vectors between corresponding points on the two surfaces. It is indifferent to the

particular method that is chosen for this purpose.

Figure 4.4. The correspondence for each vertex is found by shooting normal rays from
the base surface’s vertices. The HKS value at the intersected point is found by barycentric
interpolation, so that the vectors HKS(v) and HKS(x) can be compared.

In the realm of isosurface correspondence, we possess additional information about

the two surfaces (that they are generated by varying a control parameter). This can be

exploited to compute more accurate correspondences as follows. Assume that we have

generated two isosurfaces S,S ′ from two values of the control parameter α, and our goal

is to generate a correspondence between vertices on S and points on S ′ so that we can
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measure the change in the HKS vectors. Under the assumption that the perturbation

caused by α is not large and does not cause topological changes, we can shoot a normal

ray from a vertex v of S and find its intersection with a triangle on S ′.
Let this triangle have vertices v1, v2, v3 and let the point of intersection be x. Since the

surfaces are generated via trilinear approximation (consistent with FEM), it follows that

HKS(x) can be expressed as a convex combination of the HKS(vi) using the barycentric

representation of x. We can now compare HKS(v) and HKS(x). This guarantees a 1-1

correspondence between points on the two surfaces, and does not require both meshes to

have the same number of points.

4.1.5 Intrinsic UQ

We now have HKS vectors assigned to corresponding points on the two surfaces and

can compare them to quantify the local difference in shape. Given a point x ∈ S and its

corresponding point x′ ∈ S ′, we compute a difference

∆HKS(x) = HKS(x)−HKS(x′).

As discussed in (51), we cannot compare these vectors directly: as mentioned earlier, the

exponential decay in the coefficients as t increases means that higher-order effects will be

swamped by the low-order effects (for small t). The solution they propose is to compute

for each t the sum

w(t) =
∑
x

HKS(x)[t]

and then construct a diagonal matrix W with W (t, t) = w(t). We now compute

∆HKS(x)> = ∆̃HKS(x)>W.

To form an approximation of the derivative, one would then scale by the differences in

the perturbation parameter. As this merely provides a global magnitude scaling, we omit

this change of scaling in our examples. If one were to do comparisons between different

choices of perturbation as part of the VVUQ process, the scaling factor would need to

be appropriately considered. Hence in this work, the resulting vector ∆HKS(x) is our

quantification of the intrinsic shape uncertainty introduced by the change of parameter.

4.1.6 Visualizing the Uncertainty

With each point x on a surface we can now associate a (100-dimensional) vector

∆HKS(x) that quantifies the local surface change with respect to α. We can visualize
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this change by grouping the vectors into similar sets based on their distance from each

other. The simplest approach is simply to bin the norms of the vectors, and assign

each bin a different color in a linear scale. Unfortunately, this approach fails to capture

significant differences in shape variability.

A more general approach is to cluster the difference vectors and assign different

colors to each cluster. We employ two different clustering strategies, depending on

whether vectors are assigned to single clusters (a hard clustering) or may “share” their

membership across multiple clusters (a soft clustering). While our approach is agnostic to

the particular clustering method used, we use these two methods to illustrate the different

visualizations that may be obtained.

We can endow the space of the ∆HKS(x) vectors with a norm to define the distance

between them. While using an `2 norm is most natural, this choice assumes that the

individual coordinates (representing shape characteristics at different time scales) can be

square-summed as distances. A more reasonable choice of norm is the `1 norm, for which

the induced distance between two vectors is merely the sum of their absolute differences:

d(∆HKS(x),∆HKS(y)) =
∑
t

|∆HKS(x)[t]−∆HKS(y)[t]|.

For computing a hard clustering, we use the k-medoids algorithm(26). This algorithm

is an analog of k-means with the difference being that the cluster center is computed as

the median of the points assigned to a cluster, as opposed to the mean. Once a cluster

center is computed, points are reassigned to their nearest cluster center and the iterative

process repeats. Here the median of a set of points is the point that minimizes the

sum of distances to the set of points. For `1 spaces, this is merely the point formed by

taking coordinate-wise medians in each dimension: c = median(p1, p2, . . . pn) if c[t] =

median(p1[t], p2[t], . . . , pn[t]).

