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A novel method for iterative reconstruction of images from
undersampled MRI data acquired by multiple receiver coil sys-
tems is presented. Based on Projection onto Convex Sets
(POCS) formalism, the method for SENSitivity Encoded data
reconstruction (POCSENSE) can be readily modified to include
various linear and nonlinear reconstruction constraints. Such
constraints may be beneficial for reconstructing highly and
overcritically undersampled data sets to improve image quality.
POCSENSE is conceptually simple and numerically efficient and
can reconstruct images from data sampled on arbitrary k-space
trajectories. The applicability of POCSENSE for image recon-
struction with nonlinear constraining was demonstrated using a
wide range of simulated and real MRI data. Magn Reson Med
52:1397–1406, 2004. © 2004 Wiley-Liss, Inc.
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Recently developed parallel MRI (P-MRI) techniques (1–
10) may provide significant MRI acquisition speedup for
imaging with multiple receiver coils. The speedup is at-
tained by acquiring undersampled representations of k-
space. The dissimilarities in coil sensitivities provide sup-
plementary spatial encoding called sensitivity encoding.
The image reconstruction from the reduced data sets re-
quires additional calibration information, such as coil sen-
sitivity profiles, or extra reference k-space lines (7,8). P-
MRI could be applied with standard pulse sequences, and
the attained speedup could be used for improving tempo-
ral and/or spatial resolution of MRI. Recent advances in
sensitivity encoding allowed P-MRI with arbitrary k-space
sampling trajectories (11).

P-MRI techniques provide a number of benefits in many
practical applications. However, there are inherent diffi-
culties when the P-MRI techniques are applied for image
recovery from highly undersampled data sets. In such
situations, the image reconstruction often becomes ill-con-
ditioned, which may result in considerable degradation of
the image quality by amplified noise. The effects can be
partially resolved by conditioning the data inversion (6).
Some P-MRI techniques (1,7,8) possess inherent numerical

conditioning. The price of such conditioning is decreased
reconstruction accuracy that may result in incomplete re-
moval of aliasing arising from data undersampling. Ad-
vanced approaches (12–16) utilize adaptive regularization
to minimize both power of aliasing artifacts and noise
power. The method proposed in Ref. (12) uses low-resolu-
tion reference data to find optimal trade-off between the
noise amplification and residual aliasing. Low-resolution
reference scans were also used to achieve acceptable re-
sults for underdetermined SENSitivity Encoding (SENSE)
reconstruction (16). The techniques presented in Refs.
(14,15) rely on postreconstruction noise filtering to obtain
a reference image for adaptive regularization in the second
pass reconstruction.

All described methods exploit linear algebra frame-
work to utilize additional information for image quality
improvement. Another way to include a priori informa-
tion into reconstruction is to use Projections onto Con-
vex Sets (POCS) formalism. POCS is a powerful mathe-
matical tool for reconstruction of incomplete and/or
inconsistent data. POCS could be used in such situa-
tions due to its remarkable flexibility in constraint ma-
nipulation (17,18). Example applications of the POCS
method in MRI include image reconstruction from par-
tial k-space data (19 –21), a reduction of image degrada-
tion caused by motion artifacts (22–24), and a correction
of ghosting artifacts in EPI images (25). Applicability of
POCS formalism to P-MRI data reconstruction problem
has not been considered by the medical imaging com-
munity yet. However, such an approach to the problem
solution would provide a valuable tool for utilization of
various nontrivial constraints to achieve improved im-
age quality.

In this paper, we propose a novel method for image
reconstruction from sensitivity encoded MRI data. The
new technique, POCSENSE, is based on the POCS formal-
ism and provides an algorithmically simple and computa-
tionally efficient way to utilize various linear and nonlin-
ear constraints in image reconstruction. The paper is or-
ganized as follows. In the first section, we give a brief
overview of the POCS formalism and present sequential
and parallel POCS approaches. Next, we describe our
method and its implementation for Cartesian and non-
Cartesian k-space trajectories. Finally, we present and dis-
cuss results of the application of POCSENSE to reconstruc-
tion of synthetic and real MRI data.

