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ABSTRACT

In the development of magnetic fusion reactors which will be the
source for future low cost power physicists must be able to analyze
the magnetic fields that confine the burning plasma. The corre-
sponding magnetic fieldlines have a periodic or quasi-periodic be-
havior. In this paper we describe a simple and efficient geomet-
ric technique that allows for effective visualization and topological
analysis of these fieldlines through their signature in the Poincaré
map.
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1 INTRODUCTION

Traditionally the behavior of periodic, quasi-periodic, and chaotic
3D orbits can be visualized using a Poincaré plot, which is ob-
tained by intersecting an integral curve with a transverse 2D plane
(Poincaŕe section). By collecting a large number of intersections a
pattern may form, which is used to visualize and analyze the dy-
namics of the 3D system. For our application we are interested
in the patterns exhibited by magnetic fieldlines that are contained
within the toroidal geometry of a magnetic fusion reactor, Figure
(1).

Figure 1: (a) Profile of the DIII-D Tokamak and a single quasi-periodic
magnetic fieldline. (b) The corresponding Poincaré plot for the magnetic
fieldline in (a) using 200 points.

Locating magnetic fieldlines that are periodic is an important
component in understanding plasma transport in magnetic fusion
research. As such, our motivation is to develop a technique that al-
lows for the rapid visualization and facilitates the analysis of topo-
logical structures of magnetic fieldlines. The methods presented in
this work are purely geometric, local in nature, and geared for par-
allel computations. Emphasis is on robustness and computational
efficiency while ensuring reliable results for visual analysis.
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2 BACKGROUND AND PREVIOUS WORK

Previous researchers have located periodic fieldlines using numer-
ical approaches such as those by [2]. However, these methods are
computationally expensive and lack robustness, especially in the
complicated geometries of modern experiments. Others have used
a graph-based approach and machine learning techniques to classify
the fieldlines [1]. However, in order to obtain an reasonable accu-
racy a large number, 2000-2500 of intersection points per fieldline
were necessary. Obtaining this many points requires a large num-
ber of integration steps which is prone to numerical inaccuracies
that may lead a fieldline to follow an erroneous path.

A related approach is that of Wischgoll and Scheuermann [4] that
examines how a fieldline reenters a cell and reconnects. However,
their method requires that closed orbits attract or repel neighboring
streamlines which is not the case in solenoidal magnetic fields. It
is also worth noting the work of L̈offelmann et al. [3] who inte-
grated 2D Poincaré plots with the original 3D flow for visualization
purposes. However, their data contained synthetic periodic vector
fields where the period was known.

3 GEOMETRIC ALGORITHM

A key property characterizing the behavior of a fieldline is its safety
factor. It is defined asq = limnT→∞

nT
#θ (nT )

, where #θ (nT) denotes
the number of poloidal rotations (measured along the minor circle
of the torus) of a fieldline afternT toroidal “windings” (around the
major circle). Excluding the case of chaotic fieldlines, such a limit
exists for a given fieldline. A rationalq usually implies that the
fieldline is periodic whereas irrational values ofq correspond to
fieldlines that are quasi-periodic. For both cases we determine a
rational approximation of its safety factor as follows:

1) Number the successive intersectionspi of the fieldline with
the Poincaŕe section.

2) For a given value of windingsnT , and for eachi ∈ {0, ..,nT −
1} connect the point group{pi , pi+nT , pi+2nT , ...} using piecewise
linear segments.

3) Connect points until a connection of one winding group inter-
sects either itself or another group.

A valid value ofnT is found if the first connection in each group
does not intersect any other connections. If the multiple windings
values are possible arbitrarily select the smallest winding value.

This is demonstrated in Figure (2) for a fieldline that intersects
the Poincaŕe section 30 times. It should be noted that the curves
shown in Figure (2b) represent the cross section of an irrational
surface, which is represented as five discrete curves instead of one
continuous curve to underscore the winding. A second example
is shown in Figure (3) for a fieldline that intersects the Poincaré
section 75 times. In this case, it is difficult to discern that the points
form three distinct structures until they are connected.

Above examples show Poincaré plots for individual fieldlines
which is rarely the case. Typically, 200 to 1000 fieldlines with 200
intersecting points per fieldline are used. Besides the heavy com-
putation required the resulting clutter makes the task of identify-



Figure 2: (a) the original 30 points (b) the points connected using a wind-
ing value of 5. The points are colored based on their intersection ordering,
blue to red

Figure 3: (a) the original 75 points (b) the points connected using a wind-
ing value of 3. The points are colored based on their intersection ordering,
blue to red

ing the resulting structures very difficult. For example, Figure (4a)
combines the Poincaré plots from Figures (2a) and (3a). It is not
until the segments are connected that the structure becomes clear.

Figure 4: (a) the Poincaŕe plot for two fieldlines (b) the points connected
using a winding value of 3 and 5 respectively. The points are colored based
on their intersection ordering, blue to red

4 PERIODIC FIELDLINE DETECTION

When a fieldline is quasi-periodic the intersecting points on the
Poincaŕe plot, when fully connected will form one of two topolo-
gies: a single closed curve or multiple closed curves, as shown in
Figure (2b) and (3b) respectively. Within the latter, known as an
island chain, there will be a single periodic fieldline that is near the
geometric center of an island. The geometric center can be found
by taking the median of the main sheet of the medial axis of the

island. To achieve greater accuracy a new fieldline can be started at
the geometric center and analyzed in an iterative fashion.

5 RESULTS AND DISCUSSION

The technique has been applied to simulations of two different mag-
netic fusion reactors. The first example, Figure (5a), shows a series
of island chains and two flux surfaces from a M3D simulation of the
CDX-U Tokamak. The second example, Figure (5b), shows three
island chains among a series of flux surfaces from a NIMROD sim-
ulation of the DIII-D Tokamak.

Figure 5: (a) A series of island chains and two flux surfaces from a M3D
simulation of the CDX-U Tokamak. (b) Three island chains along with the
location of their respective periodic fieldline among a series of flux surfaces
from a NIMROD simulation of the DIII-D Tokamak. Each is colored based
on its safety factor.

6 CONCLUSIONS

We have presented the application of a geometric technique that al-
lows for the creation of Poincaré plots using a minimal set of con-
nected points. This greatly reduces the computational costs when
compared to traditional Poincaré plots. The technique permits the
identification of magnetic island chains and location of the periodic
fieldline contained within them.

Our on going work includes validating the technique in datasets
containing chaotic fieldlines and the detection of the separatices that
surround the island chains.
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