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A new method for correction of MRI motion artifacts induced
by corrupted k-space data, acquired by multiple receiver coils
such as phased arrays, is presented. In our approach, a pro-
jections onto convex sets (POCS)-based method for recon-
struction of sensitivity encoded MRI data (POCSENSE) is
employed to identify corrupted k-space samples. After the er-
roneous data are discarded from the dataset, the artifact-free
images are restored from the remaining data using coil sensi-
tivity profiles. The error detection and data restoration are
based on informational redundancy of phased-array data and
may be applied to full and reduced datasets. An important
advantage of the new POCS-based method is that, in addition
to multicoil data redundancy, it can use a priori known prop-
erties about the imaged object for improved MR image arti-
fact correction. The use of such information was shown to
improve significantly k-space error detection and image arti-
fact correction. The method was validated on data corrupted
by simulated and real motion such as head motion and pul-
satile flow. Magn Reson Med 63:1104–1110, 2010. VC 2010
Wiley-Liss, Inc.
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Parallel MRI (pMRI) exploits multiple receiver coils to
shorten MRI scan times (1–7). In pMRI, acceleration of
k-space acquisition is achieved by subsampling k-space
with a reduction factor R. Reconstruction of the under-
sampled data is attainable thanks to nc-times redundancy
of multicoil data, where nc is the number of receiver
coils. Fast data acquisition achievable with pMRI techni-
ques decreases artifacts associated with long MRI scan
times; for example, artifacts induced by tissue suscepti-
bility differences and motion effects, such as various
physiologic motions and patient movement (8–10). The

redundancy of multicoil data can be also exploited for

postacquisition correction of many MR image artifacts

such as ghosting and flow artifacts in EPI images (11,12)

and certain types of motion (13–15).

Typically, motion results in corrupted k-space data,

which, in turn, causes artifacts in the reconstructed

images. It was demonstrated by Bydder et al. (13) that

the corrupted samples may be detected comparing pMRI

reconstructions of subsets of original dataset. Then, the

related artifacts are eliminated by regenerating the identi-

fied lines using pMRI methods. The k-space errors ame-

nable to such detection and subsequent regeneration

should be localized because pMRI techniques may reli-

ably estimate k-space samples only on a scale compatible

with the spatial frequency bandwidth of the coil sensi-

tivity functions (16). Additionally, the necessity to split

the dataset into subsets limits the maximum acceleration

factor to nc/2 (13). To avoid limiting requirements that

errors be localized in k-space, an alternative approach is

to correct data using SMASH (SiMultaneous Acquisition

of Spatial Harmonics) navigators (14). However, SMASH

navigators are only able to handle two-dimensional in-

plane translations.
As described before, the pMRI-based motion artifact

correction methods rely on data redundancy due to the
sensitivity encoding effect and require a priori informa-
tion about coil sensitivities. Another approach for post-
acquisition reduction of motion artifacts is to utilize
prior information about the imaged object itself to realize
the ‘‘detect-and-restore’’ strategy described in the previ-
ous paragraph. The projections onto convex sets (POCS)
algorithm presents an efficient way to utilize a wide
range of such information in image restoration problems
(17–19); many POCS-based methods for MRI data artifact
correction have been proposed to date (20–24). In our
previous work, we adapted the POCS formalism for
pMRI data reconstruction (POCSENSE) (7). We showed
that utilization of prior information within the POC-
SENSE framework is an efficient way to reduce noise
amplification, thereby affording higher acceleration fac-
tors and improving image quality. In this paper, we pro-
pose a POCSENSE-based algorithm for the correction of
motion artifacts. In our new algorithm, the simultaneous
utilization of different sources of information about
imaged object (multichannel data and POCS constraints)
allows for a significantly more robust k-space error
detection and artifact correction than can be obtained by
applying a pMRI correction alone. If applied with a
phase constraint, the new method allows relaxing
requirements on the type of k-space errors amenable for
correction with previously described techniques (13,14).
We demonstrate the utility of the new technique on
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phantom and brain data corrupted by artificial and real
motion.

