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Figure 1. Shepp-Logan image reconstructed from 
data sampled on regular Cartesian grid (a) and spiral 
trajectories (b) with the DCF estimated by the 
method presented in this paper (50 iterations). 

 
Figure 2. RMS error of the difference image 
between the reference image and images from spiral 
data reconstructed with Pipe’s DCF (dotted line) and 
with the DCF estimated by the method proposed in 
this paper (solid line). The error is measured in units 
of the reconstruction error for Jackson’s DCF. 

 
Figure 3. Logarithm of L∞ norm of residual vs. the 
number of iterations for Pipe’s method (dotted line) 
and the presented method (solid line)  
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Synopsis 
Reconstruction of MRI images from data sampled on arbitrary k-space trajectories requires determination of the sampling density compensation function (DCF) that is 
used to compensate for nonuniform sampling density. We propose a new method for finding the DCF based on a point-spread function (PSF) modeling approach and 
gridding approximation of the resulting matrix equation. The proposed method for DCF determination was tested on simulated and real MRI data sampled on radial and 
spiral trajectories and was demonstrated to provide smaller reconstruction errors than other iterative DCF estimation techniques. 

Theory and Methods 
The PSF of an MRI reconstruction from non-uniformly sampled data weighted by DCF values wn is defined as ∑ ⋅=

n
nn iw )2exp()PSF( rkr π . Ideally, the DCF should 

be chosen in such a way that the resulting PSF approaches the ideal PSF (delta function). In matrix form, the equation modeling this requirement is given by 
RδREw = , 

where E is the inverse Fourier transform matrix, w is the vector of the DCF values, δ is vector describing the ideal PSF, and R is a diagonal matrix of weights on error 
in the PSF. The least mean-squares estimation of DCF that minimizes the weighted error in the PSF could be found by solving the system of the normal equations: 

uRE)wR (E HH = , 

where u is the unity vector. To achieve this goal iterative technique minimizing the corresponding quadratic form could be applied. The main problem with such an 
approach is the large cost of the residual calculation. To significantly decrease memory and computation time requirements, we propose to use a gridding approximation 
[1] for the system of equations (Eq. 2): 
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11H1

CA =−−− , 

where GCA and GAC are matrices representing the convolution operations with gridding kernel c(k) from sufficiently dense Cartesian grid to arbitrary k-space positions 
and vise versa, C is the diagonal matrix containing values of C(r), image domain representation of c(k), F and F-1 are direct and inverse Fourier transform matrices. 

Equation (3) is considerably simplified by choosing R=C: 
u)wG(G ACCA = . 

Such a choice of R results in weighting the error in the PSF with C(r). Equation (4) is further simplified by 
substituting two interpolation operations by one convolution with the corresponding kernel: 

MuwMGAA = , 

where GAA is the matrix representing the convolution among the positions of the k-space trajectory and M is 
the diagonal matrix that is used to weight the contributions of different k-space sampling positions. It should 
be noted that the result obtained here was derived using the criterion on target PSF introduced in [2]. 

The solution of Eq. (5) may be unstable because of ill conditioning of GAA. We developed a special 
algorithm to obtain the stable solution of the system. In its general form, the algorithm combines the optimal 
iterations of a steepest descent method with projection onto a convex set representing all non-negative 

solutions. Starting with the DCF of Jackson [3], 1
)0( )( −= uGw AA , each next estimate is obtained as 
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Additional stability is gained by choosing M to contain Jackson’s DCF values, i.e. )( )0(wM diag= . 

Results 
The computer-generated data were used for comparison of the proposed DCF estimation method with existing 
techniques for the DCF calculation [2,3]. The spiral and Cartesian grid data were calculated using an 
analytical expression for the k-space representation of Shepp-Logan phantom and then multiplied by Gaussian 
function to decrease Gibbs artifact. The spiral data consisted of 13 interleaves, 1800 data points per interleave 
and were calculated for matrix size 128×128. The Kaiser-Bessel convolution kernel (L=3, B=13.9086) was 
employed in both method of Pipe [2] and the presented method as well as for gridding reconstruction. Non-
negativity constraint was used to stabilize the solution of Eq. (5). The image reconstructed from Cartesian data 
was considered as a reference image. In order to eliminate the influence of different DCFs, all images were 
normalized to have the same mean intensity as the mean value of the reference image. Both RMS (Fig. 2) and 
L∞ norm of residual plots (Fig. 3) demonstrate that our new method provides much smaller reconstruction 
error and the solution is achieved in fewer iterations.  
Discussion 
Our results demonstrate that the new method for estimating the DCF produces weights that provide 
significantly less reconstruction error in comparison with the existing techniques [2,3]. It can be shown that 
only one regridding per iteration is required if no nonlinear projection is used, and two such operations 
otherwise. The primary necessity of non-negativity constraint is to increase the stability of the solution. From 
our experience, if small (up to 50) number iterations are used, the omission of non-negativity constrain is safe 
and typically results in even smaller reconstruction errors. However, inclusion of non-negativity constraint is 
required to ensure the algorithm stability for arbitrary number of iterations. The matrix formulation of the 
DCF estimation problem presented in this paper allows for further investigation of fast, efficient and stable 
algorithms for retrieval of DCF using other well-understood techniques such as conjugate gradients. Further 
research is required on the dependence of the reconstruction error on the convolution kernel characteristics. 
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