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ABSTRACT 
 
SENSE (SENSitivity Encoding) imaging provides significant 
acquisition speedups in MRI. The main drawback of the method 
is that it generates images that have increased and spatially non-
uniform noise levels and, hence, will often require retrospective 
filtering. In this paper, we show that standard anisotropic 
diffusion filtering, while being an effective technique for edge-
preserving denoising of images with uniform noise levels, is 
often non-optimal for SENSE-reconstructed data. We have 
developed a modification of this filter for SENSE images using a 
robust statistical analysis of the anisotropic diffusion process. 
The new method utilizes the image noise matrix that is available 
from the SENSE reconstruction to automatically adjust filtering 
parameters with local noise levels. The effectiveness of the 
method and its advantage over standard anisotropic diffusion 
filtering for SENSE images were demonstrated with phantom 
and patient MRI data. 
 
 

1. INTRODUCTION 

Partial parallel MRI methods that use hybrid gradient and 
sensitivity encoding have attracted great attention in the MRI 
community over the past several years [1-2]. The potential 
speedup from sensitivity encoding may be several times in 
comparison to conventional MRI scan times. As a result, higher 
temporal and/or spatial resolutions are possible in the same 
imaging time. The SENSE (SENSitivity Encoding) method [1] 
represents the most general approach for image reconstruction 
from sensitivity-encoded data. Along with reconstruction, the 
SENSE theory provides strategies for optimization of coil 
geometries and allows for the prediction of the noise distribution 
in the reconstructed images. However, the increased speedup of 
SENSE does not come for free: the reconstructed images have 
increased noise levels due to reduced acquisition times. 
Furthermore, the noise distribution is non-uniform throughout 
the image due to the unfolding properties of the configuration of 
the receiver coils and noise amplification by the sensitivity 
profile demodulation during the reconstruction. Thus, the visual 
inspection, as well as post processing of the SENSE images, 
could be greatly impeded. As such, the practical significance of 
the resulting speedup could be challenged. 

One way to improve the quality of SENSE images is to use 
retrospective filtering. Anisotropic diffusion filtering [3] was 
demonstrated to be an efficient method for edge-preserving 
denoising of MRI data [4]. Previous work on anisotropic 
diffusion was based on the implicit assumption that the noise 

level is uniform throughout the image. While this assumption 
holds for fully encoded MRI data, it is no longer valid for 
SENSE images. As a result, standard anisotropic diffusion 
filtering shows poor performance for SENSE-reconstructed data: 
it produces significant edge blurring in low noise areas and/or 
preserves and enhances the noise in the high noise areas. In this 
paper, we present a new method for edge-preserving denoising 
of SENSE images. The method utilizes the image noise matrix 
from the SENSE reconstruction and performs noise-adaptive 
anisotropic diffusion filtering. We demonstrate that our method 
outperforms standard anisotropic diffusion and significantly 
improves the quality of SENSE-reconstructed images. 

2. THEORY AND METHODS 

2.1. SENSE Theory Overview 

In sensitivity encoding imaging, several surface coils with 
inhomogeneous sensitivity profiles are positioned around the 
imaging object to simultaneously acquire the data undersampled 
in k-space (the Fourier domain representation of the physical 
space). Such undersampling, while providing a speedup by 
reducing the number of encodings, decreases the imaging FOV 
and leads to aliasing in the image space. The main idea behind 
SENSE is to use the known coil sensitivity maps to unfold the 
image. The maps are usually obtained through the separate 
reference scan of the imaged object [1]. 

