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ABSTRACT 
 
Parallel imaging techniques for MRI use differences in spatial sensitivity of multiple receiver coils to achieve additional 
encoding effect and significantly reduce data acquisition time. Recently, a projection onto convex sets (POCS) based 
method for reconstruction from sensitivity-encoded data (POCSENSE) has been proposed. The main advantage of the 
POCSENCE in comparison with other iterative reconstruction techniques is that it offers a straightforward and 
computationally efficient way to incorporate non-linear constraints into the reconstruction that can lead to improved 
image quality and/or reliable reconstruction for underdetermined problems. However, POCSENSE algorithm 
demonstrates slow convergence in cases of badly conditioned problems. In this work, we propose a novel method for 
image reconstruction from sensitivity encoded MRI data that overcomes the limitation of the original POCSENSE 
technique. In the proposed method, the convex combination of projections onto convex sets is used to obtain an updated 
estimate of the solution via relaxation. The new method converges very efficiently due to the use of an iteration-
dependent relaxation parameter that may extend far beyond the theoretical limits of POCS. The developed method was 
validated with phantom and volunteer MRI data and was demonstrated to have a much higher convergence rate than 
that of the original POCSENSE technique. 
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1. INTRODUCTION 
 
The long scan times often limit diagnostic efficiency of MRI in many dynamic and physiological studies such as 
functional, diffusion and perfusion imaging. There are fundamental limitations on the speed of MRI data acquisition 
due to the technological and physiological limits on the magnetic field gradient switching rate. Over the past few years, 
a number of parallel imaging techniques exploiting the idea of sensitivity encoding1-7 have been developed in an attempt 
to speed up the MRI acquisition. The methods utilize the differences in spatial sensitivity of multiple receiver coils to 
achieve additional encoding effect that may be used to reduce the number of time-consuming magnetic field gradient 
encoding steps and, hence, to decrease the data acquisition time. This reduction is achieved by undersampling k-space 
(spatial frequency domain) with a reduction factor R. As a result, the significant data acquisition speedup may be 
achieved without changing image resolution and contrast and utilizing the standard gradient hardware. 
 
Reconstruction from sensitivity-encoded data is usually accomplished with specially developed techniques such as 
SENSE (SENSitivity Encoding)1 and SMASH (SiMultaneous Acquisition of Spatial Harmonics)2. In SENSE, image 
reconstruction is accomplished by direct inversion of the encoding matrix. SMASH approximates the inversion by 
fitting the receiver coil sensitivities to the spatial harmonics. Each method is characterized by a tradeoff among the 
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accuracy of the reconstruction, stability of the solution with respect to noise and systematic errors, and numerical 
complexity. The quality of the reconstructed images is dependent on a number of factors such as data acquisition 
reduction factor, the configuration of receiver coil system and accuracy of determination of coil sensitivity profiles. As 
a rule, linear reconstruction at high and/or maximal reduction factors produces images of poor quality. The standard 
approach to improve the problem conditioning is to use a priori knowledge about the solution in the form of the 
constraints. However, inclusion of the majority of non-linear constraints into linear estimation may be both theoretically 
and numerically problematic. In order to overcome this limitation, a POCS-based method for iterative reconstruction 
from sensitivity-encoded data (POCSENSE) was previously proposed8. The advantage of POCS formulation over linear 
techniques is that it offers a straightforward and usually computationally non-expensive way to incorporate many non-
linear constraints into the reconstruction. In POCSENSE, the available k-space data and constraints are presented as 
convex sets. Then, the convex combination of simultaneous projections onto the sets is used to obtain an updated 
estimate of the solution. The flexibility and practical utility of POCSENSE was demonstrated in phase-constrained 
refinement of images reconstructed from fast spin echo (FSE) data9. Under the phase smoothness assumption, the 
refined phase image was used as the constraining convex set. The use of this constraint leads to a major improvement of 
image reconstruction for high and/or maximal reduction factors. 
 