THEORY

POCS Reconstruction of MRI Data

The conceptual basis of POCS is that available constraints
onto the solution of the image reconstruction problem can
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be considered convex sets3 in a Hilbert space, H, where H
consists of all possible complex images. Every known con-
straint onto an image restricts it to lie in the associated
closed convex subset of H. If m such constraints are avail-
able, then m closed convex sets �i (i � 1,2, . . . , m) may be
defined. Assuming that their intersection �0 is not empty
(the convex sets are consistent), then �0 is also a closed
convex set of H, each point of which satisfies all available
information about the solution. Therefore, the image re-
construction problem may be reformulated as the problem
of finding a point in a Hilbert space belonging to the
intersection of the convex sets defined by a priori infor-
mation (18). The problem is recursively solvable if a pro-
jection operator Pi is realizable for each convex set �i, i �
1, 2, . . . , m. In a Hilbert space, the projection operator onto
a convex set maps the image estimate onto the closest
point in the associated convex set. The relaxed projection
operator Ti can be defined as

Ti � I � �i (Pi � I), [1]

where I is the identity operator and �i is a relaxation
parameter, which affects the convergence speed. If �0 is
not empty, and �i � (0,2], the fundamental theorem of
POCS (17) guarantees weak convergence to a point in �0

by alternating projections onto the sets:

g(n � 1) � Tm· · ·T1g (n). [2]

This method is further referred to as sequential POCS.
Another way to apply convex constraints is to use a

parallel (simultaneous) projection technique (26,27). At
each iteration of parallel POCS, the result is formed by a
combination of the individual results of simultaneous pro-
jections onto groups of available sets:

g�n � 1� � g�n� � ��n� ��
i

wiPi(g(n)) � g(n) �, [3]

where �iwi � 1. The �(n) can be chosen the same way as in
sequential POCS, or it can be defined as ��n� � (0, 2L�n�],
where L(n) is an iteration-dependent extrapolation param-
eter used to speed up the convergence (27). Parallel POCS
algorithms are more robust than the conventional sequen-
tial POCS algorithms in the case of image reconstruction
from inconsistent constraints. Inconsistency of the con-
straints may be caused by noise in the data measurements
or systematic errors in constraints. As a rule, the intersec-
tion of inconsistent convex sets is an empty set. In this
case, the convergence behavior of the sequential and the
parallel POCS algorithms is quite different. The sequential
algorithm converges to a closed path called a greedy limit
cycle and stays on the path indefinitely (Fig. 1a). In cases
of inconsistent convex sets, the parallel POCS algorithm
converges weakly to a point of a Hilbert space such that the
weighted least squares distance between the point and all

convex sets is minimized (Fig. 1b). This outcome is pref-
erable because the solution is close to each of the convex
sets and, therefore, all constraints on the solution contrib-
ute to the result. Additionally, the parallel POCS con-
verges noticeably faster than sequential POCS (26,27).

Convex Sets and Projection Operators for MRI Data
Reconstruction

Let r and k denote image space and k-space coordinates,
respectively, and let K be a set of k-space positions consti-
tuting the sampling trajectory. Assume that m0(k) is data
acquired at k � K. The convex set �ds can be defined as a
set consisting of all images whose k-space values at k � K
are equivalent to m0(k). The operator Pds for projection of
an arbitrary image function f(r) onto the set �ds can be
constructed as

Pdsf �r� � f �r� � IDFT�m0�k� � DFT
k�K

�f �r�		, [4]

where DFT is a discrete Fourier transform mapping data
from image domain to k-space sampling trajectory posi-
tions, and IDFT is an inverse discrete Fourier transform
performing the backward mapping. The operator ensures
consistency between reconstructed image and the ac-
quired k-space data. Other convex sets and associated
projection operators pertinent to MRI data reconstruction
are defined in Table 1.

