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Anisotropic diffusion filtering is widely used for MR image en-
hancement. However, the anisotropic filter is nonoptimal for
MR images with spatially varying noise levels, such as images
reconstructed from sensitivity-encoded data and intensity in-
homogeneity-corrected images. In this work, a new method for
filtering MR images with spatially varying noise levels is pre-
sented. In the new method, a priori information regarding the
image noise level spatial distribution is utilized for the local
adjustment of the anisotropic diffusion filter. Our new method
was validated and compared with the standard filter on simu-
lated and real MRI data. The noise-adaptive method was dem-
onstrated to outperform the standard anisotropic diffusion filter
in both image error reduction and image signal-to-noise ratio
(SNR) improvement. The method was also applied to inhomo-
geneity-corrected and sensitivity encoding (SENSE) images.
The new filter was shown to improve segmentation of MR brain
images with spatially varying noise levels. Magn Reson Med
52:798–806, 2004. © 2004 Wiley-Liss, Inc.
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MR images often require postacquisition noise filtering
before they are visually inspected or noise-sensitive post-
processing methods are applied (1). As a rule, such filter-
ing is desired to significantly decrease image noise and,
simultaneously, to preserve fine image details in the im-
age. Anisotropic diffusion (2) is an accepted filtering tech-
nique that provides such image enhancement. The aniso-
tropic diffusion filter is suitable for practical use because
of its computational speed and algorithmical simplicity.
The filter assumes that image noise is Gaussian-distrib-
uted, which is valid for SNR � 3 (3). The anisotropic
diffusion filter has proved to be a valuable preprocessing
tool for MR image segmentation (1,4,5), MRI inhomogene-
ity correction (6), and robust myelin water quantification
(7).

Another issue concerning MR image noise that one
should consider before applying noise filters is how the
noise is spatially distributed. Noise has uniform spatial
distribution for images reconstructed from Cartesian data.
However, a number of reconstruction and postprocessing
techniques create images with spatially nonuniform noise.

Examples include images that are multiplicatively cor-
rected for intensity inhomogeneity (6,8), and images ob-
tained with partially parallel imaging (PPI) techniques (9–
15). Nonuniformity of image noise is especially pro-
nounced in the latter case. Decreased acquisition times
and amplified noise errors lead to increased and spatially
varying image noise levels. The problem becomes worse at
high speedup factors. Special techniques, such as numer-
ical conditioning (15), second-pass reconstruction (16),
and phase-constrained image refinement (17), have been
proposed in an effort to overcome noise amplification.
These methods may significantly decrease noise amplifi-
cation; however, they are not capable of improving image
SNR behind the fundamental limits established by MRI
theory (18). Retrospective denoising with a nonlinear tech-
nique, such as anisotropic diffusion filtering, is an appeal-
ing option for improving the SNR of PPI images.

This work addresses the problem of anisotropic diffu-
sion filtering of MR images with spatially varying noise. It
was previously demonstrated (5) that the anisotropic dif-
fusion filter is efficient for refining MR images character-
ized by noise levels that are unvarying in the image plane.
In this study we show that the standard anisotropic diffu-
sion filter is nonoptimal for filtering the images with spa-
tially nonuniform noise. Application of the filter can result
in excessive blurring of image structures in low-noise ar-
eas and/or enhancement of noise-generated image gradi-
ents in high-noise regions. We propose to couple a filtering
parameter of the anisotropic diffusion filter with local
noise statistics to overcome the problem. The rest of the
paper is organized as follows: First, we provide back-
ground on anisotropic diffusion filtering and its robust
statistical formulation. Next, we describe a new noise-
adaptive method and give implementation details. We
then provide quantitative and qualitative results from the
method validation and comparison with the standard fil-
ter. Last, we discuss the new method’s advantages and
limitations.