The original POCSENSE technique suffers from slow convergence that is typical for the majority of POCS-based 
reconstruction methods. The convergence of POCSENSE becomes extremely slow for badly conditioned problems such 
as reconstruction from highly undersampled data. The slow convergence seriously limits application of POCSENSE in 
many practical situations. In this work, we propose a novel method for image reconstruction from sensitivity encoded 
MRI data that overcomes the limitation of the original POCSENSE technique. The new method is based on extrapolated 
iterations of parallel projections onto convex sets10. The method converges very efficiently due to the use of an 
iteration-dependent relaxation parameter that may extend well beyond the traditional range of (0, 2]. The proposed 
method was tested with phantom and volunteer data. The results indicate that the convergence rate of the new method is 
significantly (up to an order of magnitude) higher than that of the original POCSENSE algorithm. 
 

2. THEORY 
 
2.1 Sensitivity encoding in MRI 
 
In multicoil MRI acquisition, several receiver coils (i=1, …, NC) with spatially non-uniform coil sensitivity profiles si(r) 
are positioned around the object to simultaneously acquire data in k-space. The signal mi(k) obtained from receiver coil 
i could be considered as a projection of an image function f(r) against hybrid encoding functions that are products of 
sinusoidal modulation due to the magnetic field encoding gradients and receiver coil sensitivity profile3: 

∫∝ rrrk rk desfm tj
ii

)(2)()()( π , 

where r and k are the image space and k-space coordinates respectively. Equation [1] could be presented in discretized 
matrix form as 

)()( ii mfE = , 

where E(i) is the encoding matrix and m(i) is the data vector for coil i. The matrices for all coils could be stacked to form 
full encoding matrix E and the data vector m as follows: 
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and then used to form the final matrix equation 
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Each row of the system corresponds to a single k-space point for a given receiver coil. For a multicoil acquisition, the 
system is overdetermined and, hence, the number of k-space points to acquire could be traded for accuracy of the least 
mean squares (LMS) estimation of the image vector f. The LMS estimation amounts to solving the set of the normal 
equations: 

mEEfE HH = , 

where H is Hermitian conjugate operation. 
 
The most efficient way to reduce the number of the magnetic field gradient encoding steps is k-space undersampling 
that is charactirized by the reduction factor R. Acquisition schemes for full Cartesian sampling and uniform 
undersampling with reduction factor R=2 are shown on Fig. 1. Theoretically, the LMS solution of the reconstruction 
problem is attainable up to the reduction factors R=NС. The thourough theoretical treatment of the reconstruction 
problem may be found in several studies1,3. It should be noted that the reconstruction requires a knowledge of the coil 
sensitivity profiles. 
 

The image reconstructed by direct inversion of the encoding matrix has increased and spatially non-uniform noise level. 
At high reduction factors, the matrix condition number is large and may lead to substantial amplification of the noise 
component of the signal causing severe degradation of image quality. In those cases, a priori knowledge about final 
image properties such as limited region of support, highest attainable image intensity value or smoothness of image 
phase may be used to improve the reconstruction quality. Unfortunately, the straightforward inclusion of such nonlinear 
constraints into the linear reconstruction is generally problematic. 

 
2.2 Image reconstruction using projections onto convex sets (POCS) 
 
POCS theory offers a powerful mathematical apparatus for solving many reconstruction problems that involve 
incomplete and/or inconsistent data. The main advantage of POCS is that it presents a natural way to incorporate a 
priori knowledge into the reconstruction process. The conceptual basis of POCS is that both linear and nonlinear 
constraints onto the final image and available data measurements can be often represented as convex sets in a Hilbert 
space, H, where each element of H is an image. A set of points H∈Ω  is considered to be convex if and only if for 
any Ω∈21, ff  the element 21 )1( fff αα −+=  is also found in Ω  ( Ω∈f ) for all [ ]1,0∈α . In case of the image 

reconstruction problem, every known constraint on the image f restricts it to lie in the associated closed convex subset 
of H. If n such constraints are available, n closed convex sets Ωi (i=1, …, n) may be generated. Any point of 
intersection iΩ∩=Ω0  may be considered to be the solution of the reconstruction problem as it satisfies all the 

represented constraints and the data. 
 

