
International Workshop on Visual Analytics (2012)
K. Matkovic and G. Santucci (Editors)

A System for Query Based Analysis and Visualization

Allen R. Sanderson1, Brad Whitlock2, Oliver Rübel3, Hank Childs3, Gunther Weber3, Prabhat3, and Kenseng Wu3.

1Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
2Lawrence Livermore National Laboratory, Livermore, CA, USA

3Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract
Today scientists are producing large volumes of data that they wish to explore and visualize. In this paper we
describe a system that combines range-based queries with fast lookup to allow a scientist to quickly and efficiently
ask “what if?” questions. Unique to our system is the ability to perform “cumulative queries” that work on both
an intra- and inter-time step basis. The results of such queries are visualized as frequency histograms and are the
input for secondary queries, the results of which are then visualized.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Simulation Output Analysis]: Visual analytics—
Query based analysis

1. Introduction

In this paper we describe a system for exploration and visual-
ization of large scale scientific data using query-based tech-
niques that incorporate accelerated bitmap indexing. Queries
on multidimensional data are a staple within the database
community and are gaining prominence within the scientific
community [GHA∗08,GABJ08,SBC∗06,RPW∗08]. While
previous work has typically focused on efficient queries for a
single time step and utilizing those results at other time steps
for data exploration, we focus on queries that require multi-
ple time steps, the results of which are cumulative and can
become the basis for additional queries. An example would
be a change of state from one time step to another, i.e., an
energetic particle that is either “passing” or “trapped.”

Underlying our technique is the usage of bitmap index-
ing [WOS02] to accelerate data queries, which is important
as the results can be returned on the order of seconds rather
than minutes or hours with traditional techniques. We briefly
describe this acceleration, followed by a discussion of the
single time step queries which we build upon for our cumu-
lative queries. We present an example from nuclear fusion,
followed by a discussion, and concluding remarks.

2. Indexing Techniques

A common strategy to improve the accesses to large data sets
is to develop auxiliary data structures known as indexes. A

variety of indexes are available in database systems [OO00],
many of which are variations of the B-Tree data structure
which is designed to update quickly when the underlying
data records are modified [Com79]. This feature is unneces-
sary for indexing scientific data sets unless the data is mod-
ified. For scientific data sets the bitmap index is a more ap-
propriate indexing structure [O’N87, OW10].

2.1. Bitmap Indexing Technology

A bitmap index consists of a set of pairs of key value and
a bitmap. The basic bitmap index uses one bitmap for each
distinct key value with an entry of "1" if the key matches oth-
erwise "0". With scientific data the number of distinct values
can be as large as the number of entries (i.e., every value
is distinct). In this case, the number of bits required to rep-
resent an index may scale quadratically with the number of
entries, i.e., 109 entries may require 1018 bits and is much
larger than the raw data size and is not acceptable.

A number of different strategies have been proposed to
reduce the sizes of bitmap indexes and improve their over-
all effectiveness. We have chosen FastBit, which implements
a number of techniques to improve the basic bitmap index
including a compute-efficient compression [WOS02], multi-
level encoding [WSS10], and clustering to improve binned
bitmap indexes [WSS08]. FastBit has been shown to perform
well in a number of scientific applications [WAB∗09].

c© The Eurographics Association 2012.

Allen R. Sanderson / Query Based Analysis

2.2. Constructing the indexes

For the user to utilize FastBit we have created a lightweight
library that produces the Fastbit bitmaps that are stored
alongside the original data. When feasible, for point cloud
data (i.e. particle data), such as high energy physics data,
we take the extra step of sorting the entries based on their
unique identifiers. This sorting further optimizes identifier-
based queries which are used to reconstruct particle paths.

3. Single Time Step Queries

Single time step queries are a versatile tool for identification
and extraction of temporally persistent data features. Tem-
poral tracking and refinement of selections based on infor-
mation from multiple time steps then supports detailed anal-
ysis of the temporal evolution of data features. Range-based
queries form the foundation for defining data constraints to
select data features of interest while identifier-based queries
support persistent selection and tracking of features.

3.1. Identifier-based Queries

Identifier-based queries select data subsets based on their
unique identifier (id) given by the local or global index of
nodes or zones of a mesh or an explicit id variable. Explicit
id variables are often used for data with highly dynamic
topologies, such as particle data. Using id’s allows for ex-
plicit and consistent selection of data subsets via queries of
the form id ∈ {10,231,501....}. In the context of the visu-
alization system VisIt [CBB∗05], id-based selections, also
called Named Selections, are stored and managed by a cen-
tral selection manager which allows us to link multiple vi-
sualizations and track selected data subsets over time. VisIt
uses FastBit to efficiently evaluate the id-based queries to re-
strict a dataset to a given set of id’s using Named Selections.