For computing a soft clustering, where each point can assign a fraction of its member-

ship to different clusters, we use the fuzzy c-means algorithm(15; 7). We experimented

with other approaches, including deterministic annealing (46), and found this to be the

most effective method. We also point out that a key deficiency of the above methods is

the need to know the number of clusters. If this information is not available, hierarchical

agglomerative clustering (HAC) may also be used to obtain a family of clusterings with

different numbers of clusters.
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(a) k-medoids (b) Fuzzy c-means

Figure 4.5. Visualizing HKS vectors using different clustering mechanisms.

4.2 Justification of Parameter Choices

As one of our desired goals to present a concrete pipeline, we present experimental

results that justify the different choices made in the design phase of the pipeline. Here,

we compare different isosurfacing methods and investigate which one is better for the

purpose of calculating the HKS - our choice of UQ metric. Then we move on to the two

different schemes to create the Graph Laplacian and compare them to state which one

is more suitable to use for our purpose. Next, we comapre the two prevalent methods

of calculating Laplacians and recommend FEM as our choice in the pipeline. The time

scale chosen for calculating HKS is validated next. The effect of mesh resolution on the

accuracy of calculating the signature is then presented through some experiments. Next,

we present the factors that govern the accuracy and reliability of eigenfunctions and

eigenvalues of the Laplacian that is used to calculate the HKS. Finally we demonstrate,

through visual and quantifiable experiments, the problems associated with a few other

choices of clustering methods other than the ones we have recommended for the pipeline.

4.2.1 Comparing curvature sensitive and uniform meshing w.r.t HKS

Visually, the different methods of producing isosurface meshes may give similar looking

meshes with similar triangle counts on a shape which has variations in curvature. We

highlight this point by meshing an ellipsoidal shape as shown in Figure 4.6. Without

being explicitly encouraged to examine high-curvature regions, many viewers would con-

sider both triangulations to be “good” representations of the surface. However, the

differences in the quality of the triangulations with respect to capturing curvature are

more pronounced when we examine the variations in the HKS vectors. In figures 4.7

and 4.8 we illustrate this by looking at the difference between HKS vectors generated for
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our sphere example and plotting a histogram of these magnitudes. Note that the HKS

vectors here were produced using an FEM-based approximation of the Laplace-Beltrami

operator described in Section 3.2. Ideally, the histogram for a sphere should be a spike

at zero, since all HKS vectors should be identical. We see that the mesh produced by

DistMesh approximates such a spike, but the mesh produced by Marching Cubes does

not. Furthermore, the mesh produced by Marching Cubes has noisier HKS vectors, as

we can see in Figure 4.7.

(a) Marching Cubes (b)DistMesh

Figure 4.6. Meshes produced by Marching Cubes and DistMesh

Figure 4.7. Marching Cubes and DistMesh compared on an ellipsoid.

4.2.2 Comparing Neighborhood Selection algorithms for Graph Lapla-
cians

As stated in chapter 3, there are mainly two ways of choosing the nearest neighbor

of a point to calculate the differential coordinate at that point, which is eventually used

to build the Laplacian matrix. If one decides to use the Graph Laplacians methods to

calculate the HKS, we would like to show experiments that compare the convergence and
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Figure 4.8. Marching Cubes and DistMesh compared on a sphere.

computation cost of these two methods. In our experiments, we find that the nearest

neighbor scheme suggested by (3) with a reasonable number of neighbors is the best way

to calcualte an accurate discrete Laplacian.

As mentioned in section 3.2, a method to choose the number of nearest neighbors is

to use the 1-ring neighborhood of every vertex. However, it is advisable to use a method

that is geometrically intuitive. This is why many researchers suggest the ε-neighborhood

technique. (3) introduces a hybrid of these two methods. They choose k nearest neighbors

that are sorted by their Euclidean distance from the vertex of interest. In this section,

we compare the two geometrically motivated methods and establish that the scheme

suggested in (3) is indeed a better choice.

Figure 4.9. Dimpled sphere used for the experiment in section 4.2.2.