General Formulation of POCSENSE

Assume that the NC-element coil array with known coil
sensitivities si(r), (i � 1, . . . , NC) is used for the imaging,
and mi,0(k) is a data set acquired by the ith coil at k � K
that constitutes the set �i

ds. The data projection operator
for each set �i

ds can be defined in a manner similar to Eq.
[4]. In order to guarantee consistency between acquired
data and the image to be projected, the image estimate is
modulated by the sensitivity profile of the coil element
used for the given data set acquisition. The projection
operator is then given by

Pi
dsf�r� � Pds(f(r)si(r))
f(r)si(r)

� IDFT�mi,0(k) � DFT
k�K

{f(r)si(r)}	. [5]

After the projection, the result should be demodulated by
the sensitivity profile. In our method the demodulation is
done in Step 2 of the algorithm.

3A set � � H is convex if and only if for any g1, g2 � � and all � � [0,1] g �
�g1 � (1 � �)g2 � �.

FIG. 1. Convergence of sequential (a) and parallel (b) POCS algo-
rithms in the case of inconsistent convex sets (the intersection of the
convex sets is the empty set).
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Additionally, we introduce two families of projection
operators based on the image properties (Table 1). The first
one is composed of all projections onto sets associated
with image property constraints for the image combined of
all coil images,

P0
pr
P0,N

pr P0, N�1
pr · · ·P0,1

pr , [6]

where N is the number of property constraints onto the
image with corresponding projection operators P0,j

pr . Prop-
erty sets can be defined not only for the combined image
but also for the individual coil images. The composite
projection operator onto these property sets is given by

Pi
pr
Pi,Ni

pr Pi,Ni�1
pr · · ·Pi,1

pr , [7]

where Ni is the number of constraints onto the ith coil
image, and Pi,j is a projection operator onto the jth property
set of the ith coil image.

Algorithm: POCSENSE

Starting with an initial guess g(0)(r), proceed until conver-
gence as follows:

Step 1:

gi
�n�1� � Pi

prPi
ds�g�n��, i � 1, . . . ,NC

Step 2:

t1��
i�1

NC

�igi
(n�1)

Step 3:

t2 � g(n) � �(n)(t1 � g(n))

Step 4:

g(n�1) � P0
prt2.

Here, * is the complex conjugate operation, and gi
(n) is the

current estimate of the image acquired by the ith coil.
Coefficients �i are precalculated as

�i �
si

���

�
j�1

NC

sj
���sj

, i � 1, . . . , NC. [8]

Here,

si
��� � �

j�1

NC

sj*�ji, i � 1, . . . ,NC, [9]

where �ij are entries of the inverse of noise resistance
matrix characterizing levels and correlations of noise in
the receiver channels (28).

In Step 1, estimates of individual coil images are recon-
structed by projecting the current image estimate onto the
corresponding data and property convex sets. Then, in
Step 2, the updated coil images are combined exploiting
the SNR optimal reconstruction equation proposed in Ref.
(28). The resulting image estimate is updated in Step 3 and
additionally constrained by projecting onto optional prop-
erty convex sets in Step 4. The diagram in Fig. 2 illustrates
the algorithm implementation. The use of property con-
straints in POCSENSE is possible not only in a sequential
(Step 4 of the algorithm) but also in a parallel way (Eq. [3]).
Such an approach can reduce sensitivity of solution to
errors in constraints (27).

To speed up the algorithm convergence, an iteration-
dependent relaxation parameter �(n) may be taken as
0�(n)�2L(n), where L(n) is the extrapolation parameter
found as (10)

Table 1
Property Convex Sets and the Associated Projection Operators for MRI Data Reconstruction

Convex set Projection operator

Notation Description Definition Description

�M Set of images with a limited
object support M

PMg�r� � � g�r�, r � M
0, otherwise

Zeroes values outside object
support M

�v Set of images with intensity
restricted by V (V�0) Pvg�r� � � g�r�, �g�r�� � V

V � g�r�
�g�r�� , otherwise

Restricts the image intensity
to be lower or equal to the
predefined value V

�� Set of images with phase
equal to �(r)

