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ABSTRACT

Many mental illnesses are thought to have their origins in early stages of development,

encouraging increased research efforts related to early neurodevelopment. Magnetic reso-

nance imaging (MRI) has provided us with an unprecedented view of the brain in vivo.

More recently, diffusion tensor imaging (DTI/DT-MRI), a magnetic resonance imaging

technique, has enabled the characterization of the microstrucutral organization of tissue in

vivo. As the brain develops, the water content in the brain decreases while protein and fat

content increases due to processes such as myelination and axonal organization. Changes of

signal intensity in structural MRI and diffusion parameters of DTI reflect these underlying

biological changes.

Longitudinal neuroimaging studies provide a unique opportunity for understanding brain

maturation by taking repeated scans over a time course within individuals. Despite the

availability of detailed images of the brain, there has been little progress in accurate

modeling of brain development or creating predictive models of structure that could help

identify early signs of illness. We have developed methodologies for the nonlinear parametric

modeling of longitudinal structural MRI and DTI changes over the neurodevelopmental

period to address this gap. This research provides a normative model of early brain growth

trajectory as is represented in structural MRI and DTI data, which will be crucial to

understanding the timing and potential mechanisms of atypical development. Growth

trajectories are described via intuitive parameters related to delay, rate of growth and

expected asymptotic values, all descriptive measures that can answer clinical questions

related to quantitative analysis of growth patterns. We demonstrate the potential of the

framework on two clinical studies: healthy controls (singletons and twins) and children at

risk of autism. Our framework is designed not only to provide qualitative comparisons,

but also to give researchers and clinicians quantitative parameters and a statistical testing

scheme. Moreover, the method includes modeling of growth trajectories of individuals,

resulting in personalized profiles. The statistical framework also allows for prediction and

prediction intervals for subject-specific growth trajectories, which will be crucial for efforts

to improve diagnosis for individuals and personalized treatment.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Mental illnesses such as depression, schizophrenia and autism are widespread and often

require life-long health care support. Many of these illnesses are thought to have their

origins in early stages of development, encouraging increased research efforts related to

early neurodevelopment. Both structural (sMRI) and diffusion tensor magnetic resonance

imaging (DT-MRI/DTI) have provided an unprecedented and noninvasive view of the brain

in vivo.

Magnetic resonance imaging (MRI) is well suited for pediatric studies since it does not

use ionizing radiation and enables safe longitudinal scans of children noninvasively. The

brain undergoes significant changes during the first 2 years of life, with continued growth

into adulthood. Previous cross-sectional neuroimaging studies have indicated an overall

brain size increase during this period, reaching 80-90% of adult volume by age 2 [1]. More

recently, Knickmeyer et al. found that total brain volume increases by 101% in the first

year, followed by 15% in the second year [2]. In addition to morphometric measures such

as volume [2, 3, 4] and shape (i.e., cortical folding) [5], signal characteristics of brain tissue

also change, reflecting the maturation of the underlying tissue. During the first 6 months

after birth, the signal intensities of gray and white matter in T1-weighted (T1W) and

T2-weighted (T2W) images are the reverse of those seen in adults. This is mainly due to

myelination, as white matter is mostly unmyelinated at birth. As white matter myelinates,

signal intensity changes from hypointense to hyperintense relative to gray matter in T1W

images. The reverse pattern is seen in T2W (from hyperintense to hypointense) as shown

in Figure 1.1.

Myelination follows a spatiotemporal sequence as described by histological studies [6]

and qualitatively by radiologists [7]. However, quantitative assessment of the maturation

pattern of white matter is still lacking. Development of cognitive functions is associated with

white matter maturation, and hence abnormalities in integrity of white matter can cause
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T2W$

T1W$
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Figure 1.1: T1W and T2W images of an individual scanned at about 2 weeks, 1 year and
2 years. The pattern of contrast at birth is the reverse of what is seen at 2 years.

cognitive deficits. In many neurodevelopment disorders such as autism spectrum disorders,

there are reported abnormalities in white matter fiber tract integrity [8]. However, the

extent and the developmental differences remain unclear.

Diffusion tensor imaging (DTI) provides additional information about the microstructure

of the brain. This method measures the average displacement of water molecules within

tissue during a fixed time. There is more diffusion where molecules can travel freely and

less diffusion where movement is impeded by obstacles such as cell membranes, myelin

and macromolecules. Because the diffusion of water molecules is shaped by the underlying

tissue structure, it is possible to gain an understanding of the underlying tissue structure

by measuring diffusion. Fiber bundle organization can be depicted in DTI as water diffuses

more parallel to the fiber direction. This anisotropic diffusion provides detailed information

about brain axonal organization. As the white matter matures, the diffusion of water in

the brain becomes more restricted. Monitoring changes of diffusion parameters provides

information about the maturation pattern of white matter.

In diffusion tensor imaging, 3D motion of water molecules is modeled via a second order

tensor at each voxel [9]. A tensor is represented as a diffusion matrix and can be visualized as

an ellipsoid where the length of each primary axis represents the average diffusion in each
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spatial direction [10]. The tensor information can be summarized into simpler invariant

quantitative measures (independent of the orientation of the reference frame) related to

the size or shape of the tensor. For example, one of the most common measurements,

fractional anisotropy (FA), is an index from 0 (isotropic) to 1 (anisotropic) indicating the

shape of the tensor ranging from a sphere to a thin stick [11]. Another measurement is mean

diffusivity, which can be explained as the average length of axes of the ellipsoid indicating

the size of the tensor. This measure has proved useful for assessing the diffusion drop in

brain ischemia [12]. More recently, axial diffusivity (AD) and radial diffusivity (RD) have

been used to help to better understand the changes of the diffusion tensor [13, 14]. AD is

the length of the longest axes of ellipsoid and RD is the average of the two shorter axes.

Analysis of DTI data of pediatric subjects has illustrated changes of these indices due to

development [15]. Casicio et al. found overall increases in fractional anisotropy during

development and reduced overall diffusion due to development [16].

FA values can also be color coded by using the direction of the main axes of the

ellipsoid. Red is used to indicate the left-right direction, blue for superior-inferior and green

for anterior-posterior directions [17]. Using colored FA images, most of the projection,

association and commissural fibers can be identified in these images. Projection fibers

connect the cortex to the interior parts of the brain and to the spinal cord (blue color),

association fibers connect different parts of the same cerebral hemisphere (green color) and

commissural fibers connect the left and right hemispheres (red color). Figure 1.2 shows

colored FA images of one subject at 2 weeks, 1 year and 2 years. The brightness is weighted

by the fractional anisotropy [17].

Studying early brain development (the age group of neonates up to 2 years) via structural

and diffusion MRI involves two major challenges: successful MRI scanning of nonsedated

infants and an image analysis methodology designed to cope with rapidly changing contrast,

size and shape of anatomical structures and spatiotemporal variations to describe the

trajectory of early growth.

This dissertation focuses on the second challenge by systematically mapping a population

of images onto a common template, extracting intensity values of MRI data and diffusion

parameters of DTI for regions of interest and performing statistical analysis on these sets

of measurements. The longitudinal nature of the data presents unique challenges for the

statistical analysis that we address in this work. Previous approaches to modeling of early

brain development have mainly relied on cross-sectional data or have used linear models to

describe changes in these measurements. Growth is highly nonlinear at this stage and linear
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Neo$ Year$1$ Year$2$

Figure 1.2: Colored FA images of an individual. Left to right: scans at 2 weeks, 1 year
and 2 years.

models are suboptimal for describing early brain development. In addition to analysis of

population studies and drawing inferences based on the average growth trajectories, we also

focus on modeling individual trajectories to enable personalized treatment. Understanding

how an individual’s growth trajectory differs from the normative model could help clinicians

to develop an individualized treatment plan, taking into account not only the normative

model, but also an individual’s trajectory.

We will address challenges that are unique to a longitudinal study design by appro-

priately modeling the growth at this stage and taking into account the correlation among

individual scans. It is important to note that for a true longitudinal modeling we need both

longitudinal data and longitudinal analysis.

1.2 Longitudinal Studies

1.2.1 Objective of Longitudinal Studies

The defining feature of longitudinal studies is that subjects are measured repeatedly

over the course of the study. This is in contrast to cross-sectional studies in which an

individual is measured at only a single time-point. Longitudinal studies enable assessment

of within-individual changes in the response variable, and thereby have the capacity to

separate between cohort and age effects. This is displayed in Figure 1.3, where the plot on

the left shows the response variable decreases with age. However, if considering that the

data are longitudinal, the right plot of Figure 1.3, it is evident that all responses increase

with time. This example illustrates that the longitudinal studies can separate between age

effects (all of an individual’s responses increasing with time) versus cohort effect (differences

at baseline). Nowhere is this more important than in health sciences, where heterogeneity

of individuals due to genetic and environmental factors plays an important role in the
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Figure 1.3: The relationship of response variable y with age as a function of time. Top:
Cross-sectional analysis shows a decreasing trend between response variable y and age.

Bottom: A different pattern emerges when considering the within-individual trend.
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progression of the disease or the response of individuals to treatment. The aim of the

longitudinal study is to characterize within-individual changes over time and to determine

whether within-individual changes in the response are associated with some covariates such

as treatment plan, clinical group or biological factors.

1.2.2 Properties of Longitudinal Studies

1.2.2.1 Correlated Data

The hallmark characteristic of longitudinal data is the correlation among repeated

measurements. As these measurements are obtained on the same individual, there is a

correlation among the measurements, with measurements obtained closer in time being

more correlated than the ones further apart. This correlation among repeated measure-

ments breaks down the fundamental independence assumption of most statistical regression

techniques [18].

1.2.2.2 Unbalanced Data: Uneven Spacing, Missing
Time Points

Most longitudinal studies plan to obtain the same number of measurements for each

individual at the same time; however, in practice this is rarely the case. With studies

that span over some period of time, it is inevitable that some individuals will drop out

of the studies and some might miss their appointments and reschedule for a later time.

In longitudinal neuroimaging of infants, this is even more significant, as some images

might have to be excluded from study due to motion of the subject or insufficient quality.

Figure 1.4 illustrates an example of longitudinal data.

1.2.2.3 Multivariate Features

In longitudinal studies, as in cross-sectional studies, multiple measurements on an in-

dividual can be obtained at any given time. The correlation among these features should

be taken into account. In neuroimaing studies, multiple MRI scans can be obtained on an

individual during a session. As the underlying biology is the same, there is a correlation

among the scans of the individual that should be considered.

1.2.3 Clinical Applications

Longitudinal neuroimaging studies have gained popularity in recent years due to ad-

vances in medical imaging. These studies allow us to track developmental changes or pro-

gression of a disease in vivo longitudinally with more accuracy compared to cross-sectional

studies. In this work, we have concentrated on the diffusion and apparent signal intensity
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Figure 1.4: T1W longitudinal data of multiple subjects. Each subject is represented by a
different color. The number next to each scan indicates the age (in months) of the infant

at the time of the scan. Uneven spacing, missing time points and correlation among
repeated scans are common properties of longitudinal data.

changes of MRI. However, the methodologies developed here have also been successfully

applied to volume changes of white and gray matter over time for subjects at risk of autism,

and also DTI and volume changes of adolescent subjects with Down syndrome.