THEORY
Anisotropic Diffusion Filtering of MR Images With Spatially
Uniform Noise Levels

Anisotropic diffusion filtering in the Perona-Malik formu-
lation (2) can be achieved by solving the following partial
differential equation with respect to the image function
I(r�, t):

�I�r�, t�
�t

� ��g���I�, k� � �I�r�, t��, [1]

where g(��I�, k) is a monotonically decreasing diffusivity
function, �I is an image gradient, k is a conductance
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parameter, and t is an artificial time parameter. Parameter
k defines a threshold between image gradients to be
smoothed and image gradients to be preserved. With a
proper choice of k, the filter provides efficient noise re-
moval in homogeneous image regions, while preserving
tissue boundaries and enhancing edge sharpness.

For analysis purposes, we use a robust statistical formu-
lation of an anisotropic diffusion filter (19). The filtering
problem is formulated as an estimation of a piecewise-
constant image function from noisy data, using a robust
error norm �:

min
I
�

�

����I�, �e� d�, [2]

where �e is a parameter bounding the values of the possi-
ble outliers. In MR images, these outliers correspond to
image gradients generated by tissue boundaries. The for-
mulation is equivalent to the Perona-Malik filter under a
gradient descent minimization of Eq. [2], if the diffusivity
function is chosen as

g�x, k� �
1
x

���x, �e�

�x
,

k � c�e, [3]

where c is a scaling coefficient.
Gerig et al. (5) demonstrated that the filter is highly

efficient for magnitude-reconstructed MR images. They
pointed out that k should be kept as small as possible to
preserve the boundaries of anatomical structures of small
contrast in MR images. Too small a value of k, however,
would result in the preservation and enhancement of high-
noise-related gradients (20). Figure 1 demonstrates the ef-
fect of optimal and suboptimal choices of k on the result of
the anisotropic diffusion filtering.

The optimal anisotropic diffusion filter should diminish
the enhancement of noise-related image gradients, and at
the same time minimize smoothing of the anatomical
structure boundaries. Apparently, k should be coupled
with image noise properties. The parameter k is routinely
chosen as a constant for traditional MR images with spa-
tially uniform noise levels. Such a choice becomes nonop-
timal for images with spatially varying noise, as demon-
strated in the Results section.

Noise-Adaptive Diffusion Filtering of MR Images With
Spatially Varying Noise Levels

Assume that the MR image can be modeled as a piecewise
constant (slowly varying) function. This assumption is
valid for MR images that have only low-frequency inten-
sity inhomogeneity, such as that induced by body or head
coils. In addition, assume that the image is corrupted by
additive zero-mean Gaussian noise.

Let the noise values for each pair of adjacent pixels m
and n, with intensities Im and In, be uncorrelated and have
predetermined variances of �m

2 and �n
2. Consider a differ-

ence 	mn 
 In � Im to be minimized with the chosen
robust error norm to accomplish the anisotropic diffusion
filtering (Eq. [2]). If pixels m and n belong to the same
tissue type, the distribution of the difference 	mn is zero-
mean Gaussian (Fig. 2):

	mn � N�0, �mn�, �mn � ��m
2 � �n

2. [4]

Difference 	mn
e across an intensity discontinuity, such as a

tissue boundary, may be considered an outlier in the dis-
tribution (	mn

e �N(0, �mn)) because it is formed by values
from various populations (Fig. 2). We chose the threshold
value for rejection of such outliers in the robust error norm
as the population standard deviation (SD) �e
�mn. Cor-
respondingly, the local conductance parameter is found
from Eqs. [3] and [4]:

kmn � c � ��m
2 � �n

2. [5]

FIG. 1. Effect of parameter k on the performance of the standard anisotropic diffusion filter. a: Original image (�noise 
 0.0418); b–d: Images
filtered in 30 iterations using k equal to �noise, 4�noise, and 2�noise, respectively. The low value of k (b) leads to the enhancement of
high-noise-generated gradients, which could be incorrectly identified as meaningful structures. Filtering with high k (c) results in significant
blurring of edges. Filtering with optimal k (d) results in the preservation of edges and noticeable improvement of the SNR.