Figure 1: (a) Fully sampled k-space and (b) corresponding image, (c) regularly undersampled Cartesian k-space with every 
second line omitted (R=2) and (d) corresponding image corrupted by aliasing artifact. 
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The problem of finding a point in 0Ω  could be recursively solved, if each convex set Ωi (i=1, ..., n), has the assosiated 

projection operator Pi that projects the current image estimate on the closest point in Ωi. In more general form, the 
relaxed projection operator can be defined by 

)( IPIT iii −+= λ , 

where I is the identity operator and iλ  is a relaxation parameter defined in the range of (0,2]. Then, the solution could 

be found by the sequence of alternating projections onto the convex sets as 
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If Ω0 is not empty and every ]2,0(∈iλ , the fundamental theorem of POCS11 guaranties weak convergence to a point in 

Ω0 (Fig. 2). As the projections in Eq. [7] follow each other, this method is further referred to as sequential POCS. 
 
The sequential POCS has a number of shortcomings. First, it is characterized by slow convergence. Second, the 
application of the sequential POCS to the problem with multiple and inconsistent constraints is limited. The convex sets 
defined by the available data and the constraints may be inconsistent due to the measurement noise or other errors. The 
intersection of such inconsistent convex sets is an empty set. The convergence of sequential POCS to a fixed point is no 
longer guaranteed. When Ω0 is an empty set, the sequential algorithm converges to a closed path called a greedy limit 
cycle and stays on the path indefinitely (Fig. 3a). Thus, the obtained solution does not satisfy all the expected solution 
properties. 
 
In cases of inconsistent convex sets, parallel POCS algorithms such as the method of extrapolated parallel projections 
(EPPM)10 have more desirable characteristics. At each iteration of EPPM, projections ( ))(n

i fP  of the current solution 

estimate onto all available convex sets are calculated in parallel and then convexly combined: 
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and used to update the image estimate: 
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Figure 3: Convergence of sequential (a) and parallel (b) 
POCS algorithms in case of inconsistent convex sets. As Ω0 is 
empty, the sequential POCS exhibits periodic behavior with 
the solution satisfying the constraints unevenly. For parallel 
POCS, the solution is a fixed point. 
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Figure 2: Illustration of convergence of POCS iterations 
(Eq. [8]) for two convex sets Ω1 and Ω2 with a non-empty 
intersection Ω0. Starting with some initial guess f(0), the series 
of the projections brings the estimate closer to a solution point 
in Ω0. 
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where ]2,0( )()( nn L∈λ . 
 
Parallel POCS algorithms are more robust than the conventional sequential POCS methods. In cases of inconsistent 
convex sets, the parallel POCS algorithm converges weakly to a point in a Hilbert space such that the weighted least 
squares distance between the point and all convex sets is minimized10,12 (Fig. 3b). This outcome is more preferable than 
that of the greedy circling of the sequential POCS, because the found solution is close to each of the convex sets and, 
therefore, all constraints on the solution give contributions to the final result. Another important advantage of EPPM is 
its efficient convergence. This is evident from the fact that in EPPM the relaxation parameter is adaptively adjusted 
after each iteration and its value may extend well beyond the range of (0, 2]. The method presented in the paper belongs 
to the family of the EPPM algorithms. 
 

3. METHODOLOGY 
 
3.1 Definition of the convex sets and corresponding projection operators 
 
Let r and k be the image space and k-space coordinates respectively, si(r) and Si(k) - i-th coil sensitivity profile and its 

Fourier transform,  f(r) and F(k) - the image function and its Fourier transform, KKKK~  - the k-space sampling pattern and 

)(kim  - data acquired by the i-th coil at KKKK~∈k . The convex sets and the corresponding projection operators are defined 

as follows: 
1. C
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The projection operator is essentially the data substitution operator that ensures that after the projection onto 

the set the k-space of the image )(rg  will have the predefined values )(kim  at the sampled positions KKKK~∈k . 

 
2. MΩ  (set of images with object support area M; optional convex set) 
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 The projection operator zeroes values outside object support area M. 
 

3. VΩ  (set of images with maximum intensity value V; optional convex set) 
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 The projection operator restricts the image intensity value to be lower or equal to the predefined value V. 
 

4. φΩ  (set of images with image phase φ ; optional convex set) 

 ( )rrr φ
φ

ieffP ⋅= )()(  

 The projection operator sets the image phase to the predefined function φ(r). 
 
Other optional convex sets and projection operators could be constructed if other a priori information about the solution 
of the image reconstruction problem is available. 
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3.2 Algorithm 
 
Let ⋅  denote L2 norm, “*” - complex conjugation and OPTP  - a series of consequent projections on all the available 

optional convex sets as defined in Sec. 3.1. 
 