1.2.3.1 Population Analysis

Understanding early brain development has great scientific and clinical importance.

The human brain undergoes rapid organization and structuring early in life, and also there

is great heterogeneity among different individuals. Longitudinal modeling of longitudinal

data yields a more accurate average trajectory over time without the confounding cohort

effects [19, 18]. This is of great importance when the development itself is in question. Re-

cently, longitudinal data have become available for this critical period. However, normative

models are still not available to describe a normal pattern of development as is shown in

structural and diffusion MRI.

By undertaking appropriate longitudinal statistical analysis, we can model the average

trajectory via a parametric function, where we can summarize growth with a few parameters.

This analysis also enables comparison of a normative population model to other groups.
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For example, we can model population changes of subjects who have been diagnosed

with a specific disease and compare this growth curve to the normative model to gain

a better understanding of the pathology and when deviation occurs. We can also gain a

better understanding of the spatio-temporal sequence of maturation of white matter in the

developing brain.

Once average trajectories are obtained for different groups, we can make inferences

about parameters of the regression. In this dissertation, we consider studying longitudinal

changes of intensity of T1W and T2W MRI and diffusion parameters of DTI for a group of

subjects from 2 weeks to 2 years old to establish a normative pattern of development along

with its variability. The Gompertz function is utilized to characterize these changes over

time as it uses intuitive parameters describing growth: asymptote, delay and speed. White

matter regions that are known to mature at different rates are analyzed and quantified.

The second application is studying infants at high risk of autism, by virtue of having a

sibling who has been diagnosed with autism. In this study, the average trajectories of high

risk individuals who eventually did get diagnosed with autism are compared to those who

were spared by the disease, shedding light on how developmental trajectories differ between

the two groups. Last, but not least, we applied the methodology to estimate developmental

trajectories for twins and singletons and compare these trajectories between the two groups.

We hypothesized that there might be group differences between developmental trajectories

of twins and singletons due to suboptimal pre- and postnatal environments.

1.2.3.2 Subject Analysis

One of the important aspects of longitudinal analysis is the direct measurement of

intraindividual changes over time. Even if all the observations for all the time points are not

available for a subject, by pooling the data from other subjects in the study along with the

available observations for the individual, prediction of an individual trajectory is possible.

The estimation of personalized growth profiles is of great clinical interest as individuals

respond differently to treatment and show different growth trajectories. Also, in cases when

only a single scan is available, the intensity or diffusion parameters of the subject can be

compared to the normative model to indicate whether an individual is within the normative

range of variability. Additionally, subject-specific growth trajectory and predictive intervals

can be predicted based on only one scan. Such predictions might improve early detection

and outcome.
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1.2.4 Traditional Approaches

There are two commonly used approaches for longitudinal data analysis: repeated

measures analysis of variance (repeated ANOVA) and methods based on summary measures.

Repeated ANOVA analysis focuses on the change of the mean response, with limited

information about individual changes over time. Individuals are assumed to have additional

individual effect (random effect) that is constant over time. This effect is assumed to be the

same for all the measurements on an individual, resulting in the variances and covariances

of all the individual’s time points being the same. However, this is not appropriate for

longitudinal data as correlations among repeated measures tend to decrease with increasing

time [18].

ANOVA was developed for analysis of balanced data where the measurements for all the

subjects are obtained at the same time; however, as we noted earlier, this is hardly the case

for longitudinal data where missing time points and uneven spacing between measurements

are common. Also, in repeated ANOVA, covariates are assumed to be discrete values, so

we can obtain changes only between mean responses rather than a continuous trajectory of

mean response.

Another common approach is to use summary measures, first by fitting some model

at the individual level to obtain summary measures (i.e., slope of the regression lines,

area under the curve), and then using standard parametric or nonparameteric methods

to analyze the summary measures. This approach can raise issues when the data are

unbalanced and there are missing time points. For example, if the measurements are taken

at different time points, the resulting summary measure might have different variances.

Also, different individuals might have the same summary measure, but the shape of their

growth trajectory could be quite different. For example, if one considers the area under

the curve as the summary measure, curves with different shapes can still result in the same

summary measure. Also, subjects with only one time point would need to be excluded from

the analysis [18].

We need a statistical method that can handle uneven spacing between measurements and

missing time points, as this is the reality of longitudinal data. In Chapter 2 we discuss mixed

effect models, a class of statistical methods that model the correlation of measurements of an

individual along with modeling the mean response of a population over time. These methods

are powerful; however, a review of the literature indicates they are not commonly used in the

medical imaging community. This might be due to a lack of familiarity, the complexity of

the method and a lack of tools for these types of analysis. In this dissertation, we provide the
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background of these models, show their utility applied to multiple ongoing longitudinal early

brain development studies and provide extensions to the modeling to include multivariate

modeling of MRI data. Additionally, we provide subject-specific growth trajectories with

predictive intervals based on a limited number of scans. The subject-specific prediction

interval yields a more precise interval that is specific to an individual. The forecasting

method proposed in this dissertation has the potential to improve early recognition of

abnormalities.

1.3 Contributions

This dissertation describes the following contributions in image analysis and early brain

development:

1. An analysis of quantitative regional characterization of intensity changes of struc-

tural MRI and diffusion parameters of DTI in healthy developing infants highlights the

heterogenous spatio-temporal pattern of white matter maturation.

2. A nonlinear longitudinal modeling of early brain development via the Gompertz

function. The Gompertz growth function uses intuitive parameters related to delay, rate

of change and expected asymptotic value; all descriptive measures that can answer clinical

questions related to quantitative analysis and comparison of growth patterns.

3. Normative models for diffusion parameters are constructed. These models can serve

as a normal standard of reference for evaluating pediatrics neurological abnormalities.

4. Nonlinear longitudinal modeling is applied to longitudinal data of children at risk of

autism to understand the different patterns of maturation that emerge between high risk

children who do get diagnosed with autism versus those who do not.

5. The methodologies developed in this dissertation have been been applied to lon-

gitudinal data of singletons and twins to evaluate whether there is a difference in the

developmental trajectories of these two groups.

6. Taking advantage of the mean response of changes over time along with estimated

variance and covariance structure between and within subjects, individual longitudinal

trajectories are estimated.

7. Extension to nonlinear mixed effect modeling enables multimodal analysis of MRI

data (T1W,T2W, DTI) to account for correlation among these multiple measurements.

8. Confidence and predictive intervals based on a Monte Carlo simulation are estimated

for structural and diffusion growth trajectories. The predictive intervals can be used as

abnormality detection.
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9. Future growth characteristics (i.e., diffusion parameters) of new individuals with lim-

ited data are estimated. Subject-specific growth trajectories along with predictive intervals

are estimated for the new individual.

1.4 Overview of Chapters

The remainder of this dissertation is organized as follows:

Chapter 2 discusses the framework that is necessary to optimally model longitudinal

changes of brain structures. Multiple growth functions that are common in the literature

or appropriate for this age group are compared and discussed.

In Chapter 3, the application of our framework to neurodevelopment is presented.

Patterns of the development in different regions of white matter are characterized. Inferences

are made in regard to regional differences and growth is described quantitatively in terms

of asymptote, delay and speed.

Chapter 4 presents the results and challenges of the autism study. Inferences on the

Gompertz parameters of mean trajectories of groups diagnosed with autism and the group

not diagnosed are made.

In Chapter 5, developmental trajectories of monozygotic and dizygotic twins are com-

pared. Subsequently, the two groups are combined and their developmental trajectories are

compared to singletons.

Chapter 6 provides an extension to univariate nonlinear mixed effects modeling by jointly

estimating multimodal growth trajectories of structural and diffusion data.

Chapter 7 focuses on subject specific analysis, with the goal of obtaining individual

trajectories for each subject in the study and also an estimate of the individual trajectories

for new subjects by utilizing the normative model as prior knowledge.

Chapter 8 reviews contributions of this dissertation, discusses its limitation and presents

future work.



CHAPTER 2

STATISTICAL FRAMEWORK FOR

MODELING GROWTH TRAJECTORIES

OF EARLY BRAIN DEVELOPMENT AS

REPRESENTED BY MRI AND DTI DATA

2.1 Introduction

This chapter provides background on the choice of parametric growth functions and

introduces mixed effects models. Growth curves provide a convenient way of modeling a

large set of measurements with relatively few parameters. These curves characterize changes

in mean responses over time and enable comparison of growth rates and prediction of future

growth. In longitudinal data analysis, covariances among repeated measurements need to be

properly modeled to yield valid inferences about the parameters of growth curves [18]. This

is illustrated in Figure 1.3 in which the group trend shows completely different results when

considering correlation among individuals. In section 2.3, we introduce mixed effects models,

which provide a powerful way to analyze longitudinal data. Mixed effects models overcome

limitations of traditional approaches to repeated ANOVA and summary measures methods

as these models do not require the same number of observations per individual nor do they

require measurements to be taken at the exact time for all the individuals. In section 2.4,

we review criteria used to select a growth curve parameterization for mixed-effects modeling

of longitudinal structural and diffusion MRI data.

2.2 Growth Models

The simplest model and one that is used commonly in the literature is a linear model,

where the relationship between response variable Yi and independent variable Xi is formu-

lated as

Yi = β0 + β1g1(Xi1) + · · ·+ βpgp(Xip) + ei i = 1, · · · , n (2.1)

where there are p explanatory variables (X1 · · ·Xp), e is the error term and g1, · · · , gp may
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be nonlinear functions. These models are called linear models as the expectation function is

linear in its parameters, β. Explanatory variables X are treated as fixed values. Polynomial

functions are an example of these models where degree of zero is simply a constant function,

degree of one is a line, degree of two is a quadratic and so on. With an increasing order of

polynomials, one can obtain an increasingly accurate approximation to the observed data

within the observed range. These growth curves are categorized as empirical models, which

are based solely on the relationship between the response and the independent variable with

no regard to the underlying mechanism producing the data. Nonlinear models, on the other

hand, are often mechanistic, where the sole purpose is not to just fit the data, but rather to

describe the mechanism that produces the response [20]. Even when the nonlinear models

are derived empirically, characteristics of the data, such as asymptotes and monotonicity, are

considered. These models are considered semimechanistic [20]. Nonlinear models generally

use fewer parameters than their linear counterparts to describe the data, providing a more

parsimonious description of the data. Also, nonlinear models provide better prediction

outside of the range of observed data.

Mechanistic models of growth are generally based on a differential equation relating

growth rate dy/dt to response variable y (i.e., size, diffusion parameter) [21]. This formu-

lation has led to a variety of growth models, such as exponential, monomolecular, logistic

and Gompertz functions.

2.2.1 Exponential and Monomolecular

Exponential growth is based on the assumption that growth rate is proportional to size:

dy/dt = ry. The solution to this differential equation is

y(t) = y0e
rt = κert. (2.2)

Growth can be both increasing and decreasing. Exponential decay is formulated as

dy/dt = −ry, where the solution is

y(t) = y0e
−rt = κe−rt. (2.3)

Parameter y0 is the initial size, diffusion parameter or intensity value of MRI at age zero.