FIG. 2. Illustration of the robust statistical analysis of the anisotropic
diffusion filter.
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Parameter k is now dependent on the local noise proper-
ties. Image gradients that are unlikely to be generated by
noise values and corresponding to tissue boundaries will
be preserved, and the corresponding image structure will
be enhanced. Also, the gradients bounded by local noise
level will be smoothed. This improves the image SNR and
simultaneously minimizes the enhancement of noise-re-
lated image gradients.

The scaling coefficient c in Eq. [5] can be found for each
type of diffusivity function using the condition that the
contribution of image gradients to the functional in Eq. [2]
decreases at �e (19). This occurs when the derivative of the
influence, or flow, function �( x, k)
x � g( x, k) is zero:

���x, c�e�

�x �
x
�e

� 0. [6]

For example, for the exponential diffusivity function (2)

g���I�, k� � exp�����I�/k�2�, [7]

c is 2. This yields

kmn � �2 � ��m
2 � �n

2. [8]

This result agrees with the choice of the conductance param-
eter in Ref. 5 for filtering the MR images with spatially uni-
form noise levels. In that work, k for the exponential diffu-
sion function was experimentally selected to be in the inter-
val [1.5�noise, 2�noise], where �noise is the image noise SD.
The choice agrees with Eq. [8]: if the noise level is spatially
uniform, then �n 
 �m 
 �noise, and kmn 
 2�noise.

MATERIALS AND METHODS

Implementation Details

We chose to use an explicit final difference method (21) to
discretize Eq. [1]:

Im
�t�1� � Im

�t� � 	t � �
p���m�

�Imp
�t� � g��Imp

�t� , kmp�, [9]

where �(m) is the discretization neighborhood of pixel m,
�Imp

(t) is an finite difference approximation of the deriva-
tive of the image function, and 	t establishes the diffusion
rate. The range of acceptable time steps 	t depends on the
discretization scheme used (21).

A standard four-point neighborhood discretization
scheme was utilized (	t � (0, 0.25)) (Fig. 3). The algo-
rithm uses an original image as an initial guess, and pro-
ceeds with a fixed number of iterations as follows:

Algorithm: Noise-Adaptive Nonlinear Diffusion

for each pixel m
Find kmp � �2 � ��m

2 � �p
2,

p � �l,n,i,j� �Fig. 3�
end
I�0� � Noisy Image
for t � 0. . .�Number of Iterations-1�

for each pixel m
Calculate Gmp

�t� � Ip
�t� � Im

�t� and Dmp
�t� � g�Gmp

�t� kmp�
p � �l,n,i,j� �Fig. 3�

Create new estimate of pixel m:
Im
�t�1� � Im

�t� � 	t � �
p��l,n,i,j�

Gmp
�t� � Dmp

�t�

end
end

The method was implemented in MATLAB 6.1 and run on
a Pentium 4 1.7GHz PC with 1Gb of RAM. The algorithm
requires a noise distribution map as an input to provide
noise-adaptation. Obtaining noise maps is an application-
dependent procedure. As an example, we outline methods
for obtaining noise maps for SENSE and inhomogeneity-
corrected images.

SENSE Image Noise

The properties of noise in SENSE images reconstructed
from Cartesian data (Cartesian SENSE) are described by an
image noise matrix given by (9):

X �
1
nk

(SH��1S)�1, [10]

FIG. 3. Four-point discretization scheme for the diffusion equation
approximation.
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where S is the sensitivity matrix, nk is the number of
sampling positions in k-space, * denotes the Hermitian
conjugate operation, and � is the receiver noise matrix.
Matrix � describes noise levels and correlations in the
acquisition channels for the given imaging setup, and is
used for SNR-optimized reconstruction. The diagonal of X
represents noise variances in the unfolded pixels, while
the off-diagonal elements give the noise correlations
among them. In Cartesian SENSE, the noise correlation
due to reconstruction occurs only among values of distant
pixels obtained on each unfolding step. This long-range
correlation can be safely neglected, as the developed filter
usually involves only short-scale diffusion smoothing.