THEORY AND METHODS

POCSENSE (7) exploits the fact that information about
image, such as data measurements and most of the com-
monly used constraints, can be viewed as convex subsets
Xi (i ¼ 1,…,n) of the Hilbert space comprising all possi-
ble images (17). The algorithm seeks the solution as a
point minimally deviating from all of the available con-
vex sets by employing the projection operators Pi associ-
ated with these sets. Therefore, all available data influ-
ence the final solution. If the data are consistent, the
solution belongs to the (nonempty) intersection of the
sets Xi. Corruption of data samples creates outliers
among otherwise consistent data. Such data samples
may drastically bias the solution and cause image arti-
facts. To reduce the artifacts associated with the errone-
ous k-space samples, the influence of such data on the
final image should be minimized (25). We propose to
identify the outliers by analyzing distances between the
POCSENSE estimate and original data (7). Let
miðkÞ; i ¼ 1…nc be initial k-space data, and ~mi kð Þ be
k-space estimates after final POCSENSE iteration. The
error detection maps are formed as follows:

diðkÞ ¼ ~miðkÞ �miðkÞ; i ¼ 1; :::;nc ½1�

If the initial dataset were consistent, the error maps
would be influenced only by noise values. Inconsistent
data samples produce significant outliers among the
background values. Therefore, identification of inconsis-
tent samples amounts to detection of outlying values in
the error maps. To increase the detection power, detec-
tion may be performed on one-dimensional detection
plots averaged in the readout direction rather than on
two-dimensional error maps, because motion usually
corrupts an entire k-space line in the readout direction.
We form the detection plots by summing up nr absolute

values of the error maps in the readout direction and
then further improve detection power by adding the
results from all coils:

pðkyÞ ¼ 1

ncnr

Xnc

c¼1

X
x

dcðkx ;kyÞ
�� �� ½2�

Samples belonging to the identified corrupted lines are
discarded from the dataset, and the image is recon-
structed from the remaining data using a pMRI tech-
nique. The whole procedure is depicted in Fig. 1. A
detailed description of the algorithm steps, including
examples of additional constraints, is given in the fol-
lowing sections.

POCS Constraints

As was shown before (13), utilization of pMRI redun-
dancy may identify localized k-space errors. In our
method, we exploit POCS constraints simultaneously
with pMRI to resolve nonlocalized errors (step 1 of the
algorithm). One prominent example of a POCS constraint
is object support, which has been used extensively in
several motion and other artifact correction techniques
(20–24). Application of the object support constraint is
straightforward and amounts to zeroing out all values
outside the prescribed region of support A:

PAI rð Þ ¼ I rð Þ; r 2 A
0; otherwise

�
½3�

Another example of POCS constraint is a low-resolu-
tion image phase used in reconstruction of partial Fou-
rier (26–28) and pMRI (7,28–30) data. In this paper, we
propose to use a low-resolution phase constraint to
detect motion-corrupted samples. Image phase can usu-
ally be described by a slowly varying function. Ghosting
due to motion often introduces a rapidly oscillating fre-
quency component into the image phase, as shown in
Fig. 2. Hence, using a low-resolution image phase con-
straint would bring the image estimate closer to the true
image and should improve identification of corrupted k-
space data. The phase constraint is applied to the input
image I(r) as follows:

Pus
I rð Þ ¼ M rð Þeius rð Þ; ½4�

FIG. 1. Block diagram of the proposed motion correction algorithm.

FIG. 2. Magnitude (a) and phase (b) of an MR image corrupted
by motion.
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where us(r) is the phase of low-resolution image Is(r)
and M(r) is the magnitude of the image I(r). Since
phase constraining exploits the Hermitian symmetry of
the Fourier transform of real-valued data, an accelera-
tion mechanism fundamentally different from sensitivity
encoding used for pMRI acceleration, we hypothesize
that phase constraint may improve error detection. In
this study, both object support and phase constraints
were applied within the proposed procedure to study
the effects of additional knowledge on k-space error
detection.