Exponential decay could be a good model for diffusivity measures and T2W, as these values

decline over time. However, exponential growth can be valid only for a very short period

of time, which is not plausible for our datasets. Even though we are modeling development
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only during the first 2 years of life, asymptotic properties are already observed during this

age range. We can use two variants of exponential growth that have asymptotic properties.

y(t) = y∞(1− e−rt) = α(1− ert), (2.4)

and

y(t) = y∞ − (y∞ − y0)e−rt = α− (α− κ)ert. (2.5)

Notice, equation 2.4 is a special case of 2.5 when y0 = 0. Equations 2.4 and 2.5 are

examples of monomolecular growth models, where the growth rate is dy/dt = r(y∞ − y).

These models are also referred to as asymptotic regression models and the von Bertalanffy

curve [22].

2.2.2 Logistic

Logistic curves incorporate three stages of growth in the model: 1) initial growth where

dy/dt = ry, 2) linear growth where y = y0 + rt and 3) limiting stage where the growth

rate approaches zero and y approaches y∞. Incorporating these three stages in the model

results in the following differential equation dy/dt = ry(y∞ − y)/y∞ [21]. The solution to

this differential equation is the logistic curve:

y =
y∞

1 + eη−rt
=

α

1 + eη−rt
. (2.6)

The inflection point of the logistic curve is when y = α/2, where the absolute growth

rate is maximal, and the curve is symmetric around its inflection point. This symmetry

is one of the drawbacks of the logistic curve. The Gompertz curve as described in the

following section is more flexible by allowing the curve to be asymmetric around its inflection

point [21].

2.2.3 Gompertz

The Gompertz growth curve is similar to the logistic growth curve where it incorporates

the three stages of growth mentioned above. However, in the case of Gompertz, the

growth rate decreases exponentially with time, resulting in the following differential equation

dy/dt = kye−rt [21]. The solution to this differential equation is

y = y∞e
−(k/r)e−rt

= y∞e
−d e−rt

= αe−d e
−rt
, (2.7)

where α is the final asymptotic value, parameter r specifies the decay in the growth rate

and parameter d relates the final and initial values of y. The b parameter can be thought

of as the delay parameter. For example, if two curves, f1 and f2, have the same final value

y∞, and the initial values of these curves y0 are such that y01 > y02, then df1 < df2 .
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2.2.4 Selection of Growth Models

Figure 2.1 shows exponential, monomolecular, logistic and Gompertz growth models.

The curves most commonly used in studying human growth and development in regards

to size, length and mass are the Gompertz or logistic or a variation of these models [21].

However, a review of the literature on models of structural and diffusion changes of brain

MRI reveals that mainly polynomial models, such as linear and quadratic, have been

utilized. This is partially due to the ease of use of polynomials. They are relatively easy to fit

and statistical distribution properties of the parameters are easier to obtain [21]. However,

polynomials cannot easily represent the asymptotic behavior of growth that is observed in

early brain development. We prefer mechanistic or semimechanistic models of growth, as we

are interested in understanding early brain development and polynomials do not represent

biological mechanisms of growth. Among these mechanistic models, the Gompertz function

provides the most flexibility and favors faster early growth, which is what we observe in

the early years of life. The Gompertz function when compared to the logistic function has

a faster initial growth and slower approach to the asymptote [21]. The parameters of the

Gompertz function also provide intuitive parameterization of growth in terms of asymptotic

value α, delay d and growth rate r. In section 2.4, we will systematically evaluate all these

functions applied to structural and diffusion MRI data of early brain development.

2.3 Mixed Effects Model

In longitudinal studies, response variables are measured repeatedly on the same indi-

vidual, enabling direct study of change. Often, we cannot control the exact timing of

when these measurements are taken. Therefore, individuals might have a different number

of observations and variability among the timing of observations. Also, longitudinal data

analysis requires a special type of statistical analysis to account for the intercorrelation

among observations on each subject. This correlation needs to be considered to draw valid

scientific inferences [19]. Mixed effects models provide a powerful and flexible environment

for analyzing longitudinal data. In the mixed effects model, the observed data are assumed

to be a combination of both fixed effects, β, parameters associated with the entire population

(or at least within a subpopulation), and random effects, b, that are specific to an individual

drawn at random from the population. Random effects account for the heterogeneity that

is present in the population as these effects vary among subjects. An individual will have

its own subject-specific mean trajectory; thus repeated measures of an individual subject

have common random effects, and thereby correlation among an individual’s measurements
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Figure 2.1: Increasing and decreasing growth models.
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is taken into account. A mixed effects model distinguishes between a within-subject source

of variability and a between-subject source of variability.

2.3.1 Linear Mixed Effects Model

Linear mixed effects models are mixed effect models where both the fixed and random

effects enter the model linearly. In these models, the individual trend is a linear model built

upon the overall population trend, which is also linear. Linear mixed effects models can be

formulated as:

yi = Xiβ + Zibi + ei i = 1, · · · ,M, (2.8)

where yi is the ni×1 vector of measurements for subject i. β is a p×1 vector of fixed effects

and bi is the q× 1 vector of random effects. Xi and Zi are design matrices that relate fixed

effects and random effects to yi. Xi is the ni×p matrix, which can include variables such as

clinical group, age and gender. Zi is the ni × q matrix for the random effects and includes

variables such as age. bi is a multivariate gaussian with mean zero, bi ∼ N (0,Ψ), and ei

is the ni × 1 measurement error and is normally distributed N (0, σ2). Random effects and

measurement errors are assumed to be independent.

Let us consider the case where Xi = Zi. In this case, each individual will have its own

regression coefficients β + bi and thereby its own subject-specific mean trajectory:

E(yi|bi) = Xiβ + Zibi (2.9)

and the mean response for the population is averaged over all the individuals in the

population:

E(yi) = Xiβ. (2.10)

The regression parameter β describes the mean response over time, while bi explains

an individual’s deviation from the mean response. For example, if only the intercept is

considered as a random effect, individual trajectories will vary only in intercept term. All

the trajectories will have the same slope as the population model. However, if both intercept

and slope are considered as random effects, each individual’s trajectory will have a different

intercept and slope. We can also distinguish the conditional covariance of yi|bi,

Cov(yi|bi) = Cov(ei) = σ2Ini , (2.11)

from the marginal covariance of yi,

Cov(yi) = Cov(Zibi) + Cov(ei) = ZiΨZ
T
i + σ2Ini , (2.12)
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which is not a diagonal matrix, thereby accounting for correlation among observations of

the same individual. Thus by including random effects, correlation among measurements of

yi is modeled. Also, Cov(yi) is defined in terms of Ψ and σ2, allowing for explicit analysis of

between-subject, Ψ, and within-subject, σ2, sources of variation. Because the covariance is

a function of the times of measurements (time is usually modeled in Zi), the mixed effects

model is well suited when individuals have measurements at different times or have missing

time points.

2.3.1.1 Parameter Estimation

The likelihood function for the linear mixed effect model of equation 2.8 is:

L(β,Ψ, σ2|y) =

M∏
i=1

p(yi|β,Ψ, σ2). (2.13)

Since nonobservable random effects are part of the model, we must integrate out random

effects; thus the marginal density of yi is:

p(yi|β,Ψ, σ2) =

∫
p(yi|β, bi, σ2)p(bi|Ψ, σ2)dbi. (2.14)

The population growth parameters β and variance components Ψ and σ2 are estimated

by maximizing the likelihood equation 2.14.

Equation 2.8 can be rewritten as yi = Xiβ+e∗i , where e∗i = Zibi+ei. In this formulation

e∗ is the sum of two independent multivariate normal random vectors with mean zero and

covariance Vi, where Vi = cov(Zibi) + cov(ei) = ZiΨZ
T
i + σ2Ini . It follows that yi ∼

N (Xiβ, Vi), and for a given Ψ and σ, we have a closed form maximum likelihood estimate

of β, β̂ =
(∑M

i=1X
T
i V̂
−1
i Xi

)−1∑M
i=1X

T
i V̂
−1
i yi. The estimates of Ψ and σ are obtained via

the EM algorithm [23, 24] or the Newton-Raphson procedure [25].

2.3.2 Nonlinear Mixed Effects Model

In section 2.2 we discussed the need for nonlinear growth curves to model nonlinear

changes of early brain development. The nonlinear mixed effect model (NLME) is a

generalization of linear mixed effect and nonlinear regression. In NLME, some or all of the

fixed or random effects enter the model nonlinearly. In the NLME model, each individual’s

response is modeled as:

yi = f(φi, ti) + ei, (2.15)

where φ = Aiβ + Bibi. Similar to the linear mixed effect model, β are the fixed effect

and bi are random effects with distribution N ∼ (0,Ψ). Ai and Bi are design matrices
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that indicate whether specific fixed or random effect should be included in the model. The

function f can be any nonlinear function. In section 2.4, we evaluate different nonlinear

functions that may be candidates for modeling early brain development.

2.3.2.1 Parameter Estimation

Similar to linear mixed effects models, parameter estimation of NLME is also based on

the maximum likelihood of marginal density of responses y as in equation 2.14. However,

in the nonlinear mixed effects models there is no closed form solution to this integral.

We use the approximation method proposed by Lindstrom and Bates to obtain the model

parameters [20] .

This approximation method uses the Taylor expansion of model function f around

conditional modes of random effects b and the current estimate of β to approximate the

integral in equation 2.14. This method alternates between two steps, a penalized nonlinear

least squares step and a linear mixed effects step [20].

2.3.2.2 Inference

The distribution of maximum likelihood estimator β of the fixed effect based on the

linear mixed effect approximation is:

β̂ ∼ N

β,[ M∑
i=1

X̂T
i V̂
−1
i X̂i

]−1 , (2.16)

where V̂ = ZiΨẐ
T
i + σ2Ini , X̂i = ∂fi

∂βT |β̂,b̂i , Ẑi = ∂fi
∂bTi
|β̂,b̂i . Approximate confidence intervals

of fixed effects can be calculated based on the estimated β and its sampling distribution.

The approximate confidence interval of level 1− α and for the kth fixed effects is

β̂k ± tdfk(1− α/2)

√√√√[ M∑
i=1

X̂T
i V̂
−1
i X̂i

]−1
, (2.17)

where tdfk(1 − α/2) denotes the 1 − α/2 quantile of the t-distribution with dfk degrees of

freedom.

For hypothesis testing, we also use β̂ and its sampling distribution. For example, if we

want to test whether our null hypothesis βk= 0, a general t-statistic can be constructed as

follows:

t =
β̂k√[∑M

i=1 X̂
T
i V̂
−1
i X̂i

]−1 . (2.18)
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2.4 Experiments and Results

2.4.1 Model Selection

Two important aspects of modeling longitudinal data are 1) modeling mean response

(fixed effects) and 2) modeling the covariance or time dependence among the repeated

measures (structure of random effects). In section 2.2, we discussed various growth functions

that could be used to model the mean responses of diffusion parameters of DTI or intensity

values of structural MRI. Some of these models fall under the linear mixed effects modeling,

such as polynomials, whereas the other parametric growth models of section 2.2 fall in the

category of nonlinear mixed effects modeling. One important aspect of model selection is

which growth curves we should choose for analyzing change over time. The model selection

becomes more complicated in the mixed-effects models as selecting the best model has

to include not only criteria on selecting the mean structure (fixed effects), but also the

variance-covariance structure of random effects.