For brevity, we provide details of SENSE theory for the 
case of Cartesian sampling of k-space. In image space, the 
contributions of the underlying image I into the point (x, y) of 
the resulting aliased image Mi from i-th coil is weighted by the 
corresponding local values of the coil sensitivity profile: 
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where dy is the imaging FOV in the phase encode direction y, 
decreased by a reduction factor R, n(x, y) is the complex zero- 
mean Gaussian noise, NP is the number of image pixels aliased 
into (x, y) and Si (i=1…NC) are the coil sensitivity profiles. 
Equation (1) for all coils can be assembled to form a single 
matrix equation: 

NISM +⋅= , 

where S is the sensitivity matrix of size NC×NP, I is a column 
vector of pixels to unfold from point (x, y), M is a column vector 
of aliased image values at point (x, y) for all the coils and N is 
the corresponding vector of noise contributions [1]. For each 
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point (x, y) of the aliased image, the partial unfolding step can be 
accomplished by taking the pseudo-inverse of (2):  

MΨSS)Ψ(SI 1H11H −−−= , 

where HS  is the Hermitian conjugate of S and ΨΨΨΨ is the receiver 
noise matrix describing noise levels and correlations in the 
acquisition channels. The receiver noise matrix is determined 
prior to the scan from pure noise samples and used in the 
reconstruction for purposes of signal-to-noise ratio (SNR) 
optimization [1]. 

SENSE theory introduces the image noise matrix describing 
levels and correlations of noise in the reconstructed image. For 
Cartesian sampling, the partial image noise matrix X for each 
unfolding step is [1]: 
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where nk is the number of sampling positions in k-space. The 
diagonal entries of X give the relative noise variances of the 
corresponding unfolded pixels and off-diagonal elements 
represent noise correlations among them.  
 
2.2. Anisotropic Diffusion Filtering 

Anisotropic diffusion filtering in its classic form [3] can be 
described as a diffusion process in image space: 
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where ),( kIg ∇  is a monotonically decreasing diffusion 

function, depending on the local gradient value and conductance 
parameter k. Particular choices of g and k cause the diffusion 
process to slow down or almost stop at edges leading to the 
edge-preserving denoising of the images. 

For analysis purposes, we employed a recently proposed 
robust statistical interpretation of the anisotropic diffusion filter 
[5]. In this approach, the filtering problem is formulated as the 
robust estimation of a piecewise constant image from noisy data 
where significant gradients, such as edges, are considered as 
outliers. The estimation is accomplished by solving the 
following problem: 

∫Ω Ω∇ dI
I
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where ρ is a robust error norm  and σ is a scale parameter 
reflecting the values of the possible outliers (edges). The 
formulation is equivalent to the Perona-Malik anisotropic 
diffusion using a gradient descent minimization with diffusion 
function [5] 
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2.3. Determination of Noise Maps 

The partial image noise matrix X (4) that is available on each 
partial unfolding step (3) can be used to obtain the spatial 
distribution of relative noise levels in the reconstructed image:  

)(XdiagN R = . 

The relative noise map NR reflects the true values of the standard 
deviation of pixel noise only when the receiver noise matrix ΨΨΨΨ 
contains true noise values for the given scan. In practice, ΨΨΨΨ is 
determined in a separate scan, often with different parameters 
and, hence, could represent only relative values of noise in the 
receiver channels. In our approach, we estimate the true noise by 
analyzing background values of the reconstructed magnitude 
image. First, part of the background area ΩΩΩΩ and corresponding 
relative noise map NR,Ω (8) are reconstructed by the SENSE 
method. The limitation on the choice of ΩΩΩΩ is that it should not 
contain correlated pixels obtained by (4); in the Cartesian case 
this implies that the linear size in the aliasing direction should be 
no more than the decreased FOV. Then, every magnitude value 
from ΩΩΩΩ is normalized by a corresponding value of the noise map 
NR,Ω and standard deviation σBG of the normalized samples is 
determined. The true noise map for the image can be found as  

22 π
σ

−
⋅= RBG

T

N
N , 

where the denominator accounts for a change of the noise 
standard deviation in the background due to the magnitude 
reconstruction [6]. 
 