P�g�r� � �g�r�� � ei��r� Sets the image phase to the
predefined function �(r)

�E Set of images with energy
in the FOV limited by E
(E�0)

PEg�r�

� � g�r��E/EFOV, EFOV � E,
g�r�, otherwise

Ensures that image energy is
not greater than the
predefined value E

where EFOV � ¥
r�FOV

g2�r�
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L�n� �

�
i�1

NC �si
����gi

�n�1� � g�n�si��
2

2

��
i�1

NC

si
���si � �t1 � g�n���

2

2 . [10]

Here, � � �2 is L2 norm. For nonaccelerated POCSENSE, the
parameter L(n) is equal to 1.

MATERIALS AND METHODS

Implementation Details

For the standard POCSENSE reconstruction, coil sensitiv-
ity maps and an object mask (object support) were ob-
tained from reference scans by methods similar to those
described in Ref. (2). Rough sensitivity maps were ob-
tained as ratios of individual coil images to body coil
image and then filtered by polynomial smoothing (qua-
dratic polynomial, Gaussian weighting with �s � 0.04 of
image size, window radius 2�s). For self-calibrated POC-
SENSE reconstruction, the coil sensitivities were esti-
mated using the fully sampled central part of k-space (29).
The following measure,

err �
�g(n�1)�g(n)�2

�g(n)�2
, [11]

was chosen as a stopping criterion for POCSENSE itera-
tions. Iterations continue until err drops below the pre-
defined value (tolerance). For extrapolated iterations (Eq.
[10]), the relaxation parameter was chosen as �(n) � 1.5 L(n).

POCSENSE implementations for Cartesian and non-Car-
tesian cases are only different in realization of the data
projection operator given in its general form in Eq. [4].
This is the most computationally demanding step of the
algorithm as it includes transferring the current image
estimate into the k-space domain, updating the k-space
values, and transferring the updated data back into the
image space to create a new image estimate. Detailed de-
scriptions for Cartesian and non-Cartesian cases are given
below.

Data Projection Operator for Cartesian POCSENSE

The data projection operator for a Cartesian trajectory is
equivalent to the data substitution operator used in a
POCS-based reconstruction of partial Fourier data (19).
The operator implementation could be derived from Eq.
[5] resulting in a sequence of operations:

f̃i�r� � Pi
dsf�r�N	

i. mi,c�k� � FFT�si�r�f�r�	

ii. m̃i,c�k� � �mi,0�k�,k � K
mi,c�k�,k�K

iii. f̃i�r� � IFFT�m̃i,c�k�	

[12]

where mi,c(k) is the current estimate of k-space data for the
ith coil image, i � 1, . . . , NC.

Each projection onto the convex set defined by mi,0(k)
includes the fast Fourier transform (FFT) of the image
estimate, the update of k-space values at the sampled
trajectory positions with known values and inverse FFT to
the image domain. If the k-space data are undersampled
only along one dimension, which is typical for 2D P-MRI,
a 1D FFT can be used instead of a 2D FFT. The data
projection operator implementation is shown in Fig. 3a.

Data Projection Operator for Non-Cartesian POCSENSE

In the case of a non-Cartesian trajectory, the discrete Fou-
rier transforms can be approximated using FFT and k-
space interpolation (11) or nonuniform FFT (30). The data
projection operator for data acquired by the ith coil is
defined as

f̃i�r� � Pi
dsf�r�N

� i. mi,c�k� � FFT�si�r�f�r�	
ii. m̃i,c�k� � mi,c(k)�GAC�mi,0�k� � GCAmi,c�k��.

iii. f̃i�r� � IFFT�m̃i,c�k�	
[13]

Here, GAC and GCA are resampling operations transferring
the k-space data from the original sampling trajectory to a
regular Cartesian grid and vice versa. In order to update
the k-space values, the current Cartesian k-space estimate
is first resampled onto the original sampling trajectory
positions. Then, the difference between initial and up-
dated values is taken to construct a set of error measure-
ments. Finally, the measurements are resampled onto the
Cartesian grid and used to construct a new Cartesian k-

FIG. 2. Block-scheme of POCSENSE.
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space estimate. The diagram in Fig. 3b illustrates the data
projection operator implementation for the non-Cartesian
case. The described data projection operator could be also
used in other POCS-based reconstructions of non-Carte-
sian MRI data.