Starting with some initial guess f(0), iterate until the convergence criteria is met: 
 

Step 1. Projection onto data sets: 
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Step 2. Linear combination of individual coil images: 
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Step 3. Projection onto the optional convex sets: 
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Step 4. Calculations of the extrapolation parameter and the relaxation coefficient: 
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Step 5. Calculation of the image estimate: 

( ))()1()()()1( nnnnn fgff −+= ++ λ . 

 
At each iteration n, the current image estimate is projected in parallel onto subgroups of the data convex sets (Step 1) 
and the results are then combined using known coil sensitivity profiles (Step 2). After additional projections on the 
available optional convex sets are accomplished (Step 3), the extrapolation coefficient L(n) and the relaxation parameter 
λ(n) are found (Step 4) and used to update the image estimate (Step 5). The iterations are stopped when convergence 
criterion is met. 
 
3.3 Implementation details 
 
The main computational load of the algorithm is on Step 1. For each coil, the product of the current image estimate with 
the corresponding coil sensitivity profile is transferred into the spatial-frequency domain using fast Fourier transform 
(FFT), then the acquired k-space data are substituted and the result is transferred back into the image space using 
inverse FFT (IFFT). FFT and IFFT are fast algorithms with complexity of order O(N2logN) for the 2D case that could 
be efficiently implemented in hardware. Furthermore, the processing of Step 1 could be organized in parallel processing 
each data convex set independently. 
 
Since accurate knowledge of the individual coil sensitivities is essential for artifact-free reconstruction of sensitivity 
encoded MRI data, a method for reliable determination of coil sensitivity maps is required. The sensitivity maps are 



usually extracted from reference scans acquired prior to sensitivity-encoded imaging. As a rule, two reference scans are 
required: one with the coil having close to uniform sensitivity (e.g. body coil), and the other scan with the surface coil 
array whose sensitivity maps estimation is needed. The reference scan based method for coil sensitivity estimation is 
described in detail in1 and illustrated on Fig. 4. Alternative approach to coil sensitivity estimation is to use self-
calibrating acquisition schemes13. 
 
The optional constraints for the reconstruction from the sensitivity-encoded data are the object spatial support and the 
maximum attainable image value. The object support area and image maximum value may be obtained analyzing low-
resolution reference image used for coil sensitivity estimation.  
 

4. DATA 
 
Validation of the developed method for image reconstruction from sensitivity-encoded data was accomplished studying 
its feasibility and effectiveness on data from phantom and human volunteer studies. Informed consent was obtained 
from all volunteers in accordance with our institution’s human subjects policies. All imaging studies were performed on 
a 1.5 Tesla GE SIGNA MR scanner (General Electric Medical Systems, Waukeesha, WI) with NV/CVi gradients (40 
mT/m amplitude, 150 mT/m/ms slew rate) using a custom-built four-element (Nc=4) bilateral temporal lobe phased 
array coil14. 
 
Sensitivity encoded data were acquired immediately after the reference scans. In the phantom studies, a uniform 
undersampling scheme with reduction factor R=4 was realized by acquiring only every fourth line in k-space. The coil 

Figure 5. Phantom (a) used in the experiments and individual coil
images (b) obtained with reduction factor R=4.  

a b 

Figure 4. Illustration on the sensitivity map determination procedure used in the experiments. The ratio between an individual surface
coil image (a) and a body coil image (b) gives the surface coil sensitivity estimate (c). The object support mask (d) is generated using 
the thresholding of the reference image. To denoise the estimate, a local polynomial fit is applied in the limits of the object mask to get
a smoothed sensitivity map (e). 
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images reconstructed from the data are shown in Fig. 5. The images manifest an aliasing (folding) in the phase-
encoding direction. Four data sets (one per each coil array element) and a compact object support (Fig. 4d) were used in 
the reconstruction of phantom images. 
 
Both fully sampled and undersampled T2-weighted data of a volunteer brain were acquired using a FSE imaging 
technique. The k-space data were uniformly undersampled with reduction factor R=4 maximal for the given number of 
coils. Coil data sets, compact object support and smoothed phase estimate were used in the reconstruction of brain 
images. Methodic of obtaining the phase estimate is described in the Results section of the paper. 
 