For example, let us consider modeling growth by a simple linear trend. Do we allow

only intercept to vary among individuals, or do we allow both intercept and slope to

vary among individuals? Also in the nonlinear mixed effects model, if we want to model

growth via the Gompertz function, which parameters or combination of parameters of the

Gompertz function do we allow to vary randomly among individuals? Various models

can be constructed for each growth curve based on inclusion of different combinations of

random effects. In the linear mixed effects model, backward and forward model building

procedures have been suggested. In the forward procedure, models are initially fit with only

the intercept term as a random effect. Then the linear term, and then quadratic and higher

order terms are added to the model if their inclusion is significant.

The backward elimination model starts the modeling by including all the fixed effects as

random effects, and removing one variable at a time starting with higher order terms as long

as their removal does not make a significant difference in the model. The likelihood ratio

test can be used to test nested models (when one model represents a special case of another

model), i.e., if L2 is the likelihood of the more general model and L1 is the likelihood of the

restricted model. The likelihood ratio test is

2log(L2/L1) = 2 [log(L2)− log(L1)] . (2.19)

The likelihood ratio test statistic is χ2 distributed with k2−k1 degrees of freedom, where

ki is the number of parameters to be estimated in model i.

In nonlinear mixed effects modeling, there is no order about inclusion of random effects

so forward and backward procedures do not apply. Also, likelihood ratio tests are not
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applicable if we are comparing models that have different fixed effects (i.e., logistic vs.

Gompertz). To overcome shortcomings of the likelihood ratio test, we prefer to use the

Akaike Information Criteria (AIC) as an alternative model selection,

AIC = −2log(Li) + 2npar, (2.20)

where Li is the likelihood of model i and npar is the number of parameters in the model.

Under this formulation, a smaller AIC indicates a better model fit.

To select a model to characterize changes of structural and diffusion parameters of MRI

for early brain development, we prefer a growth curve that has lower AIC measures, provides

physical intuition about growth and does not violate knowledge about development already

existing in the literature.

2.4.2 Evaluation of Growth Curves

To select among the variety of developmental models introduced in section 2.2, we fit

these growth curves to longitudinal diffusion data of 26 healthy individuals ranging from 2

weeks to 2 years old. Multiple regions of interests that are known to have distinctive pattern

of development were selected to evaluate the model fit. As mentioned in section 2.4.1, not

only do we need to select among growth models (i.e., polynomials, exponential, monomolec-

ular, logistic and Gompertz), we also need to select how many of the fixed effects in these

models are allowed to vary randomly among subjects.

The following criterion was used to select random effects for each growth curve: for

linear models, the forward procedure was applied in selecting the combination of random

effects. For nonlinear mixed effects models, a maximum of two parameters was used for

random effects. If the parameters are highly correlated or the individuals do not exhibit

large variation with regard to the corresponding parameter, inclusion of the extra random

effects poses challenges in the estimation [26]. Thus we limit the number of random effects to

two for nonlinear mixed effects models. We evaluate the model fits on fractional anisotropy

(FA), which shows an increasing trend over time, and radial diffusivity (RD), which shows

a decreasing trend over time.

Table 2.1 displays the results of model fitting to observed FA values of longitudinal data

for posterior thalamic radiation as is shown in Figure 2.2. Among linear and quadratic

growth curves, the linear trend with only the intercept term and the quadratic model

also with only the intercept term as random effects were among the best models for the

polynomial group for this region but also the majority of the regions that we analyzed.
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Table 2.1: Comparison of Linear Mixed Effects Model.

Model df (NLME)* AIC

FA.lme.quadratic1 (random effects: intercept) 5 939.96
FA.lme.quadratic3 (random effects: all the parameters) 10 942.40
FA.lme.quadratic2 (random effects: intercept & age) 7 943.96
FA.lme (random effects: intercept) 4 966.85
FA.lme2 (random effects: intercept & slope) 6 970.66

*df(NLME) refers to the degrees of freedom used in the NLME model. Degrees of freedom
are calculated based on the number of fixed effects β, the unique parameters of the variance-
covariance of random effects Ψ and the within-group error term σ.

Figure 2.2: Posterior thalamic radiation is shown as red label on the longitudinal FA
images of one subject. Images taken at 2 weeks, 1 year and 2 years.

Table 2.2: Comparison of Two-parameter Monomolecular Model.

Model df (NLME) AIC

FA.nlme.monomolecular.αr (random effects: all the parameters) 6 994.50
FA.nlme.monomolecular.r (random effects: r) 4 1001.03
FA.nlme.monomolecular.α (random effects: α & r) 4 1022.49

Table 2.2 displays the results for varying random effects of the monomolecular model

when the growth rate is limited. This model has two random effects: α, which is the

asymptote as x approaches infinity, and r, which is the rate constant. The y value at x = 0

is assumed to be zero. For most regions, inclusion of both parameters α and r as random

effects improved the model fitting.

Table 2.3 displays the results for the three-parameter monomolecular model where κ is

added to the model. κ is the value at x = 0, so the model does not have to pass through

the origin as does the two-parameter monomolecular model. Inclusion of random effects α



23

and κ yielded the best fits among monocular models for most of the brain regions based on

the AIC measures.

Tables 2.4 and 2.5 display the results for logistic and Gompertz growth curves. For the

logistic function, inclusion of α parameter or both α and r were among the best models for

the majority of regions, whereas for the Gompertz function, inclusion of only α or inclusion

of both α and d (delay) resulted in the lowest AICs.

Figure 2.3 shows the results of model fitting via linear and nonlinear mixed effects

modeling for posterior thalamic radiation. Combinations of random effects were selected

for each growth curve based on the AIC. The linear models do poorly outside the range of

observed data and also violate the asymptotic property that is known for this age group.

Among the nonlinear growth models, all three growth curves –monomolecular, logistic

and Gompertz– seem to fit the observed range of the data similarly. The monomolecular

growth curve can predict values less than zero, which is not possible for diffusion measures,

Table 2.3: Three-parameter Monomolecular Model.

Model df (NLME) AIC

FA.nlme.monomolecular.ακ (random effects: α & κ) 7 975.61
FA.nlme.monomolecular.α (random effects: α ) 5 987.91
FA.nlme.monomolecular.αr (random effects: α & r) 7 991.90
FA.nlme.monomolecular.r (random effects: r) 5 1001.00
FA.nlme.monomolecular.κ (random effects: κ) 5 1015.89

Table 2.4: Logistic Model.

Model df (NLME) AIC

FA.nlme.logis.α (random effects: α) 5 976.54
FA.nlme.logis.η (random effects: η) 5 1015.83

Not all the models converged.

Table 2.5: Gompertz Model.

Model df (NLME) AIC

FA.nlme.gompertz.αd (random effects: α & d) 7 976.34
FA.nlme.gompertz.α (random effects: α) 5 976.60
FA.nlme.gompertz.αr (random effects: α & r) 7 980.59
FA.nlme.gompertz.d (random effects: d) 5 1015.86
FA.nlme.gompertz.dr (random effects: d & r) 7 1019.86
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Figure 2.3: Comparison of different growth models for longitudinal FA data. Top: linear
mixed effect models; Middle: nonlinear mixed effect models. Linear mixed effects models

are not valid beyond the observed range of data.
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Gompertz has a smaller AIC compared to logistic for most regions that we analyzed.

Overall, the Gompertz function with asymptote and delay as random effects performed

reasonably well compared to other growth curves and has the asymptotic properties in the

observed age range that are known from pediatric neuroanatomy.

We also performed a similar model building procedure for radial diffusivity, RD, that

shows a decreasing trend. For modeling a decreasing trend, we used linear mixed effect

models similar to the ones shown for modeling FA. In the case of the nonlinear mixed

effects models, we used the exponential decay function and dropped the two-parameter

monomolecular model as this model makes a strong assumption that the y value is zero; at

time point zero, however, this is not the case for the DTI data. Here, time zero means when

subjects are born and clearly the diffusion values are not zero at that time. Among the

models considered, the quadratic model with all the parameters as random effects performed

the best among linear models. Exponential models with the asymptote as random effects

performed better compared to other combinations of random effects. For the Gompertz

function, including asymptote and delay, α and d, as random effects resulted in the lowest

AIC for the majority of regions.

Figure 2.4 shows the results of growth curves with their best combination of random

effects (i.e., the combination of random effects that yielded the lowest AIC measure for

a given growth curve). As is evident in the plots, the linear mixed effects models of

polynomials do poorly outside the range of observed values. Monomolecular and Gompertz

growth curves do a better job of modeling the observed changes and show asymptotic

properties that are known in the literature. Between monomolecular and Gompertz growth

functions, Gompertz did have lower AIC measures.

We also evaluated other properties of the models, such as how realistic the prediction

is and how well the model matches what is known about the development process during

infancy. We know that the growth rate cannot be constant during this time period. We

also know that diffusion parameters and intensity values of MRI seem to saturate by age

2. We therefore prefer models with asymptotic behavior. We prefer nonlinear growth

functions rather than polynomials, as the parameters of nonlinear growth functions usually

can be related to biological processes, and polynomial functions tend to make spurious

upward/downward predictions that are not biological at this age. Another problem with

some of the models, such as monomolecular models, is that they can predict negative

values for earlier time points, which is not possible for diffusion or intensity values of

MRI. Gompertz and logistic models are both sigmoid type functions and have asymptotic
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Figure 2.4: Comparison of different growth models for longitudinal RD data of posterior
thalamic radiation. Top: linear mixed effects models; Middle: nonlinear mixed effects
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properties as x → ∞ and x → −∞. For FA values, Gompertz and logistic models had

similar AIC measures, with Gompertz having slightly lower AIC measures for the majority

of regions. However, for RD measures, we had convergence issues with the logistic function

and Gompertz performed relatively better based on the AIC measures for the majority of

regions. The Gompertz curve fits the data well and uses intuitive parameters related to

growth such as asymptote, delay and speed. For the rest of this chapter and in following

chapters we therefore use the Gompertz model with asymptote and delay as random effects

for our growth curve.

2.4.3 Hypothesis Testing

We generated synthetic longitudinal data to ensure our analysis methodology can cap-

ture underlying differences as presented in the synthetic data. Random data representing

two regions (R1 and R2) are generated, and we verify that the overall trend of the population

and each subject’s specific growth trajectory matches the known ground truth. We also

verify that the Gompertz parameters are significantly different between the two regions in a

way that matches the synthetic model. Synthetic longitudinal data are generated following

equation 2.15 where βR1 = [0.8, 0.6, .991], Ψ = diag(0.042, 0.022, .0022) and σ2 = 0.0052.