3.2. Range-based Queries

Range-based queries are expressed in the context of scien-
tific data as threshold ranges, i.e. 101 ≤ x ≤ 205. In the
context of multi-dimensional data, logical combinations of
multiple range queries based on intersection (AND), union
(OR) and negation (NOT) are often used. In practice, multi-
dimensional queries of the form (x < 100) AND (y > 201),
using only AND operations, are most commonly used be-
cause of their simplicity and intuitive use for selecting data
subsets based on multiple constraints. In VisIt we can define
AND-based multi-dimensional range queries explicitly as a
series of data ranges or interactively using histogram-based
parallel coordinates [RPW∗08].

The range-based queries are processed using FastBit and
can be directly translated to equivalent id-based queries
managed by VisIt’s central selection manager. Using this ap-
proach, we can track selections over time. By combining id-
based and range-based queries, we can refine selections us-
ing range-criteria defined at different discrete points in time.

3.3. Accelerating Single Time Step Queries

Using bitmap indexing allows us to efficiently i) evaluate
multi-dimensional range-based queries, ii) evaluate id-based
queries and iii) compute conditional histograms. We inte-
grate FastBit’s indexing methods at the file-reader stage.
VisIt’s contract-based visualization pipeline permits differ-
ent pipeline components, e.g., operator and plot filters, to
include information about the data subsets, specified via id-
based or range-based queries or conditional histograms.

Instead of reading the complete data set and perform-
ing the query, we use its index information and FastBit to
perform the query. This allows us restrict the downstream
processing to the data subsets, reducing the I/O footprint
and computational complexity of the analysis. For example,
VisIt’s histogram-based parallel coordinates plot augments
the contract so only the much smaller histograms required
for rendering are communicated by the file reader instead of
large amounts of raw data [RPW∗08].

4. Cumulative Queries

Cumulative queries extend the query-driven analysis to in-
corporate information from the complete time series and en-
able identification of temporal features that cannot be seen
within single discrete time steps. The temporal features may
be identified via intra- or inter-time step queries. For in-
stance, how frequently does a particle’s weight exceed a
value at all time steps (intra-time) versus how frequently
does a particle change state from “passing” to “trapped” go-
ing from one time step to the next (inter-time), Equation 1.

(wtt > 0) AND (trappedt NE trappedt+1) (1)

Similar to single time step query results, cumulative query
results can be used directly for data selection simply by ap-
plying a boolean operator to convert the frequency counts
to true or false. This step effectively turns the result into
the following; return all entries that meet the query at least
once during the simulation. While such queries are of inter-
est, there is a significant amount of information that can be
further mined by refining the cumulative query results via
secondary queries.

4.1. Secondary Queries

Secondary queries can be based on multiple criteria. Here we
highlight three such criteria using histograms which allows
the user to sub-select entries based on their associated fre-
quency. For instance, after performing the initial cumulative
query over 50 time steps (Equation 1) the user is presented
a histogram based on the distribution of query matches and
their frequency (Figure 1), thus allowing the user to choose
the entries based on the frequency of matches.

Another histogram that can be presented to the user is

c© The Eurographics Association 2012.

Allen R. Sanderson / Query Based Analysis

based on the frequency of matches on a per time step ba-
sis, highlighting trends over time or instantaneous spikes at
particular time steps, Figure 2. The last histogram presented
uses data values that may or may not have been used in the
query but who’s entries matched the query. Again, this al-
lows the user to look for correlations and trends in the data
from those entries that matched the query, Figure 3. All of
the histogram choices are analytical tools that allow visual
exploration as part of the cumulative query process.

Figure 1: A histogram showing the distribution and fre-
quency of query matches. Each bin represents the number
of matches to the query with the left most bin representing
those particles matching the query 1 out of 50 time steps
and the right most bin representing those particles matching
the query 11 out of 50 time steps. The majority of particles
entries matched 2 time steps while no particles matched 12
or more time steps.

Figure 2: A histogram showing the frequency of matches
for all 50 time steps. Each bin represents a time step and the
number of particles that matched the query. Fewer particles
matched the query at time steps in the middle of the simula-
tion than at the beginning and end indicating that these time
steps may be of significance to the application scientist.