For these experiments, we have created three dimples on a sphere (figure 4.9), and

nine points (three for each dimple, which are approximately chosen at similar spots on
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(a) ε-neighborhood (b) nearest neighbor criteria defined in (3)

Figure 4.10. Compare HKS signature produced by three points on four dimples on a
sphere.

the dimples) are observed using their HKS signature. The HKS signatures are at first

calculated by the ε-neighborhood scheme with a radius equal to 15 units (where the sphere

has a radius of 50 units). Then the HKS are again calculated using 50 nearest neighbor

points (sorted by the Euclidean distance) for each point. The lines are colored according

to the points chosen, e.g. the red lines denote the three points that are approximately

at the same position on the three dimples, and so on. Another set of points are chosen

from the surface of the sphere where there are no dimples, for comparison with the points

residing on the dimple.

As shown in figure 4.10, the nearest neighbor scheme provides a cleaner and recogniz-

able pattern of HKS vectors, whereas the ε-neighborhood provides a bit less recognizable

trend. We would expect to see the red, blue and green lines grouped together similarly

in the early stage before they start differentiating themselves due to the position of the

dimples.

4.2.3 Comparing Graph Laplacian and FEM

In order to compare GL and FEM methods of calculating the HKS, we create his-

tograms of the norm of difference vectors between each possible pair of HKS vectors

on two geometric shapes - a sphere and an ellipsoid. For a sphere, since the HKS

vectors are theoretically identical, we expect to see a spike in the histogram (just one

mode, theoretically just a vertical line that looks like a ”spike” shape). Whereas, for an

ellipsoid, we expect to see two modes in the distribution, since the ends and the middle
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of the ellipsoid have different curvatures.

Figure 4.11 and Figure 4.12 illustrate the difference in the HKS vector difference

magnitude histogram for the ellipsoid and sphere. We see that the graph Laplacian does

not approximate the ideal “spike” as well as the FEM-based method.

Figure 4.11. FEM and GL compared on an ellipsoid.

Figure 4.12. FEM and GL compared on a sphere.

This proves that the FEM method is much more reliable than the GL method and

produces much cleaner and accurate HKS.

4.2.4 Justifying the Time Scale and Number of Eigenvalues

In our pipeline, we have chosen a logarithmic formula to decide the time scale (that

is directly related to the geodesic distance) for calculating the HKS. Also, the number of

eigenvalues required to calculate the HKS vectors is chosen as 300. Both of these choices

are justified in section 4.1.3. Increasing the number of eigenpairs to calcualte HKS will
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not change its accuracy drastically, and it will merely be a burden on the computational

load of the pipeline.

4.2.5 The Effect of Mesh Resolution

We have demonstrated in 4.2.1 through histograms of HKS norms that curvature

sensitive meshing is desirable when producing isosurfaces. Another parameter that is of

natural interest is the mesh resolution. In this section, we demonstrate the effect of mesh

resolution in curvature sensitive, uniform and nonuniform meshing of isosurfaces.

Figure 4.13. Nonuniform meshing using DistMesh that is not curvature sensitive.

In this series of experiments, we have created three kinds of ellipsoids using DistMesh.

They are shown in figure 4.6 and 4.13. The ellipsoids in these figures were produced

with different (but identical across the three different schemes) number of vertices to

understand the effect of mesh resolution when HKS is calculated on these ellipsoids.

We calculate the norm of the difference of all HKS vectors an ellipsoid and develop a

histogram of all the values. As expected (seen on 4.2.1), we should get a histogram shape

that looks sort of like a bimodal distribution.

In figure 4.14, we notice that as we increase the number of vertices, the histograms

are much smoother. In fact, an almost smooth version is achieved when the number of



33

(a) 1k vertices. (b) 3k vertices

(c) 12k vertices (d) 50k vertices

Figure 4.14. Histograms for curvature sensitive meshing.

vertices is 3000. The bimodal shape is distinct in these figures too.

In figure 4.15, we notice that the bimodal shape is not very distinct in the histograms.

In fact, it is hard to understand that this is a histogram of norm of the differences

between all HKS vectors of an ellipsoid. Although the shape and outline of the histogram

becomes smoother as we increase the number of vertices, we have clearly established that

nonuniform meshing with no sense of geometry can produce poor quality HKS vectors.