Values for three time points of 15 subjects are generated while keeping some of the fixed

parameters of βR2 the same as βR1 . We then vary one, two or all of the fixed parameters

of R2 and perform hypothesis testing between two regions to identify fixed parameters that

are significantly different between these two regions. Figures 2.5, 2.6 and 2.7 summarize

some of our experimental results. The results demonstrate that our approach can detect

significant discriminatory features of growth patterns in a pair of regions in terms of

Gompertz parameters.
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Figure 2.5: Example of randomly generated synthetic longitudinal data for two regions
colored blue (R1) and red (R2) by varying β3 between the two regions. Hypothesis testing

correctly identifies β3 as being significantly different between these two regions.
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Figure 2.6: Example of randomly generated synthetic longitudinal data for two regions
colored blue (R1) and red (R2) by varying β2 and β3 between the two regions. Hypothesis

testing correctly identifies β2 and β3 as being significantly different between these two
regions.
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The human brain undergoes rapid and dynamic development early in life. Assessment of brain growth patterns
relevant to neurological disorders and disease requires a normative population model of growth and variability
in order to evaluate deviation from typical development. In this paper, we focus on maturation of brain white
matter as shown in diffusion tensor MRI (DT-MRI), measured by fractional anisotropy (FA), mean diffusivity
(MD), as well as axial and radial diffusivities (AD, RD). We present a novel methodology to model temporal
changes of white matter diffusion from longitudinal DT-MRI data taken at discrete time points. Our proposed
framework combines nonlinear modeling of trajectories of individual subjects, population analysis, and testing
for regional differences in growth pattern. We first perform deformable mapping of longitudinal DT-MRI of
healthy infants imaged at birth, 1 year, and 2 years of age, into a common unbiased atlas. An existing template
of labeledwhitematter regions is registered to this atlas to define anatomical regions of interest. Diffusivity prop-
erties of these regions, presented over time, serve as input to the longitudinal characterization of changes. We
use non-linear mixed effect (NLME) modeling where temporal change is described by the Gompertz function.
The Gompertz growth function uses intuitive parameters related to delay, rate of change, and expected asymp-
totic value; all descriptive measures which can answer clinical questions related to quantitative analysis of
growth patterns. Results suggest that our proposed framework provides descriptive and quantitative informa-
tion on growth trajectories that can be interpreted by clinicians using natural language terms that describe
growth. Statistical analysis of regional differences between anatomical regions which are known to mature
differently demonstrates the potential of the proposed method for quantitative assessment of brain growth
and differences thereof. This will eventually lead to a prediction of white matter diffusion properties and associ-
ated cognitive development at later stages given imaging data at early stages.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Improved understanding of typical brain development during in-
fancy, an interval characterized by rapid sculpting, organization and
vulnerability to exogenous influences, is of a great importance both
for clinical and scientific research. Many neurobehavioral disorders
have their origins during neurodevelopment (Gilmore et al., 2010;
Huppi, 2008). Establishing a normative model of early brain develop-
ment is a critical step to understanding the timing and potential
mechanisms of atypical development and how intervention might
alter such trajectories and improve developmental outcomes (Als
et al., 2004; Marsh et al., 2008). Once normative models are available,
they can inform research and practice concerning children at risk
for neurodevelopmental disorders and may eventually lead to earlier

and improved diagnosis and treatment. Longitudinal trajectory-based
studies provide a better understanding of human brain development
compared to cross-sectional studies (Karmiloff-Smith, 2010). In cross-
sectional data, calculation of the average trajectorymay not be represen-
tative for the growth patterns of individual subjects as this approach is
inherently insensitive to individual developmental differences and co-
hort effects (Gogtay et al., 2004). Cross-sectional analysis might falsely
report magnitude of changes over time or may fail to detect changes
(Casey et al., 2005).

Growth modeling from longitudinal data, on the other hand, makes
use of sets of individual temporal trajectorieswhich results in significantly
improved models of growth and growth variability, as longitudinal stud-
ies can differentiate between cohort and age effects (Diggle et al., 2002).

Previous imaging studies of early brain development have substan-
tially contributed to our current understanding of brain development.
Some of the studies considered size or shape differences (Huppi,
2008; Knickmeyer et al., 2008; Xu et al., 2008; Xue et al., 2007), others
have looked at changes of contrast in MRI (Sadeghi et al., 2010) or
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diffusion parameters in DTI (Gao et al., 2009; Geng et al., 2012;
Hermoye et al., 2006; Huppi et al., 1998; Mukherjee et al., 2002;
Sadeghi et al., 2012). However, most of these studies are based on
cross-sectional data or children older than 2 years (Dubois et al.,
2008; Faria et al., 2010; Gao et al., 2009; Hermoye et al., 2006;
Mukherjee et al., 2002). In this study we focus on developing longitudi-
nal models spanning birth to about two years of age. The models are
based on the parameters obtained from diffusion tensor imaging
(DTI). DTI-derived diffusivity parameters provide relevant information
about thematuration of the underlying tissue as they assess water con-
tent (Huppi, 2008). Thesemeasurements are a possible reflection of ax-
onal density and/or degree of myelination (Neil et al., 1998; Song et al.,
2002)which correlatewith cognitive functions (Dubois et al., 2006) and
early developmental outcomes (Als et al., 2004;Ment et al., 2009;Wolff
et al., 2012). In this study we focus on fractional anisotropy (FA), mean
diffusivity (MD), radial (RD) and axial diffusivity (AD) to explain brain
maturation and to gain a better understanding ofwhitematter develop-
ment. Driven by earlier findings that myelination follows a nonlinear
spatio-temporal pattern (Dubois et al., 2008), our goal is to capture
these changes in terms of the parameters of the Gompertz function
which provides an intuitive parameterization representing delay,
growth, and asymptotic values for each region.

In contrast to previous studies, we use an explicit growth function
(the Gompertz function) and a nonlinear mixed effect modeling
scheme (Pinheiro and Bates, 2000). In a nonlinear mixed effects
model, the diffusion parameters are modeled in a hierarchical fashion,
withfixed-effect representing the overall population trend, and random
effect associated with each individual. Nonlinear mixed effect models
are suited for longitudinal data where each subject has repeated scans
with the possibility of missing data points and uneven spacing between
scans of all the individuals in the group. Unlikemost previous studies of
early brain development, we make use of longitudinal imaging where
each subject is imaged repeatedly over the first few years of life. This en-
ables amore accurate characterization of developmental pattern (Giedd
et al., 1999). Nonlinear mixed effect model provides a direct way of es-
timating individual trajectories along with longitudinally derived typi-
cal developmental curves as illustrated in Fig. 2. This leads to the
characterization of a normative model for healthy developmental pat-
terns and estimation of personalized, individual trajectories of growth,
which is a property that will be desirable for comparison and diagnostic
assessment of individual subjects.

We apply our analysis framework to a set of white mater regions
that are known to have different patterns of growth to establish nor-
mative developmental patterns for each region. Quantitative analysis
of diffusion changes in these regions provide further insight into brain
maturation process and will enable prediction of subject-specific
growth trajectory with the potential of detecting pathological devia-
tion related to brain disorders.

Materials and methods

Subjects

This study was approved by the Institutional Review Board of the
University of North Carolina School of Medicine. Children analyzed
in this study are controls in an ongoing longitudinal study of early
brain development in high risk children (Geng et al., 2012). A total
of 26 control subjects were selected for this study. Scans of these sub-
jects were obtained at around two weeks, 1 year and 2 years. Four
of the subjects had sub-optimal scans at 1 year that were removed,
but their scans for other time points were kept. In total, we used 59
datasets, the temporal distribution of scan data is shown in Table 1.
To ensure maximal success rate of scanning, all subjects were fed,
swaddled and fitted with ear protection. All subjects were scanned
without sedation during their natural sleep.

Image acquisition and data processing

All images were acquired using a 3 T Allegra head-only MR system
using a single shot echo-planar spin echo diffusion tensor imaging
sequence with the following parameters: TR=5200 ms, TE=73 ms,
slice thickness of 2 mm and in-plane resolution of 2×2 mm2. One
image without diffusion gradients (b=0) along with 6 gradient direc-
tions with a b-value of 1000 mm3/s were acquired. The sequence was
repeated 5 times for improved single-to-noise ratio. All DWIs were
checked and corrected for motion artifacts using the DTIChecker tool.1

Tensor maps were calculated for each DTI scan using weighted least
squares tensor estimation on the images that have been averaged
over sequence repeats (Salvador et al., 2005). T2-weighted structural
images were obtained using turbo spin echo sequence with TR=7 s,
TE=15 and 90 ms, slice thickness of 1.95 mm and in-plane resolution
of 1.25×1.25 mm2. T2W and baseline DWI of all the subjects' scans
were skull stripped using Brain Extraction Tool (BET) (Smith, 2002).

Due to significant contrast changes in early brain development, we
utilized two registration frameworks: one for intra-subject and inter-
modality registration, and the other for inter-subject registration. For
inter-subject registration, we applied the unbiased atlas building
framework of Joshi et al. (2004) based on the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) (Miller et al., 2002) to the
set of T2W images of scans at year 1 to obtain spatial mappings
between all subjects through the estimated atlas coordinate system.
Intra-subject registration was performed by IRTK software, using af-
fine and nonlinear registration method of Rueckert et al. (1999)
using normalized mutual information as the image match metric
(Studholme et al., 1999) that appears robust to changing contrast
properties in early brain development.2 All time points of each sub-
ject are registered to the unbiased atlas via linear and non-linear
transformations, first by mapping these images to the year 1 scan
and then cascading the two transformations for a mapping to the
atlas. Details on the registration methods and parameters are summa-
rized in Appendix A. The tensors are registered to the atlas using
transformations obtained by registering the DTI baseline (B0) images
to T2W images. Tensors are resampled using finite strain
reorientation and Riemannian interpolation (Alexander et al., 2001;
Fletcher and Joshi, 2007; Pennec et al., 2006). After all the images
are transformed into the atlas space, the tensors are averaged using
the log-Euclidean method to produce a tensor atlas (Arsigny et al.,
2006). In this study, we extract the mean, axial, radial diffusivity,
and fractional anisotropy features from the registered tensors, MD ¼
λ1þλ2þλ3

3 , AD=λ1, RD ¼ λ2þλ3
2 and FA ¼

ffiffi
1
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1−λ2ð Þ2þ λ1−λ3ð Þ2þ λ2−λ3ð Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2
1þλ2

2þλ2
3

p where λi

are the eigenvalues of the tensor sorted from largest to smallest. Fig. 1
shows an overview of our method and analysis workflow.

Nonlinear mixed effects model

In this subsection, we describe the nonlinear mixed effects model
used to analyze the longitudinal DTI data. Compared to a nonlinear

Table 1
Distribution of scans across different time points. N indicates the
number of subjects with the associated temporal pattern.

Available scans N

Neonate scan only 2
1 year scan only 0
2 year scan only 0
Neonate+1 year scan 10
Neonate+2 year scan 2
1 year+2 year scan 3
Neonate+1 year+2 year scan 9

1 http://www.ia.unc.edu/dev/download/dtichecker.
2 http://www.doc.ic.ac.uk/~dr/software.
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least squares (NLS) method, a nonlinear mixed effects (NLME) model
does not assume that the sample data points are independent and
identically distributed, rather it assumes that there is correlation across
repeatedmeasurements. Also, the average trend estimated based on the
mixed effect model is an average of individual trajectories rather than
a least squares fit to the individual data points. This results in better
representation of trajectories in the population as illustrated in Fig. 2.