2.4. Noise-Adaptive Anisotropic Diffusion for SENSE Images 

SENSE images are free of modulation by coil sensitivity profiles 
and hence can be well represented by a piecewise constant tissue 
model. The noise in MRI magnitude images is well described by 
a Gaussian distribution for SNR of 3 or higher [6]. The 
distribution of the difference (In-Im) for each pair of neighboring 
pixels m and n belonging to the same tissue type of the SENSE 
image is then zero-mean Gaussian N(0,σm,n). In the case of 
Cartesian sampling, the noise correlation in SENSE image 
occurs only among distant pixels obtained from each partial 
unfolding step (4) and for smoothing purposes could be 
neglected. Under an assumption of uncorrelated noise, the 
variance of the distribution is 
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where σm  and σn are entries of noise map NT (9). The difference 
(In-Im) across an edge may be considered an outlier in the 
distribution. The “robust scale” for rejection of such outliers 
(edges) for each pair of the neighboring pixels m and n may be 
chosen in terms of the population standard deviation: 

nme ,σσ = . 

The parameter k for a given diffusion function g is then found 
from the condition that the influence of gradients should start 
decreasing at σe. That is, the derivative of the flow function 
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Expressions (10)-(12) give rise to a spatially variant conductance 
parameter  

nmnmk ,, σω ⋅= .  

Such a choice of k leads to noise-adaptive anisotropic diffusion, 
where the decision concerning what gradients are to be 
considered edges depends on the local noise values. 
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The normalization weight ω (12) for the conductance 
parameter (13) should be determined for each diffusion function. 
For example, for the exponential diffusion function 
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proposed in [3], ω is 2 and the resulting conductance 
parameter is  
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Discretization of the diffusion equation (5) with spatially 
variant conductance values is straightforward and leads to the 
final expression for noise-adaptive anisotropic diffusion:  
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where )(mη  is the averaging neighborhood of pixel m and λ is 
chosen to provide numerical stability of the approximation [3]. 

3. RESULTS 

Reference and folded images of a quality phantom and a human 
brain were acquired on a 1.5T MR scanner (GE SIGNA, GE 
Medical Systems, Milwaukee, WI) using a 4-coil phased array 
and body coil. The reconstruction was done in the limits of the 
object mask [1]. The true noise map (9) was obtained using 
separate reconstructions of small background areas in each case. 
Both standard and noise-adaptive anisotropic diffusion filtering 
was done with diffusion function (14). 
 
3.1. Phantom Studies 

The goal of the phantom studies was to evaluate the 
performance of the standard anisotropic diffusion for SENSE 
images and to compare it with the proposed method. Ten 
iterations of anisotropic diffusion were applied in both standard 
and noise-adaptive versions of the filter. Standard anisotropic 
diffusion was used with two different values of conductance 
parameter k. In the first case, k was chosen using average noise 
estimation from region-of-interest ROI-1 (Fig. 1-b) to provide 
optimal filtering in the high-noise area (“high-noise” k). In the 
second case, k was estimated from average noise values in ROI-
2 (Fig. 1-b) (“low-noise” k) to achieve adequate filtering of the 
low-noise area. The difference between initial and filtered 
images demonstrates that for “high-noise” choice of k there is 
significant blurring of edges of the phantom structures (Fig. 1-
d). The same difference for noise-adaptive anisotropic diffusion 
proposed in this paper does not contain significant correlated 
features (Fig. 1-e). For “low-noise” choice of k, standard 
anisotropic diffusion leaves unfiltered noise in high-noise areas 
(Fig. 1-g). At the same time, the proposed method performs well 
both in low and high noise-areas (Fig. 1-h). 
 