To implement the resampling operations, a standard
gridding algorithm (31) with Kaiser–Bessel convolution
kernel (L � 3, B � 14.1372) and overgridding by 2 was
used. The sampling density compensation function was
estimated by a technique described in Ref. (32).

Test Data

POCSENSE was validated by studying its feasibility and
effectiveness on synthetic and real data sets. The synthetic
data set was constructed using the data from the digital
brain phantom (33) as an image magnitude. Image phase
was simulated by the quadratic function. The magnitudes
of coil sensitivities (NC � 4) were modeled by Gaussian
functions and their phase factors by 2D linear functions.
Gaussian zero-mean noise was added to both real and
imaginary image channels.

Reference and sensitivity encoded images of phantoms
were acquired on a 1.5-T Signa MR system (General Elec-
tric Medical Systems, Milwaukee, WI) using custom-built
bilateral temporal lobe phased array coil (two coil pairs,
each coil loop is 9.7 � 11.6 cm) (34). Non-Cartesian data
sets were acquired using a spoiled gradient-echo pulse
sequence with spiral readout (TE � 3.1 msec, TR � 0.5 sec,
flip angle � 45o, FOV � 15 � 15 cm, 2-mm slice thickness,
18 interleaves, 2048 samples per interleave). Cartesian
data sets were acquired by imaging the phantoms with fast
spin echo pulse sequence (TE � 34 msec, TR � 2 sec,
ETL � 16, FOV � 24 � 24 cm, 2-mm slice thickness,
matrix � 256 � 256).

Data from healthy volunteers were acquired on a 3-T
Trio MR system (Siemens Medical Solutions, Erlangen,

Germany) using an eight-channel head coil (MRI Devices,
Waukesha, WI) and dual contrast 2D turbo spin echo pulse
sequence (TE � 10/100 msec, TR � 5 sec, ETL � 18,
FOV � 23 � 23 cm, 2-mm slice thickness, matrix � 256 �
252). Informed consent was obtained from all volunteers
in accordance with our institution’s human subjects poli-
cies.

RESULTS

Unconstrained Reconstruction

Figure 4 shows results of testing POCSENSE on the
synthetic data. Two types of sampling, Cartesian and
pseudo-random (samples randomly placed on Cartesian
grid positions), were considered. The algorithm conver-
gence was measured in terms of RMS error relative to the
reference image. Plots demonstrate that reduction of
RMS error is accompanied by monotonically decreasing
error measure (Eq. [11]). Convergence of POCSENSE and
conjugate gradients iterative SENSE (iSENSE) (11) are
compared in Fig. 5. For low reduction factors, conver-
gence rates of POCSENSE and iSENSE were comparable.
For maximal reduction factor, POCSENSE converged
noticeably slower than iSENSE, illustrating the well-
known limitation of POCS-based techniques (27) for
poorly conditioned cases. However, POCSENSE with
adaptive relaxation parameter (Eq. [10]) may be used in
such situations to speed up convergence (Fig. 5b).

Figure 6 demonstrates reconstruction of spiral data
using POCSENSE and iSENSE (11). To construct an
undersampled data set with R � 2, every second inter-
leave from an 18-interleave data set was chosen for each
coil element of the 4-coil receiver system (NC � 4). The
images reconstructed from the complete and under-
sampled data sets by the gridding technique are shown
in Fig. 6a and b, respectively. The quality of the second