The estimation of noise levels in a SENSE image starts
with the construction of a relative noise map NR from the
diagonal entries of matrix X. To reflect true noise statistics,
the map should be scaled with an image-dependent pro-
portionality constant:

NT � �NR. [11]

If the receiver noise matrix � used in Eq. [10] is factual for
the collected data, then � 
 1, and the noise map NR

contains the absolute image noise variances. If � is ob-
tained in a scan with different acquisition parameters, or is
taken as the identity for simplicity, � must be determined
in a separate procedure. Our approach for finding � is to
analyze the samples from air background areas of the re-
constructed image. The method proceeds as follows:

1) Let � be a part of the air background area in the
reconstructed image that contains only noise contribu-
tions. To avoid including correlated noise values in the
estimation, choose � so that its linear size, in the direction
of aliasing, is limited by the size of the decreased FOV. If
coil sensitivity is not defined in �, an arbitrary function
can be chosen so that the sensitivity matrix is not singular
(different linear trends for each coil may be used).

2) Reconstruct the pixels I� belonging to �, find the
noise map NR,� in the area, and normalize I� as

I�
norm � I�/�NR,�. [12]

3) Find the SD �n of �I�
norm�, and use it to obtain the

normalization constant:

� � �n
2/�2 � �/2�. [13]

Here the denominator accounts for a change in the vari-
ance of pixels in the air background due to the magnitude
reconstruction (22).

Noise in Inhomogeneity-Corrected Images

Intensity inhomogeneity correction is often applied to MR
images before other postprocessing techniques, such as
thresholding-based image segmentation, are used. The
goal of this correction is to retrospectively compensate for
a number of imaging effects that lead to a discrepancy in
intensity of the same tissue type in different image parts.
The correction involves a priori and/or retrospective esti-
mation of the gain field G(r), which is used for multipli-
cative image intensity correction. The procedure creates
images with spatially varying noise levels. The spatial
distribution of noise variances in the corrected images is
given by:

NR � G2�r�. [14]

Again, the noise distribution should be scaled (Eq. [13]) to
reflect the overall noise level.

Data

For validation, we used a realistic digital phantom of the
human brain that is available on the Internet (http://www.
bic.mni.mcgill.ca/brainweb) (T1 weighting, image size 

181 � 217; Fig. 4a). Phantom construction was based on a
low-noise data set that was segmented and preprocessed to
create the anatomical brain model. The available datasets
were created by calculating the NMR signal from a simu-
lation of pulse sequences based on the Bloch equations
(23,24). Zero-mean Gaussian noise (SD 
 0.1 of white
matter intensity) was modulated by a Gaussian function
(max 
 1 in the image center; Fig. 4b), and then added to
real and imaginary image channels. Filter performance
was evaluated in terms of root-mean-squared (RMS) error
and an SNR improvement factor. The SNR improvement
factor is defined as a ratio of pixel noise SDs before and
after application of the filter. We used the following test to
evaluate improvement of the SNR because image-based
evaluations of noise parameters are not robust, due to the
unknown behavior of the noise level in filtered images.
First, we produced 100 instances of the digital phantom
image with different realizations of noise contamination.
Then we estimated SNR improvement factors for image
pixels belonging to white matter, gray matter, and cerebro-
spinal fluid (CSF) areas by analyzing the pixel values from
the multiple images.

Additionally, the methods were tested on real MRI data.
Informed consent was obtained from all volunteers in ac-
cordance with our institution’s policies regarding human
subjects. Data were acquired on a 1.5T GE SIGNA MR
scanner (GE Medical Systems, Milwaukee, WI) using a
custom-built, four-element (Nc 
 4), bilateral phased-array
coil (25). Phantom data were obtained with a standard fast
spin-echo (FSE) sequence (ETL 
 16, BW 
 32 kHz, TE 

20 ms, TR 
 1000 ms, image matrix 
 256 � 256). Brain
data were obtained with a dual-contrast FSE pulse se-

FIG. 4. Simulation study data. a: Digital brain phantom b: Noise
map.
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quence (ETL 
 16, BW 
 20.83 kHz, TE 
 33/99 ms, TR 

3000 ms, image matrix 
 256 � 256).