In figure 4.16, we demonstrate the histogram for uniform meshing using DistMesh.

We notice that the bimodal distribution becomes more noticeable and distinct as we

increase the number of vertices on the ellipsoid.

Overall, from these three sets of experiments we can conclude that high meshing

resolution can give a better insight on the nature of HKS and the change in the isosurface.

However, a sense of geometry of the isosurface that can be used to govern the density of

the mesh is crucial too.
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4.2.6 The Behavior of Eigenfunctions and Eigenvalues with Perturba-
tions

There are some well-known results (1) that show that the eigenfunctions of the

Laplace-Beltrami operator on a unit sphere are spherical harmonic functions. However,

there are no general results available in the PDE and Applied Mathematics (theory)

literature that shed light on how the eigenfunctions behave on perturbed shapes.

In this subsection, we study the behavior of eigenvalues and eigenfunctions of the LB

operator on a unit sphere isosurface. We introduce perturbation in the sphere in the form

of a dimple. We then calulate the eigenpairs of all the meshes and plot them together

on a chart. To faciliate this study, a GUI interface was built that allows the user to

select regions in the sphere where the dimple was to be made. we increase the size of the

dimple and visually investigate whether there are significant changes in the behavior of

these eigenfunctions.

Figure 4.17 shows one such chart. The rows denote an evolution of a sphere to a

large dimpled sphere. The dimple is created at the bottom. The columns denote the five

largest eigenvalues (sorted from larger to smaller) of the LB operator calculated on the

sphere meshes. The spherical harmonics are quite evident in the chart. We also notice

that there is no significant change in the behavior of these spherical harmonics as a dimple

is introduced (see the evolution of the harmonics in each column).

Next, we plot the first 300 eigenvalues for each dimpled sphere together (in figure

4.18). They almost superimpose on each other. This shows little deviation from the

original eigenpairs (on a sphere) as a large dimple is introduced in the sphere.

Now, we create an eigenfunction chart once again (figure 4.19), but this time we choose

the eigenfunctions corresponding to eigenvalues that are farther apart. We take the 1st,

4th, 9th, 16th and 25th eigenvalues from the descending sorted list of eigenvalues. We

again observe that the spherical harmonics behavior of eigenfunctions remain intact. In

some cases, they are more pronounced, however no definite conclusion can be drawn from

this.

The experiments here suggest that perturbations that do not cause drastic change

in the shape of the isosurface have similar eigenpairs for the LB operator. This is why

other LB operator based signatures, for example the Global Point Signature (GPS) (48)

may not work well as our choice of metric for quantifying intrinsic variation. The GPS is

defined as
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GPS(x) = (
φ1(x)√
λ1

,
φ2(x)√
λ2

, ...,
φi(x)√
λi

)

If the eigenpairs are close to each other for a perturbation, then the differences between

them are not quite pronounced with this signature since the eigenfunctions are merely

scaled by the square roots of the eigenvalues. Instead, HKS takes a multi-scale approach

and it is sensitive to smaller perturbations due to its construction (as it is a summation

of squared eigenfunctions that are multiplied with an exponentially weighted fall-off of

eigenvalues to ensure capturing the contribution from smaller to larger change of scale).

4.2.7 Hard and Soft Clustering - Is there any superior method?

There are several clustering techniques that we have experimented with, to find out

if there is a superior method that will work well on HKS vectors. Here, we present a few

visualizations made with different clustering techniques, applied on the same shape for

same perturbations.

As described in chapter 4, we have used k-medoid and fuzzy c-means in our pipeline to

produce the example results. There are few other methods that were eligible candidates

for this purpose. One limitation of using k-medoid is that the number of clusters needs

to be given beforehand. Deterministic annealing is a method that will choose its own

number of clusters, so this was a natural fit for testing with our pipeline.

Deterministic Annealing: The algorithm (47; 46) arises from a statistical physics

analogy of cooling an ensemble with a predetermined gradient in order to see how different

elements in the ensemble have clustered together. The ensemble is then heated with a

different lower temperature and the process is continued until the temperature falls below

some threshold.