FIG. 3. Implementation of the
data projection operator for (a)
Cartesian and (b) non-Cartesian
POCSENSE. Here, C(k) is the k-
space convolution kernel, and c(r)
is its image space counterpart.
Sampling density compensation
is accomplished before each con-
volution operation.
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image is seriously deteriorated by aliasing artifacts. The
POCSENSE reconstructed image (Fig. 6c) is identical to
the image reconstructed from the complete data set (Fig.
6a) except for the increased noise level that is charac-
teristic for all P-MRI techniques (Fig. 6d). Noise level

was estimated using a central part of the image that was
not corrupted by aliasing. In agreement with imaging
time reduction by factor of 2 (R � 2), noise standard

FIG. 4. Reconstruction of the synthetic data set (R � 3, NC � 4, � � 1.5) for (a) pseudo-random and (b) Cartesian sampling trajectories.
Plots show dependence of error measure and RMS error versus the iteration number. Images illustrate the reconstruction results after the
first iteration and after error measure reached values 1e-1, 1e-2, and 1e-3, correspondingly.

FIG. 5. Convergence of POCSENSE and iSENSE (CG) techniques
(digital brain phantom, Cartesian sampling, NC � 4) for (a) R � 2 and
(b) R � 4.

FIG. 6. Application of POCSENSE for non-Cartesian data recon-
struction (spiral readout, R � 2, NC � 4, tol � 1e-3, � � 1, object
support constraint). a: Reference image (noise SD � 0.032, intensity
range [0,1]); white contour in the center identifies ROI for noise
estimation. b: Sum-of-squares image from gridding reconstruction.
c, e: POCSENSE (SD � 0.0451, RMS � 0.0538) and iSENSE (SD �
0.0452, RMS � 0.0540) images, correspondingly. d, f: Magnitude of
differences between (c, e) and the reference image (a) (intensity
range is [0, 0.2]).
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deviation (SD) was approximately increased by the
square root of 2. In the absence of additional constraints,
POCSENSE and iSENSE produced identical results with
similar RMS errors and noise levels.

Constrained Reconstruction

Figure 7 shows the results of a POCSENSE reconstruction
of a phantom image from an undersampled Cartesian data
set (R � 2) obtained with two receiver channels (NC � 2).
To estimate the POCSENSE performance with and without
maximum value (MV) constraint, we performed the fol-
lowing experiment. First, the upper bound onto image
intensity, V, was estimated from the reference image.
Then, 50 iterations of POCSENSE without and with MV
constraining were computed. The resulting images are
shown in Fig. 7b and c, respectively. Differences between
reference image reconstructed from fully sampled data
(Fig. 7a) and POCSENSE reconstructed images (Fig. 7d and
e) reveal that MV constraint can be used to suppress the
noise amplification and to improve the image quality.

Figure 8 demonstrates the application of POCSENSE to a
solution of underdetermined reconstruction problems.
Theoretically, the maximal speedup for P-MRI is equal to
the number of coils, NC. We refer to data sampled with
R � NC as highly undersampled, R � NC as critically
undersampled, and R � NC as overcritically under-
sampled. A test data set was constructed from the spiral
data set by choosing every third interleave. The reduction
factor for the resulting data set is equal to 3, which is
undercritical for a 4-coil system, but it is overcritical for a
2-coil system. The reconstruction was initially done with
4-coil data set using the gridding technique (Fig. 8a). Then,
a reduced 2-coil data set was used to simulate the under-
determined problem. The images reconstructed by the
gridding technique and POCSENSE from such a data set
are shown in Fig. 8b and c, respectively. Both exhibit
significant aliasing artifacts. Finally, POCSENSE, with ad-
ditional phase constraint, was applied to reconstruct the
overcritically undersampled data set. We obtained a phase
constraint from the image in Fig. 8a. In practice, this con-
straint could be obtained in different ways, for example,
from the k-space center of variable density spiral data (35).
The result of the phase constrained POCSENSE recon-
struction is shown in Fig. 8d. The image demonstrates
significant improvement in the quality in comparison with
the image reconstructed from the same data set but with-
out phase constraining. The residual artifacts in the image
center (Fig. 8d) are mainly caused by systematic errors in
phase estimate used for phase constraining and are present
in the reference image (Fig. 8a) as well. Differences shown

in Fig. 8e and f reveal improvement in image quality for
phase constrained image reconstruction.