Model formulation
In the mixed effects model, the observed data is a combination of

fixed effects which are parameters associated with the entire

population or a sub-population, and random effects which are param-
eters associated to an individual. In the nonlinear mixed effect
models, some or all the parameters appear nonlinearly in the
model. We use the NLME model proposed by Lindstrom and Bates
(1990) where each individual's observation is modeled as:

yij ¼ f ϕi; tij
" #

þ eij i ¼ 1; ⋯;M; j ¼ 1; ⋯;ni ð1Þ

where i indexes the individual subjects and j indexes the time points,
M is the number of individuals, ni is the number of observations on
the ith individual, f is a nonlinear function of the covariate vector
(time) tij and parameter vector ϕij, and eij∼N(0,σ2) is an i.i.d. error

Fig. 1. Overview of the proposed longitudinal DTI region based analysis.
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term. The parameter vector can vary among individuals by writing ϕi

as

ϕi ¼ Aiβ þ Bibi bi ∼N 0;Ψð Þ ð2Þ

where β is a p-vector of fixed effects, and bi is a q-vector of random
effects associated with individual i with variance–covariance Ψ. Ai

and Bi are identity matrices for our study.
The function f can be any nonlinear function. Since early brain de-

velopment is characterized by rapid initial development which slows
down in later years, it is preferable to use growth functions which
reflect these properties. One such growth function is the Gompertz
function which can be written as:

y ¼ asymptote exp −delay exp −speed tð Þð Þ: ð3Þ

The effects of varying the three parameters asymptote, delay and
speed of the Gompertz function are shown in Fig. 3, for a function
that decreases as time progresses.

To use the Gompertz function in the nonlinear mixed effect model,
we apply the following formulation where the Gompertz function
is parameterized as y ¼ f ϕ; tð Þ ¼ ϕ1exp −ϕ2ϕ3

t$ %
, where ϕ1 denotes

asymptote, ϕ2 is delay, and ϕ3 is exp(−speed). Combining the
nonlinear mixed effect model with the Gompertz function, each ob-
servation can be represented as follows:

yij ¼ f ϕi; tij
" #

þ eij ¼ ϕ1i exp −ϕ2iϕ3i
tij

n o
þ eij ð4Þ

where the mixed effects are ϕi=[ϕ1i ϕ2i ϕ3i]T=β+bi, the fixed
effects are β=[β1 β2 β3]T, and the random effects for each subject
i are bi=[b1i b2i 0]T. We set one of the random effects to zero to re-
duce the number of random effects in the model. As we only have a
maximum of three time points per subject, including an additional
random effect may cause the matrixΨ to be rank-deficient (singular)
and thus create problems in the estimation of the parameters.

Model estimation
Different methods have been proposed to estimate the parameters

as shown in Eq. (4). Since random effects are unobserved quantities,
we use the marginal density of responses y to obtain the parameters
of the nonlinear mixed effects model. The following maximum likeli-
hood estimation is performed to obtain the parameters of Eq. (4):

yi : p yijβ;Ψ;σ2
" #

¼ ∫p yi; jβ; bi;Ψ;σ2
" #

p bið Þdbi: ð5Þ

Due to nonlinearity presented in the random effects of function f,
there is generally no closed form solution to the integral. Here, we
use the estimation method proposed by Lindstrom and Bates (1990)
using the nlme package (Pinheiro et al., 2012) in R3 to obtain the
model parameters. This algorithm iterates between two steps: a pe-
nalized nonlinear least square step and a linear mixed effects step
until convergence.

Inference and predictions
Under the linear mixed effects approximation, the distribution of

maximum likelihood estimators β̂ of the fixed effect is:

β̂∼N β;σ2 XM

i¼1

X̂Σ−1
i X̂ i

" #−1 !
ð6Þ

where Σi ¼ I þ Ẑ iΔ
−1Δ−T Ẑ T

i , X̂ i ¼
∂f i
∂βT β̂ ;b̂i

&&& , Ẑ i ¼
∂f i
∂bTi β̂ ;b̂i

&&& , and ∆ is the

precision factor such thatΨ−1 ¼ σ−2ΔTΔ (Pinheiro and Bates, 2000).
Knowing fixed parameters β̂ and its sampling distribution, it is

straightforward to conduct hypothesis testing among different regions
or between healthy and/or at-risk populations. We can also obtain
individual growth trajectories based on the estimated random effects
for each individual. For example, the individual response for subject i
is ŷi ¼ f β þ bi; tð Þ, and the population growth trajectory is estimated
when random effects are set to their mean value, 0, resulting in
ŷ ¼ f β; tð Þ.

Regional analysis of longitudinal data using NLME

We use the nonlinear mixed effects to model the longitudinal
DTI data within anatomical regions and perform hypothesis testing
between trajectories of these regions. Maps of these anatomical
regions were developed and disseminated by Mori et al. (2008),
and mapped to our unbiased atlas via linear followed by nonlinear
B-spline registration (Rueckert et al., 1999). We select 13 anatomical
regions in the atlas space as shown in Fig. 4. In this study, left and
right regions of anatomical locations are combined, giving a total of

t t t
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 , 
t )

f (
 β

 , 
t )
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Fig. 3. Effect of varying the three parameters of the Gompertz function. The red curve
shows the reference curve where parameters are held fixed. Left to right: the dashed
blue curves show the effect of increasing values of β1, β2, and β3 associated with
asymptote, delay and speed, respectively. 3 http://r-project.org.
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Fig. 2. Population growth models, represented as black curves, obtained using nonlinear least squares (NLS) in a cross-sectional fashion (left) and nonlinear mixed effect modeling
(NLME) via longitudinal analysis (right). Colored points represent data observations, and colored curves represent the individual growth trajectories. Note that given the same data
points, cross-sectional analysis provides a very different result than longitudinal analysis.
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eight regions. Future studies on lateralization of growth differences
will analyze left and right regions separately. The labeling of regions
in the atlas space allows automatic partitioning of each subjects'
scans into the different anatomical regions. We then estimate growth
trajectories for these regions using the NLME model (Lindstrom and
Bates, 1990) described previously. The mixed parameters are the
asymptote ϕ1, delay ϕ2 and speed ϕ3 of the Gompertz function for
each region, which requires a slight modification to Eq. (4) to account
for regions:

yrij ¼ f ϕri; tij
" #

þ eij ¼ ϕ1ri exp −ϕ2riϕ3ri
tij

n o
þ eij: ð7Þ

We then conduct hypothesis testing between pairs of regions to de-
terminemodes of longitudinal changes in terms of theGompertz growth
parameters.WithN number of regions, we perform N N−1ð Þ

2 pairwise fitting
of nonlinear mixed effect modeling. The significant parameters are
determined through t-tests, corrected for multiple comparisons by
Bonferroni correction. The parameters that are found to be significant

between two pairs of regions can be interpreted as the distinguishing
feature between the longitudinal trajectories of these regions.

Results

We applied our framework to longitudinal pediatric DTI data of
26 subjects. In total, we selected 13 regions in the unbiased atlas as
shown in Fig. 4. The regions are as follows: anterior limb of internal
capsule (right and left; ALIC), posterior limb of internal capsule
(right and left; PLIC), genu, body of corpus callosum (BCC), splenium
(Sp), external capsule (right and left; ExCap), retrolenticular part of
internal capsule (right and left; RLIC), and posterior thalamic radia-
tion which includes optic radiation (right and left; PTR). The right
and left of each anatomical region were combined giving a total of
eight regions. Fig. 5 plots the average FA, MD, RD, and AD of each
region for each subject. In all the regions, FA increases with age,
whereas MD, RD and AD decrease with age. Interestingly, each region
develops in a distinctly different temporal pattern.

Fig. 4. White matter anatomical labels that are used for regional analysis. Labels are overlaid on the FA (Fractional Anisotropy) map of the reference space that is the population atlas.
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Paired t-tests of growth trajectories were performed for all combi-
nation of pairs of regions for all the diffusion parameters. The results
of all pairwise comparisons can be found in Table 3 in Appendix B.
Differences in parameters β1 and β2 were significant between most
pairwise comparisons among diffusion parameters, whereas β3 was
only significant in a few regions: genu, splenium, and body of corpus
callosum, and mostly when considering the RD or MDmeasurements.
Genu was the only structure that was significantly different than
all the other regions in the β3 parameter of RD and MD. This region
decreased in MD and RD at a slower rate compared to all the other re-
gions. We didn't find any pattern that was consistent among different

parameters and different measurements since each parameter mea-
sures a different aspect of growth. Interestingly, we noticed some
pairwise comparisons with significant differences in β1 parameter be-
tween AD and RD trajectories, but no differences in MD (ALIC vs. PLIC,
Genu vs. ExCap). This happens when reverse temporal patterns are
seen for AD and RD, suggesting that analysis of AD and RD may reveal
much better insight into maturation than MD alone.

In this section, we focus on PLIC/ALIC, body of corpus callosum
(BCC), and splenium comparisons as examples of commissural and
projection fibers. These regions are known to have a distinctive mat-
uration pattern and axonal density. The PLIC is one of the structures
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Fig. 6. Population and individual growth trajectories for PLIC and ALIC regions. Thicker curves illustrate the average growth trajectories, and individual trajectories are shown via the
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⁎, where * denotes pb0.05, ** denotes pb0.01 and where β1, β2 and β3 represent asymptote, delay and speed.
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that shows early myelination, while ALIC shows later maturation com-
pared to PLIC as is shown in higher FA, and lower RD and MD. Fig. 6
shows the population and individual trajectories of FA, MD, RD and
AD as modeled by Nonlinear Mixed Effect for ALIC/PLIC. As expected,
the PLIC shows a higher FA compared to ALIC at birth mainly explained
by lower RD. After about 800 days both regions have the sameMD and
similar FA and RD values. However, the ALIC shows a higher AD com-
pared to PLIC, possibly indicating a different structuring of this tract re-
gion. The delay parameter of the Gompertz functionβ2was significantly
different between ALIC and PLIC for FA, MD, and RD measurements, an
indication of later development of ALIC compared to PLIC. Also, the as-
ymptote β1 was significantly different for FA, RD and AD.

The body of the corpus callosum (BCC) and splenium (Sp) are known
to have very limited myelination at birth but higher axonal density
compared to ALIC and PLIC, and the splenium shows earlier myelination
compared toBCC (Rutherford, 2002). Fig. 7 showspopulation and individ-
ual growth trajectories for the body of the corpus callosum and splenium.
The splenium shows higher FA at birth and also throughout the first two
years, while RD is about same at birth, but diverges at two years. Reverse
patterns are seen for AD and RD at about two years, which causes MD to
be about the same. All three parameters of the Gompertz function for RD
were significantly different between BCC and Splenium, suggesting that
RD may capture early maturation patterns more sensitively than the
other measures. The asymptote parameter was significantly different
among all the measurements between these two regions.