Detection of Corrupted Lines and Data Regeneration

As explained above, corrupted data result in the outliers,
which we locate by identifying significant peaks in the
detection plot generated using Eq. 2. While many meth-
ods may be designed to ensure adequate detection of out-
liers including matching filters and wavelet transforms
(31), our experiments demonstrate that a straightforward
search for significant local maxima in the plot performs
well in identifying peaks. We based our heuristic proce-
dure for peak detection on the signal model used in
spectroscopy (32). According to this model, each peak in
the raw data can be represented as a sum of the true
peak, baseline function, and a constant offset. First, we
removed the constant term from the error detection plot
by subtracting its minimum value and then normalized
it to attain a maximum value of 1. Next, we obtained an
approximation of the baseline function by performing
soft thresholding of wavelet coefficients calculated for
the normalized signal with the universal threshold (33).
We used a modification of the widely used Daubechies
family of wavelets, the so-called symlet wavelets, which
are nearly symmetric and also enjoy the desirable prop-
erties of orthogonality and compact support (34). We
attenuated the signal by the obtained estimate of the
baseline. Finally, a point x(i) of the attenuated signal
was classified as a peak value if the signal’s first differ-
ence Dxi ¼ xiþ1 � xi satisfied the following three condi-
tions: (1) Dxi > A, (2) Dxiþk < �A for some k > 0, (3)
|Dxiþj| < A for 0 < j < k, where the cutoff value A was
defined as the mean value of the attenuated signal’s dif-
ference |Dx|. This procedure allows for detection of not
only localized errors but also corrupted data spanning k-
space continuously. Therefore, to ensure a fair compari-
son this procedure was used for error detection in both
the proposed method and the method of Bydder et al.
(13).

Data

Phantom objects were scanned on a 1.5 T GE Signa scan-
ner (General Electric Healthcare, Waukesha, WI), using a
custom-built, four-element (nc ¼ 4), bilateral, temporal
lobe, phased-array coil (35). Volunteers were scanned
using an eight-channel head (brain data) and neurovas-
cular (neck data) arrays.

Two full datasets of a resolution phantom were collected
using a gradient-echo sequence (matrix size 256 � 256,
field of view ¼ 14 � 14 cm, pulse repetition time ¼ 100
ms, flip angle ¼ 30�, receiver bandwidth ¼ 620.83 kHz).
The second dataset was obtained after applying a combina-
tion of small translational and rotational shifts to the phan-
tom (translation by 0.3 cm, followed by an 8� rotation).
Artifacts were induced by substituting the chosen lines of
the first dataset with the respective lines of the dataset cor-
responding to the displaced phantom at randomized posi-
tions (a total of 15% of k-space lines were corrupted; the
center of k-space (4% of lines) was not corrupted). One
hundred instances of randomly perturbed datasets were
created to evaluate the methods’ performance (Table 1).

A standard double-echo fast spin echo pulse sequence
was used to acquire neck data corrupted by pulsatile
motion (echo time ¼ 13.1/85 ms, pulse repetition time ¼
3 sec, echo train length ¼ 16, receiver bandwidth ¼
15.63 kHz, slice thickness ¼ 4 mm). A custom double-
echo fast spin echo sequence with randomized phase-
encoding ordering was used to obtain the brain data cor-
rupted by real motion (echo time ¼ 9/80 ms, pulse repe-
tition time ¼ 5 sec, ETL ¼ 16, receiver bandwidth ¼
31.25 kHz, slice thickness ¼ 2 mm). A volunteer was
asked to intermittently lift and nod his head with ran-
dom amplitude of 1-3 cm, then return his head to its
resting position.

Implementation Details

All data were processed using MATLAB 7 (Mathworks,
Natick, MA) environment on a personal computer (Intel
Xeon 3.0-GHz processor, 2 GB of random access mem-
ory). Nonmodulated sensitivity maps were estimated
from reference data, divided by uniform body coil image,
and preprocessed using a local polynomial smoothing
procedure (1). In vivo coil sensitivities were obtained by
apodizing k-space data with a Kaiser-Bessel window of
radius 32. The estimate of the phase constraint was
obtained applying a similar smoothing procedure to the
initial image estimate. We used POCSENSE for the final
reconstruction of the images. Detection plots for the

Table 1
Comparison of Error Detection and Correction Methods (POCSENSE and Method of Multiple k-Space Copies Regeneration)*

Multiple
k-space copies

POCSENSE

No
constraints

Additional
phase constraint

Additional
object support

All
constraints

Sensitivity 53.5% 76.5% 94.3% 84.4% 96.7%
Specificity 95.6% 96.9% 98.8% 99.7% 99.9%
RMS error 17.4% 11.1% 7.0% 7.6% 6.5%

*Results are averaged among 100 different simulated corruption cases. RMS, root mean square.
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method of Bydder et al. (13) were formed according to
the original description.