In order to apply the analogy to high dimenstional vectors, we define the maximum

number of codevectors (cluster centers) and start with one codevector only. This initial

codevector is the centroid of all vectors. It is updated for the initial distribution of

temperature (the initial temperature is an input to the algorithm) using a formula that

is derived from an analog of Boltzmann Statistics. The points are checked for ”phase

transition” and if there were any such transition among the vectors, a new codevector is

introduced (i.e. a new cluster emerges). The temperature is lowered and the process is

repeated until a convergence test is successful.

We have implemented this algorithm and tried it on standard shapes such as ellipse

and spheres with small and bigger dimple perturbations. Figure 4.20 shows a few
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visualizations of ∆HKS(x) vectors clustered with the deterministic annealing algorithm.

The perturbations are visualized over the original shape as wireframe meshes. 4.20(a)

shows that the ∆HKS(x) vectors in the perturbation area were not clustered properly.

Rather, it looks like the area where some changes are being rendered are probably noise

from the clustering.

4.20(b) and 4.20(c) show better results when the perturbations on the isosurfaces were

bigger. Although the whole region of perturbation could not be caught, the region where

the bigger protrusions occured have been distinguished.

In summary, the deterministic annealing algorithm, although sophisticated and useful

in certain ways, was not the right choice for our UQ metric - the ∆HKS(x) vectors.

MDS: The Multi-Dimensional Scaling algorithms are a set of popular algorithms for

dimensionality reduction. Given a high dimensional vectors, it can collapse the dataset

by reducing the number of irrelevant dimensions. We have used two kinds of MDS on our

∆HKS(x) vectors to reduce them to three dimensional datasets. The idea was to treat

each dimension as one color channel, and visualize each 3D vector on each point using a

color map.

Figure 4.21 shows the visualizations after applying the classical MDS and Universal

MDS on a perturbed ellipse - the same one used in figure 4.20(b). As seen from the

figures, although the perturbed regions are distinguished from the rest of the shape, the

noise is too much for this to be an effective visualization that can convey meaningful

information about the perturbed area. Thus, MDS was not a good choice of visualization

for our UQ metric either.

4.3 Summary of Experiments

In the previous section, we have detailed a few experiments that justify the parameter

and other choices made in the pipeline. Here is a summary of the conclusions made from

each experiment.

1. It is recommended to use curvature sensitive meshing when calculating HKS and

∆HKS(x) (our chosen UQ metric) as opposed to Marching Cubes or uniform

meshing.

2. The k-nearest neighbor scheme (where vertices are declared neighbors if they are

within a certain radius) gives cleaner and better HKS vectors (for a reasonable k)

when compared to the ε-ball method.
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3. The FEM method to construct the Laplace-Beltrami operator, when compared to

the Graph Laplacian, gives more accurate and cleaner HKS.

4. In order to account for contribution at higher time scales in HKS, the logarithmic

sampling of HKS is a good choice for our pipeline. Moreover, we have decided to use

the first 300 largest eigenvalues to calculate HKS in our pipeline. This is a justified

choice given the experimental results that demonstrate the negligible change in the

values of the HKS vectors for higher number of eigenvalues.

5. Higher mesh resolution, despite the uniform or nonuniform (or curvature sensitive)

meshing, gives more accurate HKS. Thus, a higher resolution is desired if curvature

sensitive meshing could not be employed. Precautions should be taken in general

when LB operator eigenpairs are calculated on any mesh, as the experiments show

that the nature of meshing is very important to produce accurate visualization from

the pipeline.

6. HKS is a better UQ metric when it comes to quantifying intrinsic variation, as

shown by the experimental data that eigenpairs do not change in magnitude very

much when perturbations are introduced. Other existing shape matching signatures

do not scale the eigenpairs to take account of smaller changes in them.

7. Our investigation on different clustering methods to visualize the ∆HKS(x) vectors

shows that it is better to use k-medoid algorithm. Other algorithms, while having

certain other advantages, do not cluster the ∆HKS(x) vectors well enough.
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(a) 1k vertices. (b) 3k vertices

(c) 5k vertices (d) 12k vertices

(e) 22k vertices

Figure 4.15. Histograms for nonuniform meshing (figure 4.13) in DistMesh.
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(a) 1k vertices. (b) 3k vertices

(c) 12k vertices (d) 22k vertices

Figure 4.16. HKS norm dIfference histograms for uniform meshing using DistMesh.
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Figure 4.17. Perturbation of a sphere (first row) to a large dimple (last row). Colormap
is based on the eigenfunction for the corresponding eigenvalues shown at the bottom of
each sphere. Here the first 5 eigenvalues (of largest magnitude) are shown for each row.