5. RESULTS 
 
The reconstruction of phantom data was performed with both POCSENSE and the proposed method. For error 
measurement, the reference image f0 was obtained using SENSE reconstruction, i.e. reconstruction by direct inversion 
of the corresponding matrix equation (Eq. [5]). The both iterative methods should be converging to the image f0. At 
each iteration n, the error was measured as 

0

0
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The results of reconstruction after 70 iterations are presented on Fig. 6. The image reconstructed by extrapolated 
parallel projections (Fig. 6a) does not contain noticeable aliasing artifact, while the image reconstructed by POCSENSE 
(Fig. 6b) using the same number of iterations suffers from significant residual aliasing. The convergence behavior of the 
methods for the reconstruction is presented in Fig. 7. The results indicate that the convergence rate of the new method is 
significantly (up to an order of magnitude) higher than that of the original POCSENSE algorithm. 
 
The proposed method was used for phase-constrained refinement of images reconstructed by the standard SENSE 
method. First, the initial images (Fig. 8b) were reconstructed with SENSE from sensitivity encoded brain data. The 
images reconstructed by the SENSE method show a significant noise contamination (Fig. 8b). This outcome is typical 
for SENSE reconstruction from highly undersampled data acquired with a non-optimized coil system. The degradation 
of image signal-to-noise ratio (SNR) due to the SENSE reconstruction is described by a spatially variable geometry 
factor1. Figure 8c demonstrates that the proposed method with an additional phase smoothness constraint may 
significantly improve the resulting image quality in comparison with the image reconstructed by the standard SENSE 
algorithm. In this study, the image phase constraint was obtained extracting the phase of the low-resolution part of the 
SENSE images. Then, it was used as an additional convex set as explained in Sec. 3.1. 

 Figure 6: Reconstruction from sensitivity encoded phantom data. a) Image reconstructed by extrapolated parallel projections
(λ(n)=1.5L(n), after 70 iterations), b) Image reconstructed by POCSENSE (after 70 iterations), c) Image reconstructed by direct
inversion of the matrix equation (Eq. [5]). 
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In order to visually evaluate the quality of reconstruction, the absolute differences between the reference (Fig. 8a) and 
reconstructed images were calculated. The difference images (Fig. 8d,e) indicate that the proposed method with phase-
smoothness constraint provides noticeable improvement in the image quality. The refined images (Fig. 8c) contain 
many important anatomical structures that are missing in SENSE image (Fig. 8b). Minor aliasing artifacts present in the 
refined images arise because of errors in coil sensitivity profile estimates and violation of the phase smoothness on the 
tissue-air interface areas. 

Figure 7: Reconstruction error for the proposed method (solid) and
POCSENSE (dotted) for the phantom image reconstruction (Fig. 6). 
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Figure 8. Phase-constrained refinement using extrapolated parallel projections. a) Reference images obtained from fully sampled k-
space, b) images reconstructed with SENSE (R=4), c) images obtained by the proposed method (λ(n)=1.5L(n), 50 iterations) with the 
image phase constraint, d) the magnitude of difference between images (a) and (b), e) the magnitude of difference between images (a)
and (c). 
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6. CONCLUSIONS 
 
POCS-based methods offer flexibility of using the wide range of constraints that made them attractive for many 
problems of image reconstruction from insufficient and/or corrupted data. The images reconstructed from sensitivity 
encoded MRI data with high/maximal reduction factors usually have poor image quality. POCS-based methods have a 
potential to improve the quality in many such cases when a priori knowledge about the image properties is available. 
 
We developed the novel POCS-based method for image reconstruction from sensitivity-encoded MRI data. The method 
overcomes the limitations of the sequential POCS-based methods such as slow convergence and non-reliable 
reconstruction with multiple constraints. The method provides a much higher convergence rate compared to the original 
POCSENSE method, especially for extreme cases of high and/or maximal reduction factors and non-optimal coil 
geometry. The flexibility of the proposed technique allows for improved image reconstruction when additional 
constraints are available. The method could be very efficiently implemented in parallel using FFT algorithm. Along 
with fast convergence and flexibility, this makes the new method attractive for reconstruction of images from sensitivity 
encoded MRI data in clinical environments. 
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