Figure 9 shows an example of self-calibrated POCSENSE
reconstruction. In the self-calibration approach (29), the
k-space center is fully sampled, while the rest of k-space is
undersampled with a reduction factor R (Fig. 9a). Al-
though the effectual reduction factor is reduced in self-
calibrated P-MRI, the advantage of such an approach is
that coils and image information are acquired in the same
scan, ensuring reliability of coil sensitivity estimates. In
this study, standard self-calibrated acquisition (Fig. 9a)
was simulated from a fully sampled phantom data set.
Images reconstructed by self-calibrated POCSENSE for two
different numbers of k-space lines used for self-calibration
are shown in Fig. 9b and c, respectively. The decreased
number of reference k-space lines leads to errors in recon-
structed image (Fig. 9d and e).

FIG. 7. POCSENSE with MV-constraint. a: Reference image. b, c: Images reconstructed without and using MV constraint, correspondingly.
d, e: Absolute error for (b) and (c), respectively. RMS error for (b) is 0.170 and for (c) is 0.114.

FIG. 8. Application of POCSENSE for overcritically undersampled
data reconstruction (spiral readout, 100 iterations, � � 1, phase and
object support constraints). a: Reconstruction of 4-coil data set
(R � 3, NC � 4). b: Sum-of-squares image reconstructed by grid-
ding from 2-coil data set (NC � 2). c, d: Unconstrained and phase
constrained POCSENSE reconstruction of 2-coil data sets (R � 3,
NC � 2), respectively. e, f: Magnitude of differences between (c, d)
and the reference image (a), correspondingly.

POCSENSE Data Reconstruction 1403



Reconstruction of Partial Fourier Data

The partial Fourier (PF) approach has frequently been
used to decrease scan time by asymmetrical acquisition of
k-space (19). Usually, reconstruction of PF data utilizes a
low-resolution phase estimate from the symmetrically
sampled k-space center. PF sampling could be combined
with P-MRI (Fig. 10). A standard approach for reconstruc-
tion of such data sets is sequential when application of a
P-MRI technique is followed by PF reconstruction. These
two steps could be combined using phase constrained
POCSENSE. In this case, phase estimate from symmetri-
cally sampled k-space center is used as a constraint in
POCSENSE reconstruction.

Figure 10 demonstrates the results of PF-POCSENSE
reconstruction. In this study, the acquisition was simu-
lated using fully sampled real brain data. The sequential
approach to PF P-MRI data reconstruction was realized as
follows. First, iSENSE was applied to reconstruct the ini-
tial image estimate by recovering missing lines in under-
sampled k-space area. Then, the k-space estimate was used
in POCS-based PF reconstruction (19). PF-POCSENSE
used the same phase constraint as the latter procedure.
Results indicate that simultaneous utilization of P-MRI
and PF significantly improves image quality in compari-
son with the sequential reconstruction (RMS error is 0.095
versus. 0.165). As with any PF reconstruction, recon-
structed images contain errors in the areas where phase

estimate deviates from the true image phase. This type of
degradation is noticeable on the error images.

DISCUSSION

POCS is a well-known technique for signal reconstruction/
recovery from partial or inconsistent data. In recent years,
this technique has become widely used by the medical
imaging community due to its ability to adapt to a variety
of linear and nonlinear constraints in an algorithmically
and numerically efficient way (19–25). In this paper, we
have demonstrated that the POCS formalism could be suc-

FIG. 10. Comparison of several approaches for PF P-MRI data
reconstruction (brain data set, Cartesian sampling, R � 3, NC � 4,
number of reference lines � 50, tol � 0.001 for all iterative tech-
niques, � � 1.5). Top row: PF, self-calibrated P-MRI sampling
scheme and reference image from fully sampled data. Bottom rows:
images and image errors for different reconstruction approaches.