Figure 4.18. The first 300 eigenvalues are shown for each set of perturbation. As seen
from the graph, they are very similar
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Figure 4.19. A similar eigenfunction chart, this time the eigenvalues are chosen to be
further apart from each other (squared distance, i.e. evals(1,4,9,16,25) for each row.
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(a) A smaller perturbation on an ellipse. (b) Bigger perturbation

(c) Perturbation on a sphere

Figure 4.20. Deterministic Annealing clustering algorithm applied to ∆HKS(x) vec-
tors.
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(a) Classical MDS applied to ∆HKS(x) vec-
tors (view 1).

(b) Viewpoint of the perturbed area

(c) Universal MDS (d) Viewpoint of the perturbation area (Uni-
versal MDS)

Figure 4.21. MDS applied to ∆HKS(x) vectors.



CHAPTER 5

APPLICATIONS

In this chapter, we present an empirical evaluation of our visualization pipeline. We

start with a procedure (that may be of independent interest) to deform a mesh so as to

create different surfaces with given correspondences. We then use this process to test

the fidelity and sensitivity of the HKS vectors under different kinds of deformation. We

complement this with a study on isosurfaces generated from simulation data, using our

pipeline to visualize intrinsic changes in the surfaces.

5.1 Validation of Pipeline

To provide validation of our pipeline, we have devised a means of taking one isosurface

and causing “depressions” into or out of the surface. We call our tool a “dimple maker”.

This procedure allows us precise control over which vertices correspond, so that we do not

introduce noise when comparing the HKS vectors for two points that should correspond.

The meshes of shapes with dimples in the previous sections were created using this tool.

Our problem formulation states that we have two isosurfaces for which we will calculate

the point-wise heat kernel signature. Without loss of generality, we introduce another

way to look at the same problem. Assume we are given a tessellation T (M1), and we

would like to produce T (M2) from it by a perturbation. Note that originally we have

stated that a scalar parameter α in a simulation governs the perturbation. However,

we can directly make a perturbation to the mesh T (M1) that allows us to produce a

tessellated M2 from it while preserving vertex-wise correspondence.

This tool can be used to generate physical perturbations in meshes to produce new

shapes. A scalar parameter α governs the amount of perturbation, while the shape of

the perturbation is determined by a particle dynamics simulation. The tool, essentially a

mesh dimple maker, is easily reproducible and useful for any shape perturbation studies.

The need for using particle dynamics to create dimples comes from the fact that we want

our perturbation to be insensitive to mesh refinement. A systematic and deterministic
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dynamics simulation ensures that despite the meshing resolution, all the vertices in the

mesh will be influenced by the same force function, hence the edges in the meshes have

no effect on the perturbation whatsoever.

Figure 5.1. A projectile particle p is shot at the sphere. Only the vertices in the circled
region are made to be affected, i.e. the circled region will be the dimpled region. The
decay parameter d decides (for each particle) how strong the force of attraction should
be. The force decreases as we move farther away from the center of the stated circle.
Each particle i is influenced by the projectile p’s charge, and as the projectile moves
towards the sphere, the vertices are pushed in or out depending on their sign of charge.
The dynamics simulation is run for a few steps to create a dimple on the sphere.

The idea is to treat the given tessellation’s vertices as a point cloud and influence the

point cloud by a projectile particle. Each particle is assigned a charge and unit mass, and

based on the projectile particle’s charge, they are either repelled or attracted towards

it. The force function is used to calculate the velocities and subsequent positions of the

particle in each iteration of the simulation, with vi (the velocity of particle i) computed

as
dvi
dt

=
αqiqpe

−di

||rip||2
r̂ip

where qi is the charge on the ith particle, qp is the charge of the projectile, rip is the

vector from particle i to the projectile, and α is a scalar parameter that is tunable in

our system, essentially controlling the amount of perturbation in each iteration. di is a

decay parameter that is a function of the distance of the ith particle from the projectile

particle. This gives us the flexibility to govern which particles will move by how much.
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Particles do not exert force on one another; their only motion is via the the projectile.