Coil sensitivity profiles were used for inhomogeneity
correction and SENSE image reconstruction. We obtained
profiles from reference data using a local polynomial fit
procedure described in Ref. 9, and separated the air back-
ground by thresholding the reference data. In the SENSE
experiments, background pixels were excluded from re-
construction. The receiver noise matrix � was chosen as
the identity in all experiments, and the scaling factor � was
obtained by an analysis of air background pixels.

Both standard and noise-adaptive anisotropic diffusion
filters were implemented with an exponential diffusivity
function (Eq. [7]) and a time discretization step 	t 
 0.25.

RESULTS

Simulation Studies

Figure 5 shows the results of filtering a single digital phan-
tom image. The standard filter was applied with several
values of the conductance parameter uniformly distrib-
uted in the range required for the noise-adaptive filter. The
plot of RMS error vs. conductance parameter (Fig. 5a)
suggests that, although the standard filter is less optimal
for RMS error reduction than the proposed noise-adaptive
filter, there is a value of the conductance parameter that
minimizes the image error. This value was estimated from
the plot and used to produce the image shown in Fig. 5d.
Clearly, noise values are not completely filtered in all
areas. The figure demonstrates one type of filtering error
caused by a nonoptimal choice of the conductance param-
eter. The residual noise has a spike-like appearance, and
could easily be mistaken for small anatomical features that
are not present in the reference image (Fig. 5b).

The results of studying the SNR improvement factor on
a series of noisy digital phantom images are shown in Fig.
6. As can be appreciated from the plots, a standard filter
provided higher SNR for a tiny fraction of pixels, but the

overall improvement of SNR is behind the noise-adaptive
filter. The improvement provided by our new filter is fur-
ther confirmed by measurements summarized in Table 1.
The noise-adaptive filter leads to a much lower RMS error.
The SNR improvement factor for the noise-adaptive filter

FIG. 5. Results of simulation studies (single image,
15 iterations). a: RMS error of standard filter vs.
conductance parameter (the range of the parame-
ter corresponds to the range for noise-adaptive
filter). Levels of RMS error for initial and noise-
adaptive filtered images are shown by dashed
lines. b-e: ROI of reference image, noisy image,
and images filtered with “best RMS.” Conductance
parameter and noise-adaptive anisotropic diffu-
sion, respectivley.

FIG. 6. Results of simulation studies (100 instances of noisy digital
phantom image, 15 iterations of filters). a: Histogram of SNR im-
provement factor. b: Plot showing a fraction of pixels for which SNR
was improved at least by a factor given on horizontal axis.
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is characterized by a higher mean and a smaller SD than
the standard filter. Therefore, in addition to the decreased
image error, the noise-adaptive filter produces a more uni-
form SNR improvement in the image plane than the stan-
dard filter. The time per iteration was about 0.1 s both for
standard and for noise-adaptive filters.

Phantom Experiments

Figure 7 shows the results of filtering the inhomogeneity-
corrected phantom image. We removed the inhomogeneity
using a priori estimated coil sensitivities, as described in
Ref. 26. For the standard anisotropic diffusion filter, we
considered two limiting choices of k: the first was optimal
for filtering high-noise areas (“high-noise” filtering), and
the second was optimal for filtering the low-noise areas
(“low-noise” filtering). Values of k were chosen with the
use of corresponding maximum and minimum noise vari-
ances in the noise map. In the absence of a ground truth,
we used the absolute value of the difference between the
original and filtered images to evaluate filter performance.
For “high-noise” anisotropic diffusion, our results re-
vealed substantial blurring of the boundaries of the phan-
tom structures (Fig. 7e). Another type of error caused by
the nonoptimality of standard filtering is degradation of
resolution. With the “low-noise” k, the anisotropic diffu-
sion filter leaves unfiltered noise in the image (Fig. 7d).
The difference for an image filtered with noise adaptation
shows that edges are not significantly degraded in the
filtered image (Fig. 7c). At the same time, noise is effi-
ciently removed in areas with both low and high noise
levels (Fig. 7h). Filtering the image with a conductance
parameter taken as a mean value of the image noise map
enhances high-noise-generated image gradients, leading to
spike artifacts (Fig. 7g) similar to those described in the
Simulation Studies section.