We evaluated sensitivity and specificity of error detec-
tion and average root mean square error in Monte Carlo
experiments on simulated motion corruption of phantom
data. The detection sensitivity was defined as the ratio
of the number of correctly identified corrupted lines to
the total number of corrupted lines. The detection speci-
ficity was defined as a ratio of the number of identified
uncorrupted lines to the total number of uncorrupted
lines. The root mean square error of corrected image was
calculated with respect to the ground truth image.

RESULTS

Figure 3 compares detection plots obtained with differ-
ent methods on artificially corrupted phantom data. One
instance from Monte Carlo simulations used to create Ta-
ble 1 containing both localized and a significant amount
of nonlocalized errors is chosen to illustrate error resolu-
tion properties of the methods. The plots show that the
inclusion of prior information in the form of object sup-
port and low-resolution image phase improves the iden-
tification of k-space error peaks, thereby resulting in an
increased sensitivity and specificity of error detection
(see Table 1). Using all of the available information pro-
vided best detection of corrupted lines. Furthermore,
inclusion of a phase constraint allowed a more robust

identification of k-space errors occupying a contiguous
range of phase encodes. These errors were not resolved
using coil sensitivity effect alone or in conjunction with
object support constraint (black arrows).

Table 1 presents quantitative results of testing the new
artifact correction procedure and the method of multiple
k-space copies (13) on artificially corrupted phantom
data in Monte Carlo simulations. As expected from plots
in Fig. 3, the new method provides detection of cor-
rupted lines, with higher sensitivity and specificity than
of the method of Bydder et al. (13) when nonlocalized
errors are present in the data. Inclusion of additional
constraints such as object support (Eq. 3), phase smooth-
ness (Eq. 4), or both in the detection procedure further
increases the new method’s sensitivity and specificity.
These increases are accompanied by a significant
decrease of root mean square error (from 17.5% for mul-
tiple k-space copies down to 6.4% for POCSENSE with
all constraints).

Table 2 shows results of simulations with different
numbers of intact central k-space lines. As may be
expected, the performance of phase constraint decreases
with the width of uncorrupted k-space center. How-
ever, even for the small number of total uncorrupted
lines in the k-space center (around 2% of the total
number of lines), significant improvement over the
other methods was observed. In extreme cases of cor-
ruption (0%, the central k-space line is corrupted),

FIG. 3. Comparison of detection plots for
different motion-correction approaches (x-

axis represents phase-encode direction).
Detection plots are formed using method
of multiple k-space copies regeneration

(13) and the proposed method without
constraining, with object support, with

phase constraint, and both constraints.
Arrows point to unresolved k-space errors.
Inclusion of more information gradually

improves identification of corrupted lines.
Note excellent resolution of continuous

k-space errors when detection is
attempted with phase constraint.

Table 2

Comparison of Error Detection of POCSENSE With Phase Constraint for Different Sizes of Uncorrupted k-Space Center for
Self-Calibrated Phase Estimation Approach

Uncorrupted center lines (%) 0 0.8 1.6 2.4 3.2 4

Sensitivity 68.2% 76.0% 86.9% 92.1% 92.1% 94.3%
Specificity 92.3% 93.9% 96.9% 97.9% 99.3% 98.8%
RMS error 24.58% 15.2% 11.3% 8.1% 7.4% 7%

RMS, root mean square.
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phase constraint resulted in the lowest sensitivity and
specificity.

Figure 4 shows results of correcting brain data cor-
rupted by intentional motion acquired with a random-
ized phase-encoding scheme. The true coil sensitivities
were used in the correction procedure. Even though ran-
domization of phase encodes leads to less coherent
ghosts than in the case of regular sampling, significant
artifacts still arise in the image. The proposed technique
eliminates even subtle ghosting arising from the corrup-
tion of high spatial frequencies.