This is done to preserve the shape of the original mesh and localize the regions where we

want our perturbations to occur. Once the velocities are found by numerical integration,

the positions of the particles (vertices) are updated as

~xi+1 = ~xi + ~vi · dt+
1

2
~̇vdt2.

Using different trajectories and magnitudes for the projectile, many kinds of dimples

(push-ins or push-outs) can be made using this tool. Example dimpled shapes can be

seen in chaper 4 figure 4.1 and the isosurface examples demonstrated in the later sections.

5.2 Canonical Examples

We now present experiments that demonstrate the fidelity of the HKS vectors to

location and scale of deformations, as well as the effectiveness of the overall pipeline. We

use synthetic data with deformations generated using the dimple maker described above.

All isosurfaces in this section and the subsequent section were generated using DistMesh

(39) unless otherwise specified.

Experiment 1: Ellipse with varying depressions.

The dimple maker tool can be used to examine how robust the HKS is in capturing

intrinsic changes of curvature. In Figure 5.2(a) we show an ellipse with two dimples (at

the two “poles”). The dimples are created using different values of the force parameter

α. The resulting HKS vectors are shown in Figure 5.2(b). Note the steady change in the

vector as the deformation increases. We also note that since the two dimples are deformed

identically, their HKS curves are almost perfectly aligned: this is further validation that

identical deformations will generate very similar curves.

Experiment 2: Sphere with multiple dimples.

We now look at the behavior of our pipeline under multiple deformations with different

curvature. To simulate this, we take a sphere and create eight dimples, each of which is

then “pushed in” at the top to create regions of different curvature. The resulting figure

is shown in Figure 5.3(a).

Running our pipeline on this shape (in comparison with a reference sphere) yields a

collection of results for different choices of the number of clusters in the visualization.

Three such visualizations are shown in Figure 5.3. Initially, the only change is the

(short-range) deformation caused by the dimples. As the number of clusters increase,

the central band variation is detected as well, and finally the individual dimples are



47

(a) Ellipse

−2 −1 0 1 2 3 4
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8

·10−2

100 ≤ α ≤ 900

(b) Resulting sequence of HKS vec-
tors

Figure 5.2. An ellipse with two dimples of varying magnitude: α = 100,. . . , 900.

identified. Since each “push-in” dimple has the same geometry, the clustering correctly

places them in a single cluster (indicated by color) even though they are separated on

the mesh. This further validates the strength of our pipeline in distinguishing important

geometric changes in isosurfaces.

Experiment 3: Sphere with moving dimples.

We now investigate the behavior of the curves as the deformations move around on the

surface. We generate a sphere with four numbered dimples (depicted in Figure 5.4(a)).

In this experiment, we will move dimple 4 towards dimple 2, while keeping the other

two dimples fixed. The two shifted configurations are shown in Figures 5.4(b),5.4(c).

Figure 5.4(d) illustrates the resulting HKS vectors for the four dimples. Notice that

dimples 1 and 3 are symmetrically placed, and so see the same “view” of the surface. They

therefore have almost identical HKS vectors in all configurations. Moreover, initially all

four dimples have a symmetric view of each other and generate almost identical HKS

vectors.

If we now consider dimple 4 (in orange), it is symmetric to dimple 2 in the second

configuration and is different in the third configuration, which is borne out by the HKS

vectors. Further, the pair of dimples 1, 3 have a slightly different view of the shape in

configurations 2 and 3, which is reflected in the slight difference in their HKS vectors

between configurations.
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(a) (b)

(c) (d)

Figure 5.3. (a) A sphere with eight dimples, each of which is pushed out and then the
tip is pushed in. (b) K-medoid clustering with two clusters, (c) three clusters and (d) five
clusters.

5.3 Real-World Applications

We now demonstrate our pipeline on isosurfaces generated from simulation results.