In Vivo Experiments

Figure 8 shows the results of filtering SENSE images re-
constructed from patient brain data. Nonoptimal coil po-
sitioning and limited coil sensitivity depth gave rise to a
noise map with significant (up to 5 times) nonuniformity
and large discontinuity (Fig. 8b). In the absence of a
ground truth, the difference between the original and fil-
tered images demonstrated filter performance in each case.
The results indicate that “low-noise” k led to the enhance-
ment of noise-generated gradients in high-noise areas that
could be incorrectly identified as anatomical structures of
different tissue types characteristic for the imaging modal-

ity (for example, vessels and CSF (Fig. 8e)). The “high-
noise” k led to unnecessary oversmoothing of the image
structures, such as vessels and brain tissue boundaries, in
all areas (Fig. 8g). The difference (Fig. 8h) contains a num-
ber of correlated structures with intensity well above local
noise levels, indicating a loss of resolution. In contrast, the
noise-adaptive filter provided good retention of the image
structures, and decreased image noise (Fig. 8c and d).

Figure 9 presents the results obtained when we studied
the effect of noise-adaptive filtering on MR brain image
segmentation. We reconstructed the image from fully en-
coded proton-density-weighted multicoil MRI data using
known sensitivities profiles. The image contains an inho-
mogeneity component induced by the body coil sensitivity
that should be corrected for robust thresholding-based im-
age segmentation. The inhomogeneity map was modeled
as a second-order Legendre polynomial whose parameters
were estimated by means of an information minimization
approach (8). Histograms of the images on different post-
processing stages are shown in Fig. 9b. As can be appre-
ciated from the plots, the inhomogeneity correction im-
proves mode separation in the image histogram, which is
further improved when applied with the new method. The
intensity segmentation threshold was taken as a point of
local minimum between two main modes of the corre-
sponding histogram. The results of segmenting the noisy
and filtered images using the threshold value are presented
in Fig. 9c and d, respectively. We eliminated outer scalp
tissues using a mask created by flood-filling the largest
connected component in the initial binary image. The
segmentation results indicate that noise in the initial im-
age led to the misclassification of many image pixels,
especially in the central image area where noise levels
were high (Fig. 9c). The application of the noise-adaptive
filter improved classification of such pixels (Fig. 9d). As a
result, the segmented areas now have improved integrity.

DISCUSSION

An ideal filter for MR images with spatially varying noise
levels must be able to improve the image SNR while pre-
serving important image structures and avoiding the gen-
eration of artifacts. Nonlinear filters based on an anisotro-
pic diffusion process are often the methods of choice to
satisfy these criteria. However, images filtered with widely
used standard anisotropic diffusion filter, with parameter
k chosen as a constant in all image areas, may suffer from
increased image errors. Errors arise from excessive
smoothing in high-SNR areas, leading to a loss of spatial
resolution (Figs. 7e and 8h), and from unfiltered noise in
low-SNR regions, resulting in the generation of small im-
age structures with a spike-like appearance (Figs. 5d and
7g). Obviously, the errors become more pronounced for
images with strongly nonuniform noise levels, such as PPI
and inhomogeneity-corrected images.

The noise-adaptive anisotropic diffusion filter devel-
oped in this research is characterized by an optimized
behavior that allows filtering errors to be minimized (Fig.
5, Table 1). The efficiency of our method comes from its
noise-adaptive nature, which is provided by a priori
knowledge of the spatial dependency of the image noise.
The new method also produces a more uniform SNR im-

Table 1
Performances of Standard and Noise-Adaptive Filters*

Standard filter Noise-adaptive filter

Mean of SNR
improvement factor 3.02 3.57

STD of SNR improvement
factor 0.99 0.63

Mean of RMS error 0.047 0.033
STD of RMS error 3.70e-4 3.56e-4

*The study was conducted on 100 noisy digital brain phantom
images (15 iterations, mean of RMS of noisy images was 0.058).
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provement in the image plane compared to that obtained
with the standard method (Fig. 6). The image enhance-
ment provided by the new filter is beneficial for intensity-
based image segmentation of brain images with spatially
varying noise. The new method can be used with the
majority of existing MR image processing techniques that
use anisotropic diffusion filtering as the initial stage
(4,6,7).

