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Intensity inhomogeneity is one of the main obstacles for MRI data post- 
processing. The problem requires retrospective correction due to the 
strong dependence of the inhomogeneity on patient anatomy and the 
accompanying acquisition protocol. We have developed a new method 
for correcting the inhomogeneities using a polynomial estimation of the 
bias field. The method minimizes the composite energy function to find 
parameters of the polynomial model. The energy function is then 
designed to provide a robust estimation of the bias field by combining 
ineasui-es from histogram analysis and local gradient estimation. The 
mctliod was validated on a wide range of MRI data obtained with coils 01‘ 
different types and under different acquisition protocols. 

I n t r o d u c t i o n  
Intensity inhomogeneity in MRI data arises from multiple sources, 

for example, non-uniform coil excitationireception profiles and RF wave 
attenualion of tissue. Such contributions can be approximated by 
smoothly varying the multiplicative gain field G(r),  or in the log domain, 
by an additive bias field B(r): 

I = Z , . G ( r ) + n ,  log(Z)=log(Zo)+B(r) (1) 

whei-e 1 is MRI data coi-1-upted by the gain field G, and n is additive 
Rician noise. The existing methods for correction of the bias often 
require expert supervision, the presence of large homogeneous regions of 
tissues [ I ]  or rely on global optimization criteria that may lead to local 
minima [2]. In the paper, we present a fast and 1-obust method for correc- 
tion of MRI data intensity inhomogeneity. Our new method relies both 
on local and global characteristics of the data providing a reliable estima- 
tion of the underlying bias field. 

Method 

endre polynomials of degree / (3D case): 
We slart by modeling the smoothly varying bias field B(r) by Leg- 

I I - i i - i - ,  

B ( r , p )  = C C C I . ’ , ~ ~ / ’ , ( , ~ ~ ) P ~ ( , ~ ~ ) P ~ ( ~ ~ ) .  (2) 
, = u , ’ u i . = u  

The eslimation of polynomial model parameters is accomplished by min- 
imization of the following energy function: 

l = I  i =  I ) =  1 

whei-e /I is a histogram of data coi-rected by the cun-ent estimation of the 
bias field, oij are weights reflecting the error in gradient estimation [I], 

and h is chosen to balance relative significance of each term for a pai-tic- 
ular class of correction problems. The first, so-called “global” term of (3) 
is the energy of the histogram power spectrum. Distribution of data cor- 
rupted by an independent additive bias field can be approximated by the 
convolution of the distribution of initial data and the bias field distxibu- 
tion. The corruption by the bias field leads to the degradation of the high 
frequency content in the histogram [3]. We choose to restore the fre- 
quency content by maximizing the energy of its power spectrum. The 
second, so-called “local” term of (3) is essentially a data consistency 
constraint. The term holds everywhere except for tissue boundaries and 
partial volume pixels [l] .  Significant gradients that could be assigned to 
the tissue boundaries are eliminated by thresholding. Then partial vol- 
ume pixels are cxcluded by a moiThologica1 erosion operation with small 
structuring element. The estimation of the “local” term requires prepro- 
ccssing. Wc choose to use anisotropic diffusion filtering [4] for denoising 
purpoaeh. Using such a filtering allows effective ioisc elimination while 
preserving smooth treiids. 

Results 
The method was tested on a number of datasets acquired on a 1.5T 

MR scanner (GE SIGNA, GE Medical Systems, Milwaukee, WI) with 
different acquisition protocols using volume and surface coils. Figure 1 

presents results of correction of a PD-weighted 256 x 256 x 16 dataset 
acquired by the head coil. The correction time using a 2nd order polyno- 
mial was less than 2 minutes. Segmentation of initial data by threshold- 
ing underestimated the gray matter in the brain (Fig. I-d), while 
thresholding on the corrected volume produced a reliable segmentation 
of the tissue (Fig. 1-e). Figure 2 demonstrates results of correction of a 
“sum-of-square” image from a 4-coil phased array. The correction was 
done on a 256 x 256 slice using a 4th order 2D Legendre polynomial 

d) e) 8) 
Figure 1. Correction of head coil data. a) inilial slice b) estimated bias 
field (2’Id order Legendre polynomial), c) coi-rected slice, d) gray matter 
segmentation of initial slice, e) gray matter segmentation of corrected 
slice, t] histograms of initial (dotted) and corrected (solid) data 

a) b) 
Figure 2. Correction of “sum-of-square” coil data by 4‘” order polyno- 
mial. a) initial slice, b) coiTected slice 

Discussion 
The developed method provides reliable estimation of the intensity 

inhomogeneities in MRI data. The proposed energy function combines 
both global and local criteria ensuring a robust and fast optimization pro- 
cess. Both terms are complimentary. Using only the “global” term of the 
energy function may potentially lead to incorrect identification of min- 
ima, especially in the cases when polynomial model is a modest approx- 
imation of underlying bias field. Parameters required by the algorithm in 
most cases could be chosen automatically [4]. The con-ection times are 
dependant on the number of parameters of model used, the dataset size 
and the degree of subsampling in estimation of both local and global 
terms and vary from 1 to 5 minutes using a mid range PC. 
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