Figure 5 shows results of correction of neck images
corrupted by pulsatile flow of cerebrospinal fluid (CSF).
The signal intensity of the CSF around spinal cord is
distributed among ghosts in the phase-encode direction
due to motion (Fig. 5a). The in vivo coil sensitivities
were used for artifact correction. Both unconstrained (to
lesser degree) and constrained (to higher degree) POC-
SENSE correction decreased ghosting in the recon-
structed images, as can be seen in Fig. 5b,c. These
improvements are further illustrated by the differences
between the corrupted and corrected images displayed
in Fig. 5g,h, with a scaling factor of 4. The magnified
images clearly demonstrate decreased and heterogeneous
signal in CSF ring around spinal cord due to motion-
induced ghosting (Fig. 5d). Simultaneously with ghost
artifact minimization, POCSENSE-based correction
restored intensity and improved homogeneity of the
region (Fig. 5e). We detected most improvement
when POCSENSE-based error detection is applied sim-
ultaneously with object support and phase constraints
(Fig. 5f).

DISCUSSION AND CONCLUSIONS

We developed a new method for correction of MRI arti-
facts induced by corrupted multicoil k-space data. The
new method relies on informational redundancy of
phased-array data acquisition and POCS constraints for a
robust error detection and artifact correction. Compared
to the method proposed in Bydder et al. (13), the new
method is much more sensitive and specific in error
detection and more efficient in artifact suppression
(Table 1). While sensitivity and specificity of error detec-
tion are also tightly connected with the choice of a peak
detection procedure, detection plots in Fig. 3 clearly
illustrate the basis for demonstratively improved error
detection. The new method also allows for correction of

data sampled with reduction factors above the previously
realized limit of nc/2 (13).

In practice, the maximum reduction factor for data
amenable to correction by the proposed technique
depends on the total number of corrupted lines. In gen-
eral, data left after discarding the erroneous samples
should possess enough information redundancy for
image reconstruction; that is, the final reduction factor
should not exceed the number of coils. If discarding er-
roneous data leads to large gaps of missing data (more
than amenable to reconstruction with a given number of
coil receivers), pMRI interpolation of such gaps may lead
to a badly conditioned problem. The accompanying SNR
decrease in the corrected images will be due to two fac-
tors: reduction of data lines and g-factor noise amplifica-
tion (1). While SNR degradation due to the first factor is
straightforward to calculate, the g-factor degradation will
depend on many factors, most important of which is the
size of contiguous gaps of data corrupted by motion.
Obviously, motion corrupting large contiguous k-space
areas is not amenable to correction with the proposed
technique. In case of such a severe corruption, a repeated
scan may still be necessary.

The sensitivity of motion correction will depend on
the peak-to-noise values in the detection plot. Height
of the peaks in the error detection plots depends both on
the severity of motion and on the energy of k-space data
in the corrupted regions. Since energy in k-space for re-
alistic objects falls off rapidly toward k-space edges, one
may expect that detection of samples in k-space areas of
higher spatial frequencies may be jeopardized in low
SNR acquisitions. For most non-Cartesian trajectories,
however, this issue may become less problematic, as
detection plots may be built summing up data points
along the radial direction (for radials) or along individual
interleaves (for spirals). In this case, because the k-space
center is sampled for every readout, contributions from
the corrupted k-space center will facilitate identification
of the corrupted readout.

An important characteristic of the new algorithm is
that it can easily adapt to include a priori information
about the imaged object that may be represented as
POCS constraints. Such information may be complemen-
tary to the data redundancy due the sensitivity encoding,
and, hence, may improve artifact correction. We demon-
strated that utilization of such constraints simultane-
ously with sensitivity encoding improves k-space error
detection and even relaxes a requirement on locality of
k-space inconsistencies, which is necessary when pMRI