4.2. Cumulative query process

Cumulative queries are implemented in VisIt and extend its
concept of the Named Selection, which restricts datasets to
a given set of id’s. Cumulative query selections are realized
by adding three filters to the visualization pipeline within

Figure 3: A histogram showing the distribution of particle
weights from entries that match the initial query. The fre-
quency reflects a Gaussian distribution except near the mid-
dle where the weight is near zero. Those particles with high
weights would be of interest to the application scientist.

VisIt’s compute engine, Figure 4. These filters accomplish
the cumulative query’s functions of range queries over time,
followed by secondary queries that let the user further sub-
select the set of id’s that become part of the final selection.
First, a filter is added to obtain histogram information from
FastBit for the selection summary shown in the VisIt GUI.
The output of the histogram filter is sent into a threshold fil-
ter that issues range queries to FastBit, resulting in a reduced
dataset. The output of the threshold filter is passed into the
cumulative query filter. This filter executes the pipeline for
a range of time steps, creating datasets for which the range
queries hold true over all time. Once all time steps have pro-
duced an output, the filter iterates over them and obtains the
frequency each id is present. The frequencies are cached so
full re-executions of the filter are not required when the user
changes query parameters that pertain to secondary queries.

Figure 4: A schematic of the cumulative query pipeline in
VisIt. Each column represents the query for one time step.

c© The Eurographics Association 2012.

Allen R. Sanderson / Query Based Analysis

The secondary query begins by applying a summation rule
to the calculated frequencies. The summation rule selects
id’s that are present in any time step or id’s that are present
in all time steps to produce another set of id’s that will be
processed further. Those id’s are sorted on the basis of fre-
quency, matches, id, or associated variable value. The sorted
id’s are then grouped into a user-selected number of bins and
a range of bins is selected by the user. The id’s contained in
the selected bins are retrived and summary information de-
scribing the query is created for the user so they may further
refine the cumulative query parameters. At this point, VisIt
can apply the selection to any of its plots in order to visualize
and analyze only the selected data subsets.

5. Results and Discussion

We now apply the cumulative query tool to look at particle-
in-cell data from a gyrokinetic simulation of the turbulence
in a magnetically confined fusion experiment [ZLW00].
For this query we are interested in particles that changed
from a “passing” to a “trapped” state during the simulation.
This initial query resulted in over 120K out of 500K parti-
cles having at least one state change over the course of 50
time steps. From Figure 1 we find that one particle changed
state eleven times. For our example, we perform a secondary
query, choosing only the seventh bin which contains only
those particles that changed state seven times, Figure 5. This
secondary query results in eight particles being selected.

Figure 5: The histogram from Figure 1 showing the distri-
bution of matches along with the summation at the bottom
which performs our secondary query. Here bin 7 was sub-
selected yielding eight particles that matched the query at 7
out of 50 time steps. Note that in contrast to Figure 1 all of
the bins but bin 7 are grayed out.

From the selection, an id-based query is performed to
extract the eight particles’ temporally persistent positional
data and instantaneous trapped state. The positional data is
used to construct the particles’ paths while the trapped state
is used for color. Using FastBit, finding the data for these

eight out of 500K particles over 50 times steps takes tens
of seconds, whereas without FastBit, the same operations
takes several minutes. While these are just preliminary find-
ings it does demonstrate the acceleration provided by the
bitmap indexing. Additional, more formal measurements for
single time operations can be found in [RPW∗08]. In Fig-
ure 6 we show the resulting paths of the eight particles where
it is possible to discern a burst-like occurrence in the state
changes. Such burst-like state changes cannot be detected
via the query process and shows the utility of combining the
query process, with FastBit indexing, and visual exploration.

Figure 6: Particle paths from the secondary query showing
the trapped (red) and passing (green) states. Though each
particle changed state seven times, occuring in bursts of two
or three followed by periods of stability, the changes appear
to be independent of position, velocity, or time step.

6. Conclusions

In this paper we have extended our query-based analysis
to include cumulative queries that operate on an intra- and
inter-time step basis. Such queries capture temporal features
in the data that can not be extracted via single time step
queries. The queries have been deployed as part of the VisIt
visualization and analysis system.

Our future work is to expand the analytical queries to in-
clude geometric queries on the particle paths. These queries
would require an on-the-fly moving window where the last
time step is dropped while adding the next to perform the
geometric query. Further, as data continues to grow it will
be necessary to parallelize singe time step and cumulative
queries in order to maintain reasonable response times.