3.2. T2 Brain Image Filtering 

Five iterations of the proposed filtering technique were applied 
to T2-weighted SENSE image of human brain. The results of the 
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Figure 1. Comparing standard and noise-adaptive anisotropic 
diffusion filtering of SENSE images. a) Image reconstructed by 
SENSE (NC=2, R=2), b) noise map of the SENSE image (log 
scale) with regions of interest ROI-1, 2, c) image (a) filtered by 
noise-adaptive anisotropic diffusion, d) absolute residue image 
of (a) from image filtered by standard anisotropic diffusion 
with “high-noise” choice of k, e) absolute residue image of (a) 
from (c), f) magnified part of initial image (a), g) (f), filtered by 
standard anisotropic diffusion with “low-noise” choice of k, 
h) (f), filtered by noise-adaptive anisotropic diffusion.  
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Figure 2. Noise-adaptive filtering of T2-weighted SENSE 
image (NC=4, R=2). a) Image reconstructed by SENSE method, 
b) image (a) after 5 iterations of the proposed method, 
c) magnified part of image (a), d) magnified part of image (b) 
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filtering are presented in Figure 2. There is significant improvent 
of the image SNR while most of the tissue structures are still 
preserved. 
 

4. DISCUSSION 

The phantom studies demonstrated that the standard anisotropic 
diffusion with constant conductance parameter fails to produce 
adequate edge-preserving filtering of SENSE images. With a 
“high-noise” choice of conductance parameter k, the low-noise 
areas suffer from undesired edge over-smoothing. On the other 
hand, when k is optimal for filtering of low-noise image parts 
(“low-noise” choice of k), noise values of large amplitudes in 
high-noise areas are preserved and even enhanced. 

The proposed method takes into account the noise 
distribution in the SENSE images and adjusts the conductance 
parameter accordingly. Phantom studies and real data filtering 
demonstrated that the method is capable of edge-preserving 
filtering of SENSE images with good denoising of the areas with 
different noise levels. 

The SNR of SENSE images goes down as the reduction 
factors R increase. Furthermore, at high and maximal R (R≈NC) 
and with non-optimized coil properties/positioning, the noise 
distribution in the reconstructed images is usually strongly non-
uniform. The proposed method may be especially useful for non-
optimal coil configurations and at high reduction factors. 

The noise-adaptation used in the method does not incur 
significant computational overhead, as the partial image noise 
matrix (4) is found as part of each partial unfolding step (3). 
Reconstruction of background areas is not usually performed in 
SENSE, for it may corrupt SNR of the reconstruction [1]. In our 
method, some part of the background areas should be 
reconstructed to provide an automatic choice of the filtering 
parameters. This reconstruction can be achieved without 
significant additional overhead. 

The results of the method analysis (section 2.4) are in good 
agreement with the choice of conductance parameter k in [4] for 
anisotropic diffusion filtering of MRI images with uniform noise 
level. In that work, k for diffusion function (14) was empirically 
chosen to be 

noisenoise k σσ ⋅≤≤⋅ 25.1 . 

For constant noise levels, (15) leads to noisek σ⋅= 2 , which is in 

the range of (17). 
In cases when the k-space sampling trajectory is not 

Cartesian, several issues need to be considered. The 
reconstruction from arbitrary trajectories by direct matrix 
inversion is very slow due to the large size of the matrices [1]. 
For iterative approaches for the reconstruction [7], the image 
noise matrix is not known. However, it is still possible to 
retrieve the noise map by simulations [8]. The noise correlations 
among pixels may be more complex in the case of 
reconstructions from arbitrary trajectories. But even then, the 
correlations are still long range and could be again neglected. 

 
5. CONCLUSION 

We developed a noise-adaptive method for SENSE image 
denoising using an anisotropic diffusion filtering framework. 
The method provides a significant increase of image SNR 

without substantial degradation of spatial resolution of the 
image. The standard anisotropic diffusion filter, with constant 
conductance parameter, was shown to produce filtering artifacts 
for SENSE images. The new method proposed in this paper 
takes into account the noise distribution in SENSE images and 
provides robust denoising in all image areas with minimized 
filtering artifacts. The image noise matrix available from SENSE 
reconstruction may be useful in adaptation of other filtering 
methods for SENSE images. 

The proposed method is especially important for increasing 
the utility of SENSE images acquired at high reduction factors 
and with non-optimal coil geometries. Automatic choice of the 
filtering parameters and overall method efficiency make it 
particularly suitable for improving diagnostic quality of SENSE 
images in clinical environments. 
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