Fig. 8 shows FA, RD and AD of PLIC (shown in blue) compared to
the other three regions ALIC, BCC, and Sp (shown in red). In this fig-
ure, solid lines are the average estimated growth trajectories for
each region, the shaded regions are the 95% confidence interval of
these average curves. Monte Carlo simulation was used to generate
1000 curves based on the approximate distribution of the maximum
likelihood estimates of fixed effects. The 95% range of these curves
are calculated pointwise to obtain the confidence interval. The dashed
lines show the 95% predicted interval which is also calculated based
on the Monte Carlo simulation of 1000 curves based on the approxi-
mate distribution of both fixed effects and random effects.

The splenium shows a high RD at birth relative to PLIC, by about
800 days however, both regions have approximately the same RD

value as shown in Fig. 8. The splenium has very limited myelination
at birth, while the PLIC is known to have a higher level of myelination
at this time of development. These facts are evident in the difference
in RD at birth between splenium and PLIC. At age two, however, the
splenium shows approximately the same RD value, indicating that it
catches up with PLIC.

The values of Gompertz parameters for all the regions and all diffusiv-
ity measures are shown in Fig. 9. Each region shows a distinct pattern of
development as is depicted by theβ1, β2, and β3 parameters of Gompertz
function. As indicated in the section ‘Model formulation’ the parameters
β1, β2, and β3 represent asymptote, delay and speed, respectively. When
β1:RA>RB, the expected value of diffusion parameters for region A is
higher than region B at year 2. When β2:|RA|>|RB|, region RB matures
earlier compared to RA. The scenario β3:RA>RB indicates accelerated
growth for RB compared to RA. Note that the delay parameter is negative
for RD, AD and MDmeasurements as these values decrease during early
brain development, where as the delay parameter is positive for FA as
fractional anisotropy increases during this time period.

Discussion

Assessment of brain growth patterns in these regions reveals a
nonlinear pattern of maturation with considerable regional variation
as shown in previous studies (Hermoye et al., 2006; Mukherjee
et al., 2001; Schneider et al., 2004). In agreement with previous stud-
ies, increased FA and decreased MD, AD, RD were observed within all
the white matter regions during this period (Forbes et al., 2002;
Mukherjee et al., 2001; Schneider et al., 2004; Zhang et al., 2005).
This longitudinal pediatric study supports a rapid change during the
first 12 month followed by slower maturation during the second
year similar to previous studies (Geng et al., 2012; Hermoye et al.,
2006). Our study, in addition to supporting earlier cross-sectional re-
ports on negative correlation between age and diffusion parameters,
provides greater statistical power to examine nonlinear pattern of
maturation in various white matter regions.

Beyond the analysis of FA and MD measurements, in this study
we included RD and AD analysis of these white matter regions. The
regional comparisons of white matter regions indicates that
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individual AD and RD carry important information which may not be
found in the MD diffusivity measures. The relationship of AD/RD and
FA is complex and nonlinear, but our data suggest that modeling FA,
AD, RD as time trajectories provides more information than only FA
as illustrated in Figs. 6 and 7.

For example, FA of splenium and PLIC are approximately the same
values at birth, yet we know that the splenium is not myelinated at
birth, and we see the significant differences of RD between these
regions. The high FA value of the splenium at birth may be due to
its high density of axons. This discussion of FA for PLIC and splenium
clearly reflects that FA is not necessarily a good indicator for the de-
gree of myelination and may be greatly influenced by axonal density
particular to this developmental interval (LaMantia and Rakic, 1990).
In contrast, the similarity of FA trajectories for PLIC and splenium, for
which we see very different AD and RD patterns and thus different
tensor shapes, illustrates that interpretation of FA with respect to
myelination and structural integrity is difficult, and that the addition-
al AD and RD measures provide richer information.

Modeling the nonlinear growth changes of white matter by the
Gompertz function and inclusion of AD and RD to the analysis provides
a more detailed and comprehensive picture of the changes within these
whitematter regions. Compared to previous studies of linearfittingwith
logarithm of age (Chen et al., 2011; Faria et al., 2010; Lobel et al., 2009)
we fit the nonlinear growth curves (Gompertz function) to the diffusion
data and actual age, this enables the parameterization of the trajectories
in terms of asymptote, delay and speed and models nonlinear temporal
changes with improved accuracy. Based on our finding, the delay pa-
rameter of the Gompertz function, β2 of RD seems to be closest related

to myelination process if we compare results to what is known from
the literature. Looking at RD and β2 delay parameter of the Gompertz
function as is shown in Fig. 9, we see a good correspondencewith previ-
ous radiologyfindings, such as in Rutherford (2002). In fact, RD has been
considered to be in correspondence with histological changes in demy-
elination (Song et al., 2002). Table 2 compares our findings versus
existing knowledge from radiology literature, which indicates develop-
ment of PLIC prior to ALIC, and spleniumprior to genuwhich is also con-
sistent with previous histological findings (Brody et al., 1987; Kinney
et al., 1988).

Our framework is designed not only to provide qualitative compar-
isons, but to give researchers and clinicians quantitative parameters and
a statistical testing scheme.Moreover, themethod includesmodeling of
growth trajectories of individuals, resulting in personalized profiles.
This property will be crucial for efforts to improve prediction and diag-
nosis for individuals, aswell as partitioning groups of subjects according
to subtypes and subtle variations in early developmental trajectories.
Models which assume invariance or linearity between neurobehavioral
markers are apt tomiss crucial shifts in development (Shaw et al., 2006;
Thomas et al., 2009). The ability of the present framework to capture
the dynamic properties of inter- and intra-individual development has
the potential to substantially improve clinical applications of develop-
mental neuroimaging.

There are some limitations to our proposed framework. Our analysis
depends on accurate image registration among all the subjects and time
points. Early brain development is characterized by a rapid change of
contrast and size of the brain, which makes registration a challenging
task. However, in this study we decided to use ROI defined regions
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Fig. 8. PLIC (blue) compared to three other regions. Left column: ALIC (red), middle column splenium (red) and right column BCC (red). Solid curves are the estimated growth tra-
jectories, the 95% confidence interval of the curves are shown as shaded regions. The dashed lines show the 95% predicted intervals for each region. Gompertz parameters with
statistically significant differences are the following: ALIC vs. PLIC: FA: β1

⁎⁎, β2
⁎⁎, RD: β1

⁎⁎, β2
⁎⁎, AD: β1

⁎. PLIC vs. Sp: FA: β2
⁎⁎, RD: β2

⁎, AD: β1
⁎⁎, β2

⁎. PLIC vs. BCC: FA: β1
⁎⁎, β2

⁎⁎, RD: β1
⁎,

where * denotes pb0.05, ** denotes pb0.01, and β1, β2 and β3 represent asymptote, delay and speed, respectively.
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which we expect to be more robust to misregistration compared to
voxel-based analysis, and these regions are located more interiorly
where we expect less registration problems. Nonetheless, improved
spatial registration will potentially improve the accuracy of the model.
Another limitation is that the statistical analysis is based on the log-
likelihood of nonlinear mixed effects modeling, which does not have a
closed form solution. We have used a linear mixed effect approxima-
tion, so greater care should be taken when doing hypothesis testing
with the estimated parameters.

Fig. 9. Gompertz parameters RD, AD, MD and FA, from top to bottom. Left to right: β1 is the asymptote parameter of the Gompertz function (blue), β2 is the delay parameter (green),
and β3 is related to the speed (purple). The delay parameter is negative for RD, AD, and RD as the estimated model represents a decreasing Gompertz function, whereas the FA delay
parameters are positive since FA values increase during development. When β1:RA>RB, the expected value of diffusion parameters for region A is higher than region B at year 2.
When β2: |RA|>|RB|, region RB matures earlier compared to RA. β3:RA>RB indicates accelerated growth for RB compared to RA.

Table 2
Relative order of appearance of myelin from term to 2 years.

Distribution of myelin as seen in
T1W and T2W by Rutherforld

Estimated based on
RD delay parameter β2

PLIC and optic radiation PLIC, PTR and ExCap
ALIC ALIC and BCC
Not available RLIC
Splenium Splenium
Genu Genu
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In the future, we plan to extend our method to tract-based regions
with modeling along the tract changes. We also plan to extend the
model to multivariate growth function similar to (Xu et al., 2008)
and include a much larger set of regions for analysis.

Conclusions

Wehavepresented a framework for the processing of longitudinal im-
ages in order to characterize longitudinal development of white matter
regions at both the individual and group level. By utilizing nonlinear
mixed effects modeling, we jointly estimate the population trajectory
alongwith each individual trajectories. Gompertz parameterization of dif-
fusion changes provides an intuitive parameterization of growth trajecto-
ry in terms of asymptote, delay and speed. This provides a description of
longitudinal changeswithpotential for detectingdeviations froma typical
growth trajectory sensitive tomultiple neurodevelopmental phenomena.
We have also presented a method for making inference about regional
differences indiffusionproperties known to varybymicrostructural prop-
erties and developmental course (Dubois et al., 2008; Kinney et al., 1988;
LaMantia and Rakic, 1990; Lebel and Beaulieu, 2011). This is in contrast to
standard modeling and analysis of testing for group or regional differ-
ences as it reveals the type, timing, and nature of differences. The pro-
posed analysis can be extended to an arbitrary number of regions, and
applied to other measurement such as structural MRI.

As discussed in the previous section, the present study clearly
illustrate that studying FA alone as an indicator of whitematter matura-
tion or integrity insufficiently characterizes structural properties of
white matter and may produce misleading results as regions with very
different axonal density and differing degrees of myelination may
show similar FA values.We suggest that in addition to FA, studies should
include statistical analysis of AD and RD, which provide important addi-
tional information to better explain FAmeasures. In regard to earlymat-
uration, we demonstrate that the radial diffusivity (RD) measure and
the delay parameter β2 of the Gompertz function seem to be the best
combination to describe early brainmaturation.Wewill further explore
this in applying our framework to DTI of infants with developmental
delay and myelination storage disorders such as Krabbe's disease.
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Appendix A. Summary of registration parameters

Intra-subject and inter-modality registration

We use the IRTK software (Rueckert et al., 1999) to perform intra-
subject and inter-modality registration. The registration method is a
multi-scale approach using B-spline transformation, where we use
the normalized mutual information image match metric. We use
three different scales and discretize the image intensity histograms
into 64 bins. In this study, the B-spline transforms are parametrized
using 14×14×14 control points.

Inter-subject registration

Weconstruct anunbiased atlas (Joshi et al., 2004) and the associated
inter-subject registration using the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) (Miller et al., 2002) that minimizes the
following objective function:

argmin
v:ϕt¼vt ϕð Þ

1
σ2 ∑

i

!I−Ii ∘ϕ
−1
i

'''
'''
2

L2
þ∑

i
∫T
t¼o

vitk k2v ð8Þ

where Ī is the image atlas, Ii is the image of subject i, ϕi is the mapping
relating subject i to the atlas that is parametrized using the velocity vi.
Regularity of the mapping ϕ is enforced by minimizing

vtk k2v ¼ Lv; vh i; L ¼ α∇2 þ β∇þ γI ð9Þ

Table 3
Results of pairwise testing of all white matter regions and all diffusivity measures.
Gompertz parameters with significant differences are denoted by * for pb .05 and ** for
pb .01. Non significant parameters are indicated by “ns”.