7. Acknowledgments

This research was funded in part by the United States De-
partment of Energy’s Visualization and Analytics Center for
Enabling Technology. The authors thank Stephane Ethier at
PPPL for the gyrokentic data.

c© The Eurographics Association 2012.

Allen R. Sanderson / Query Based Analysis

References
[CBB∗05] CHILDS H., BRUGGER E. S., BONNELL K. S.,

MEREDITH J. S., MILLER M., WHITLOCK B. J., MAX N.: A
contract-based system for large data visualization. In Proceed-
ings of IEEE Visualization 2005 (2005), pp. 190–198. 2

[Com79] COMER D.: The ubiquitous B-tree. Computing Surveys
11, 2 (1979), 121–137. 1

[GABJ08] GOSINK L. J., ANDERSON J. C., BETHEL E. W., JOY
K. I.: Query-driven visualization of time-varying adaptive mesh
refinement data. IEEE Transactions on Visualization and Com-
puter Graphics 14, 6 (Nov. 2008), 1715–1722. 1

[GHA∗08] GLATTER M., HUANG J., AHERN S., DANIEL J., LU
A.: Visualizing temporal patterns in large multivariate data us-
ing modified globbing. IEEE Transactions on Visualization and
Computer Graphics 14, 6 (Nov. 2008), 1467–1474. 1

[O’N87] O’NEIL P.: Model 204 architecture and performance.
In 2nd International Workshop in High Performance Transaction
Systems, Asilomar, CA (Sept. 1987), vol. 359 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 40–59. 1

[OO00] O’NEIL P., O’NEIL E.: Database: principles, program-
ming, and performance, 2nd ed. Morgan Kaugmann, 2000. 1

[OW10] OTOO E., WU K.: Accelerating Queries on Very Large
Datasets. Chapman & Hall/CRC Computational Science, 2010,
ch. 6, pp. 183–234. 1

[RPW∗08] RÜBEL O., PRABHAT, WU K., CHILDS H., MERED-
ITH J., GEDDES C. G. R., CORMIER-MICHEL E., AHERN
S., WEBER G. H., MESSMER P., HAGEN H., HAMANN B.,
BETHEL E. W.: High performance multivariate visual data
exploration for extremely large data. In Proceedings of the
2008 ACM/IEEE conference on Supercomputing (Piscataway,
NJ, USA, 2008), SC ’08, IEEE Press, pp. 51:1–51:12. 1, 2, 4

[SBC∗06] STOCKINGER K., BETHEL E. W., CAMPBELL S.,
DART E., WU K.: Detecting distributed scans using high-
performance query-driven visualization. In Proceedings of the
2006 ACM/IEEE conference on Supercomputing (New York, NY,
USA, 2006), SC ’06, ACM. 1

[WAB∗09] WU K., AHERN S., BETHEL E. W., CHEN J.,
CHILDS H., CORMIER-MICHEL E., GEDDES C., GU J., HA-
GEN H., HAMANN B., KOEGLER W., LAURET J., MERED-
ITH J., MESSMER P., OTOO E., PEREVOZTCHIKOV V.,
POSKANZER A., PRABHAT, RUBEL O., SHOSHANI A., SIM A.,
STOCKINGER K., WEBER G., ZHANG W.-M.: FastBit: Interac-
tively searching massive data. In SciDAC (2009). 1

[WOS02] WU K., OTOO E., SHOSHANI A.: Compressing
bitmap indexes for faster search operations. In Proceedings of
SSDBM’02 (Edinburgh, Scotland, 2002), pp. 99–108. LBNL-
49627. 1

[WSS08] WU K., STOCKINGER K., SHOSANI A.: Breaking the
curse of cardinality on bitmap indexes. In SSDBM’08 (2008),
Springer, pp. 348–365. Preprint appeared as LBNL Tech Report
LBNL-173E. 1

[WSS10] WU K., SHOSHANI A., STOCKINGER K.: Analyses
of multi-level and multi-component compressed bitmap indexes.
ACM Transactions on Database Systems (2010), 1–52. 1

[ZLW00] Z. LIN T. S. HAHM W. W. L. W. M. T., WHITE R. B.:
Gyrokinetic simulations in general geometry and applications
to collisional damping of zonal flows. Phyics of Plasmas 7, 5
(2000), 1857–1862. 4

c© The Eurographics Association 2012.