The examples are taken from molecular dynamics simulations. In all cases, we use the

procedure described in Section ?? to generate correspondences.

Experiment 1: MD-potentials: closed isosurface.

We demonstrate our pipeline capturing the changes in isosurfaces generated from

Born-Mayer potential fields used in molecular dynamics (MD) simulations (49). In this

example, we extract two isosurfaces generated by changing the spatial configuration of

a three atom system. In Figure 5.5(a), we show a rendering of the two isosurfaces. In

Figures 5.5(b) and 5.5(c), we show a two and three k-medoid clustering of the HKS

differences. This example demonstrates that our pipeline provides a quantifiable evalua-

tion of the intrinsic change in isosurfaces of the potential (energy) field generated due to
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(a) (b) (c)
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(d)

Figure 5.4. (a), (b) and (c) A sphere with four dimples, the fourth dimple “moves” along
the equator. (d) HKS vectors for the above configurations. Configurations indicated by
tick shapes (a) = •, (b) = ×, (c) = +, and dimples indicated by color (1 = blue, 2 = red,
3 = green, 4 = orange)

perturbation in configuration.

Experiment 2: MD-potentials: open isosurface.

To demonstrate that our pipeline does not require that the isosurfaces being examined

be closed, we consider the same MD simulation as above with a different configuration of

the atoms and a different isovalue of the potential. In Figure 5.6(a), we show a rendering

of the two isosurfaces. In Figure 5.6(b), we show a three k-medoid clustering of the HKS

difference. Because curvature-sensitive meshing of open surfaces is a challenging open

research area (39), we generate our isosurfaces with a heavily-refined Marching Cubes

lattice. Note that the third cluster has pointed out the sharp edges at the end, where the

outer isosurface was more curved. This was examined with close scrutiny later, although

a normal view does not convey such minute change in curvature. Again, our pipeline

clearly expresses in a quantifiable way the intrinsic change due to a change in the atomic
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(a)

(b) (c)

Figure 5.5. (a) MD potential surfaces rendered together. (b) end result of running our
pipeline on the two given meshes with two clusters and (c) three clusters.

configuration. This helps a simulation scientist easily identify areas of potential change

that may not be obvious when designing crystal structures (49).

Capturing such intrinsic isosurface variation is helpful in molecular dynamics applica-

tions as the scientist can easily track changes in the isopotential structure of a system of

atoms (e.g. protein molecules in biology) when a crucial parameter in the simulation is

perturbed. Tracking both extrinsic and intrinsic changes can provide a complete scenario

of parameter pertubation. Our pipline have been used in the above example to provide a

robust way to understand the intrinsic change in the structure of the isopotential surfaces

when a parameter was changed in a molecular dynamics simulation.
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(a) (b)

Figure 5.6. (a) Open MD potential surfaces rendered together. (b) end result of running
our pipeline on the two given meshes with three clusters.



CHAPTER 6

DISCUSSION

In this thesis, we proposed an analysis and visualization pipeline for examining the

intrinsic variation in isosurfaces caused by simulation parameter perturbation. The

choice of parameters in the pipeline was validated by a series of experiments. We have

demonstrated our pipeline using some cannonical and real world examples. The examples

cover a range of tests and challenges (open and closed surfaces, robustness of HKS-

our choice of shape signature, capturing multiple deformations on the isosurface using

clustering etc) to evaluate the limits of the pipeline. Within the given limitations (that

were stated in the introduction), our visualization pipeline performed well on all the

examples.

Several previous works (e.g. (40; 43)) have focused on the extrinsic variations that

can be observed in isosurfaces generated from random variable fields. This work presents

a complementary perspective in that it provides a quantifiable way of understanding

the intrinsic variations in isosurface shape (such as change in curvature) that cannot be

easily inferred through mere comparative visualization or extrinsic-change quantification.

Combined with extrinsic measures (as future work), a more complete understanding of the

impact of parameter variation within simulations on isosurfaces can occur. In this sense,

our work provides the next natural step needed in the uncertainty quantification and

visualization of isosurfaces generated through parameter variation. Additional future

work includes extending the pipeline to handle variations due to multiple parameters

and to handle properly (mathematically) correspondence in the case of large isosurface

deformation.
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