FIG. 4. Correction of brain data
corrupted by bulk motion. a:
Corrupted image. b: Corrected
image. c: Absolute value of dif-
ference between (a) and (b)
(�4).
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artifact correction procedure is applied on its own. In
particular, we demonstrated that using object support,
phase smoothness constraints, or both significantly
improves sensitivity and specificity of error detection.
While object support constraint has been previously
used (22), application of smooth phase constraint for
motion correction, to the best of our knowledge, is novel.
As the phase constraint utilizes data redundancy due to
Hermitian symmetry of Fourier transform, the require-
ment on localization of k-space errors imposed by sensi-
tivity encoding becomes less stringent (Fig. 3). Tables 1
and 2 also show that smooth phase constraint outper-
forms the object support constraint in the case when an
adequate phase estimate may be obtained from low-reso-
lution images. Therefore, using the phase smoothness
constraint (Eq. 4) may be important for motion artifact
correction when object support constraint is of limited
extent and/or when it is desirable to avoid the associated
postprocessing. Provisions should be made to ensure
that an adequate estimate of phase is available. To
ensure that the k-space center is not corrupted, several
possible ways may be suggested. First, obtaining phase
estimate may be a part of a reference scan used to cali-
brate pMRI (36). Second, a synergetic combination of the
multiple k-space copies method of Bydder et al. (13) and
the proposed method may be used. In this approach,

detection of corrupted samples and restoration of image
are interleaved with estimation of coil sensitivities and
image phase, leading to refinement of coil sensitivities
and image phase estimate. As the method of Bydder
et al. (13) works best at the k-space center, it may be
used in the first place to correct k-space center and
obtain error-free coil sensitivity estimates. Then, the pro-
posed method with refined image phase may be used to
resolve the rest of k-space errors.

A conceptually related approach was recently pro-
posed for three-dimensional radial diffusion-weighted
imaging in steady state (37). In this approach, radial
lines corrupted during application of diffusion gradients
were determined by detecting outliers in distribution of
the centers of mass of radial lines and restored using
pMRI reconstruction. The utility of the POCSENSE-based
method for correction of motion artifacts in diffusion-
weighted acquisitions is currently under investigation.

While our method does not rely on specific models of
object motion, it achieves best correction when most
data form a consistent subset or the object spends a large
amount of time in a ‘‘baseline’’ position. The method
was applied to correct patient head motion (Fig. 4) and
pulsatile motion (Fig. 5). Another potential application
is cardiac cine imaging with prospective cardiac gating
in patients with arrhythmia, where motion artifacts may

FIG. 5. Correction of neck images

corrupted by pulsatile motion of
CSF. Corrupted image (a) was cor-
rected by the proposed method

both without (b) and with support
and phase constraints (c). The cor-

responding magnified images are
given in (d,e,f), respectively. Note
the increase in CSF intensity and

its homogeneity around spinal cord
from (d) to (e) to (f). The mean val-
ues within the CSF ring are 0.901,

0.986, and 1.019 for uncorrected
(d), POCSENSE-corrected (e), and
POCSENSEþsupportþphase-cor-
rected (f) cases, respectively. The
differences between corrupted and

corrected images (b,c) (�4) illus-
trating the removed artifacts are

given in (g) and (h), respectively.
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be introduced because of degraded correlation between
ECG events and cardiac motion. As we have demon-
strated, utilization of additional constraints may improve
detection of nonlocalized k-space errors (Fig. 3; Table 1).
However, the corresponding gaps in k-space data should
be narrow enough to allow restoration with the given
number of receiver coils. Hence, the motion correction
procedure will still benefit from localization of k-space
errors. Such localization can be promoted using sequences
with randomized phase encodings, when corruption due to
continuous motion becomes randomly distributed from
line to line in k-space. Additionally, the maximum width
of contiguous gaps of eliminated data may be artificially re-
stricted to reduction factors feasible with a given coil array.

Practical implementation of the proposed method may
vary, depending on application. In segmented scans
such as fast spin echo sequences, the motion may be
expected to corrupt the whole echo train. Hence, more
benefits are expected when the whole echo train is elimi-
nated. In fast gradient echo-based sequences, not only
detected corrupted readouts but also readouts acquired
in immediate time intervals may be eliminated to ensure
robust correction. In case of calibration in a separate cali-
bration scan, extrapolation of coil sensitivity maps out-
side object support seen in the reference scan toward
field of view edges is an adequate choice to ensure that
final coil sensitivity maps cover the area of possible
object positions during the scan (1). Finally, the new
method is expected to handle artifacts caused by k-space
spike noise (38).
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