The new noise-adaptive anisotropic diffusion filter is an
attractive option for increasing the SNR of PPI images.
Such images are characterized by a reduced SNR, which
often limits the application of PPI techniques. We used
SENSE images to test our noise-adaptive filter. A similar
approach can be taken for other PPI techniques that pro-
vide information on spatial noise distribution (27). Noise
adaptation for SENSE data does not incur significant com-
putational overhead, since the calculation of the partial
image noise matrix (Eq. [10]) is a part of the reconstruction
procedure (9). The application of the proposed method to
SENSE images reconstructed from arbitrary trajectories is
challenging due to the nonavailability of the image noise
matrix in feasible iterative approaches (28). One solution
is a simulation-based noise map determination. Another
application of the new filter might be to produce the image
estimate needed for feedback reconstruction techniques
(16,17).

The determination of the image noise level from back-
ground area samples is not always robust, because of arti-
facts (motion-related ghosting, etc) or limited size of the
areas. In such cases, alternative approaches for estimating
the noise level should be used. Gerig et al. (5) reported
successful noise parameter retrieval from homogeneous

areas detected with a special procedure. An attractive ap-
proach is to estimate image noise by collecting a sufficient
number of signal-free samples (with radiofrequency pulses
turned off) along with data acquisition.

This new method could possibly be extended to the
filtering of image derivatives (29), which could be benefi-
cial for images that strongly deviate from the piecewise
constant (slowly varying) model (i.e., images obtained
from surface coil images by a sum-of-squares approach).
The principles outlined in this work could be easily ex-
tended to other techniques based on the nonlinear diffu-
sion process (30,31). Generalization of the method to the
3D case and the filtering of multicontrast data is straight-
forward.

CONCLUSIONS

We have developed a new method for denoising images
with spatially varying noise that can arise in MRI. This
new method can improve image SNR and minimize image
errors that may arise from the application of the standard
anisotropic diffusion filter. The standard anisotropic dif-
fusion filter, with a constant conductance parameter,
proved to be nonoptimal in the presence of noise with
spatially varying level.

The efficiency of the new method was demonstrated on
simulated data and on SENSE and inhomogeneity-cor-
rected images. The image enhancement provided by the
new technique proved beneficial for improving the quality
of segmentation of MR images with spatially varying noise.
The automatic choice of parameters, and the overall effi-

FIG. 7. Application of filters to inhomo-
geneity-corrected phantom image (25 it-
erations). a: Initial image. b: Map of noise
SD. c–e: Absolute values of the differ-
ences between the original image and
images filtered with the noise-adaptive
filter and low- and high-noise k standard
filters, respectively. f–h: ROI of initial im-
age, image filtered with mean value of k,
and noise-adaptive anisotropic diffusion
filters, respectively.
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FIG. 8. Anisotropic diffusion
filtering of a brain image (T2

weighting, SENSE, Nc 
 3, R 

2, 10 iterations). a: Initial im-
age. b: Corresponding noise
map. c, e, and g: Results of
filtering initial image with
noise-adaptive filter, low-noise
anisotropic diffusion, and high-
noise anisotropic diffusion, re-
spectively. d, f, and h: Differ-
ence between image a and im-
ages c, e, and g, respectively.

FIG. 9. Effect of noise-adaptive anisotropic filtering
on MR image segmentation. a: Initial image. b: His-
tograms of initial (dotted), inhomogeneity-corrected
(dashed), and filtered (solid) images. The segmenta-
tion threshold is indicated by the dash-dotted vertical
line. c and d: Segmented areas of nonfiltered and
noise-adaptive filtered images, respectively.
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ciency of the method make it suitable for improving the
diagnostic quality of PPI images in clinical environments.
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