FIG. 9. Self-calibrating POCSENSE reconstruction (Cartesian sam-
pling, R � 2, NC � 4, tol � 0.01, � � 1.5). a: Self-calibrated sampling
scheme. b, c: Reconstruction results for the cases when the number
of reference lines for coil estimation was equal to 42 (b) and 22 (c)
(total 149 and 139 lines, correspondingly). d,e: Error images corre-
sponding to (b, c).
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cessfully employed for P-MRI data reconstruction. The
distinctive feature of our new method is that it may easily
utilize nontrivial constraints to improve the resulting im-
age quality. Two possible scenarios that involve MV and
phase constraints were demonstrated in the Results. Both
MV and phase constraints may be obtained from sepa-
rately acquired reference data or using image estimates
from densely sampled regions of such trajectories as radial
(36) or a variable-density spiral (35) or utilizing a self-
calibrated P-MRI approach.

It was shown that POCSENSE is a flexible tool to com-
bine reconstruction of partial Fourier and P-MRI data in a
single procedure. Such a technique results in improved
image quality in comparison with a sequential approach
(Fig. 10). The observation may be explained by the fact that
phase constraining improves conditioning of the P-MRI
reconstruction problem, as additional a priori information
is included in the reconstruction. PF acquisition is espe-
cially suitable for application with self-calibrated P-MRI
(37). As such, the image reconstruction becomes self-con-
tained, as it does not require any reference scans for coil
sensitivity and image phase estimations. The number of
reference lines for PF-POCSENSE should be sufficient to
guarantee reliable estimation of coil sensitivities and
phase constraint. Too few lines may lead to errors in coils
sensitivities and phase constraint deteriorating image
quality. If reconstruction relies on coil sensitivity esti-
mates from reference scans, undersampling of central k-
space area is also applicable. In this case, PF-POCSENSE
should be preceded by reconstruction of central k-space
part for image phase estimation.

POCSENSE is straightforward to implement using stan-
dard MR reconstruction methods, such as FFT and grid-
ding algorithms. The reconstruction time per iteration on a
laptop PC (AMD 1.8 GHz, 512 Mb RAM) is less than 0.2 sec
for Cartesian data and less than 3 sec for spiral data (image
matrix � 256 � 256, R � 2, NC � 4, overgridding factor �
2, lookup-table-based implementation of gridding). For
many trajectories with oversampled regions, the computa-
tionally expensive data projection operator (Eq. [5]) could
be implemented using a combination of Cartesian projec-
tion (Eq. [12]) for data regridded to regular Cartesian grid
positions in oversampled areas and non-Cartesian projec-
tion (Eq. [13]) for undersampled areas. As a result, grid-
ding is used only once for the oversampled areas decreas-
ing the computational load of the proposed algorithm.
Another interesting way to apply POCSENSE to non-Car-
tesian data is to utilize the iterative next-neighbor gridding
approach, allowing application of efficient Cartesian data
projection for data sampled onto arbitrary k-space trajec-
tories (38).

The main limitation of POCSENSE is that it exhibits
slow convergence for poorly conditioned problems that
often arise for highly undersampled data. The use of ex-
trapolated iterations in the POCSENSE implementation
partially solves the problem (10). From our experience,
extrapolated iterations are most efficient for high reduc-
tion factors. The number of iterations required for conver-
gence depends on the choice of the initial guess, relaxation
parameter values, the data acquisition reduction factor,
sampling strategy, and coil system configuration and may
vary among different applications.

Reformulation of the problem of image reconstruction
from sensitivity encoded data in the context of the POCS
approach presents appealing possibilities for future re-
search. Multiple convex sets introduced by the signal pro-
cessing community (18,39) may also be adapted for
improving P-MRI data reconstruction. Application of low-
resolution reference images (16) for constrained POC-
SENSE reconstruction may be useful to improve recon-
struction from highly undersampled data sets and will be
considered in separate research. Our algorithm can be
easily modified regarding the way property constraints are
applied (40). POCSENSE is expected to be equally impor-
tant for the reconstruction of both Cartesian and non-
Cartesian data when nontrivial constraints are available.
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