Alic Plic Genu BCC Sp ExCap Rlic PTR

Alic FA β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎ β1

⁎⁎ β1
⁎⁎ β1

⁎⁎ ns β2
⁎⁎

MD NA β2
⁎⁎ β2

⁎⁎,
β3
⁎⁎

β1
⁎⁎ β1

⁎⁎,
β2
⁎⁎

β1
⁎⁎ β1

⁎⁎,
β2
⁎

β1
⁎⁎,

β2
⁎⁎

RD β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎,

β3
⁎⁎

β1
⁎⁎ β2

⁎⁎ β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎ β1

⁎,
β2
⁎⁎

AD β1
⁎ ns ns β1

⁎⁎ β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎

Plic FA β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β2
⁎⁎ β1

⁎⁎ β1
⁎, β2

⁎ ns

MD β2
⁎⁎ NA β2

⁎⁎,
β3
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎

RD β1
⁎⁎,

β2
⁎⁎

β1
⁎,

β2
⁎⁎,

β3
⁎⁎

β1
⁎ β2

⁎, β1
⁎ β1

⁎⁎,
β2
⁎⁎

β1
⁎⁎

AD β1
⁎ β1

⁎⁎,
β3
⁎⁎

ns β1
⁎⁎, β2

⁎ β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

ns

Genu FA β1
⁎⁎ β1

⁎⁎,
β2
⁎⁎

β1
⁎⁎, β1

⁎⁎,
β3
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

MD β2
⁎⁎,

β3
⁎⁎

β2
⁎⁎,

β3
⁎⁎

NA β1
⁎⁎,

β2
⁎⁎

β3
⁎⁎ β2

⁎⁎,
β3
⁎⁎

β3
⁎⁎ β2

⁎⁎,
β3
⁎⁎

RD β1
⁎⁎,

β2
⁎⁎,

β3
⁎⁎

β1
⁎⁎,

β2
⁎⁎,

β3
⁎⁎

β1
⁎,

β2
⁎⁎,

β3
⁎⁎

β3
⁎⁎ β1

⁎⁎,
β2
⁎⁎,

β3
⁎⁎

β1
⁎⁎,

β3
⁎⁎

β1
⁎⁎,

β3
⁎⁎

AD ns β1
⁎⁎,

β3
⁎⁎

ns β1
⁎⁎ β1

⁎⁎,
β2
⁎⁎,

β3
⁎⁎

β3
⁎⁎ ns

BCC FA β1
⁎⁎ β1

⁎⁎,
β2
⁎⁎

β1
⁎⁎ β1

⁎⁎ β1
⁎⁎,

β2
⁎⁎

β2
⁎ β2

⁎⁎

MD β1
⁎⁎ β1

⁎⁎,
β2
⁎⁎

β2
⁎⁎,

β3
⁎⁎

NA β1
⁎⁎,β2

⁎⁎ β1
⁎⁎ ns β2

⁎⁎

RD β1
⁎⁎ β1

⁎ β1
⁎⁎,

β2
⁎⁎,

β3
⁎⁎

β1
⁎⁎,

β2
⁎⁎,

β3
⁎⁎

β1
⁎ β1

⁎⁎,
β2
⁎⁎,

β3
⁎⁎

β1
⁎⁎,

β3
⁎⁎

AD ns ns ns β1
⁎⁎ β1

⁎,
β2
⁎⁎

ns ns

Sp FA β1
⁎⁎ β2

⁎⁎ β1
⁎⁎,

β3
⁎⁎

β1
⁎⁎ β1

⁎⁎,
β2
⁎⁎

β1
⁎⁎ β1

⁎,
β2
⁎⁎

MD β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β3
⁎⁎ β1

⁎⁎,
β2
⁎⁎

NA β1
⁎,

β2
⁎⁎

β1
⁎ β2

⁎⁎

RD β2
⁎⁎ β2

⁎ β3
⁎⁎ β1

⁎⁎,
β2
⁎⁎,

β3
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

AD β1
⁎⁎ β1

⁎⁎,
β2
⁎⁎

β1
⁎⁎ β1

⁎⁎ β1
⁎⁎,

β2
⁎⁎

ns ns

ExCap FA β1
⁎⁎ β1

⁎⁎ β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎ β1

⁎⁎

MD β1
⁎⁎ β1

⁎⁎,
β2
⁎⁎

β2
⁎⁎,

β3
⁎⁎

β1
⁎⁎ β1

⁎, β2
⁎⁎ NA β1

⁎⁎ β1
⁎,

β2
⁎⁎

RD β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎ β1

⁎⁎,
β2
⁎⁎,

β3
⁎⁎

β1
⁎⁎ β1

⁎⁎,
β2
⁎⁎

β2
⁎⁎ β1

⁎⁎

AD β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β3
⁎⁎ β1

⁎⁎,
β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β1
⁎ β1

⁎⁎,
β2
⁎⁎

Rlic FA ns β1
⁎, β2

⁎ β1
⁎⁎,

β2
⁎⁎

β2
⁎ β1

⁎⁎ β1
⁎⁎ β2

⁎⁎

MD β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β3
⁎⁎ ns β1

⁎ β1
⁎⁎ NA β1

⁎⁎,
β2
⁎⁎⁎

RD β1
⁎⁎ β1

⁎⁎,
β2
⁎

β1
⁎⁎,

β3
⁎⁎

β1
⁎⁎,

β2
⁎⁎,

β3
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β2
⁎⁎ β1

⁎⁎,
β2
⁎⁎

AD β1
⁎⁎,

β2
⁎⁎

β1
⁎⁎,

β2
⁎⁎

β3
⁎⁎ ns ns β1

⁎⁎ β2
⁎⁎

(continued on next page)
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where L is the Navier–Stokes operator. In this study, we use α=.01,
β=.01, γ=.001, and σ=1.

Appendix B. Summary of p-values of pairwise comparisons

Table 3 provides the result of pairwise testing of all white matter
regions and all the diffusivity measurements.
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CHAPTER 4

PEDIATRIC LONGITUDINAL AUTISM

STUDY

4.1 Introduction

Autism spectrum disorders (ASDs) are disorders of neurodevelopment typically charac-

terized by repetitive behavior and social deficit. ASDs are usually diagnosed when the child

is around 2 to 3 years old. The occurrence of ASDs in the general population is about 1 in

110 children, with higher rates among boys than girls [27]. The risk increases substantially

for at risk families, with an occurrence of one in five [28]. The Infant Brain Imaging Study

(IBIS) is designed to increase the understanding of early brain development in children

with ASDs by recruiting and conducting MRI scans of younger siblings of children with

autism [29]. As these children are at increased risk of autism, about 20% will be diagnosed

with autism at later ages. Therefore, by studying these children from an early age (6

months), we gain valuable insight about the disorder that might shed some light on when

and how deviation from the normative path occurs. The hope is that if there are earlier

signs of the disorder, we can predict who among high risk individuals will eventually develop

autism. This can lead to earlier intervention and the hope for a better outcome.

This study included subjects from an Autism Center of Excellence at four clinical sites

(University of North Carolina, Chapel Hill; University of Washington, Seattle; Childrens

Hospital of Philadelphia; and Washington University, St. Louis). Subjects were recruited

and scanned at 6 months with follow-up assessment and scans at 12 and 24 months. The

study was approved by the institutional review board at each site.

4.2 DTI Analysis

4.2.1 Subjects

Fifty high risk subjects were selected for this study who had scans at 6, 12 and 24

months and behavioral assessments at age 24 months. Symptoms of ASDs were measured
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at 24 months by using the Autism Diagnostic Observation Schedule [30]. At 24 months, 13

of the high risk infants met the criteria for ASDs (HR+) and 37 did not (HR-).

4.2.2 Image Acquisition and Processing

MRI brain scans of children were acquired at multiple clinical sites on 3T Siemens Trio

scanners. To ensure a maximal success rate of scanning, all subjects were fed, swaddled

and fitted with ear protection. All subjects were scanned without sedation during their

natural sleep. An echo planar imaging (ep2d diff) pulse sequence was used for diffusion

tensor imaging with the following parameters: TR=12800-13300 ms, TE=102 ms, variable

b values of 0 to 1000s/mm2, 25 gradient directions and scan time of 5-6 minutes. The voxel

resolution was 2 × 2 × 2mm3. All DWIs were checked and corrected for motion and eddy

current artifacts by using DTIprep software [31]. Motion between baseline scans is removed

by rigidly registering all baseline scans and averaging them together. This averaged baseline

image is used for subsequent motion and eddy current corrections. Diffusion weighted

images are registered rigidly to the baseline image to correct for head motion artifacts.

To correct for eddy currents, DWIs are registered via affine transformation to the baseline

image.

To study changes of diffusion parameters of subjects, we map all the individual scans to a

common template. First, the DTI baseline (B0) images are registered to a T2W atlas via the

nonlinear registration method of Rueckert et al. [32] using normalized mutual information as

the image match metric. This is followed by the unbiased atlas building framework of Joshi

et al. [33] based on the Large Deformation Diffeomorphic Metric Mapping (LDDMM) [34]

applied to the curvature FA images of all the available scans. The result is an atlas along

with a set of invertible transformation between all the subjects and the atlas. The tensors

are registered to the atlas using transformations obtained from atlas building procedures.

Tensors are resampled using finite strain reorientation and Riemannian interpolation [35,

36, 37]. After all the images are transformed into the atlas space, the tensors are averaged

using the log-Euclidean method to produce a tensor atlas [38].

4.2.3 Regional Analysis

In the first analysis, we used regions of interests defined by tractography methods by

our collaborators at University of North Carolina [29]. We had label maps for the following

fiber tracts available: fornix, inferior longitudinal fasciculus and anterior thalamic radiation.

These fiber tracts were extracted from the same atlas and as such we were able to use them.

For each fiber tract, fractional anisotropy (FA), mean diffusivity (MD), radial (RD) and
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axial diffusivity (AD) measures were generated.

We also used white matter label maps of anatomical regions of interests that were

developed and disseminated by Mori et al. [39]. The white matter label map was registered

to our unbiased atlas via linear followed by nonlinear B-spline registration [32]. The labeling

of regions in the atlas space allows automatic partitioning of each subject’s scans into

different anatomical regions as all the subjects are registered to the atlas as described in

section 4.2.2. For each region, FA, RD and AD values were calculated.

We attempted to model longitudinal trajectories of mean FA, RD and AD for regions

of interests for HR- and HR+ by using the nonlinear mixed effect modeling of Chapter 2.

However, the models failed to converge for all the regions defined by white matter label

maps and worked for only the right inferior longitudinal fasiculus, which was defined by

tractography. Initially, the Gompertz curve with asymptote and delay as random effects

was used to model the growth trajectories. Subsequent tries with few random effects (i.e.,

only using asymptote as random effects) also failed. A closer look at the raw data indicated

high levels of noise in the DTI data. Figure 4.1 shows the mean FA value for the left inferior

longitudinal fasiculus; however, as is shown, not all the FA values display an increasing trend

that is expected during this age range [40]. This is the case for both high risk infants who

did get diagnosed with the disorder and those who did not, so we do not believe this is a

characteristic of the disorder.

Also, upon more detailed analysis of raw images, we noticed a vibration artifact. This

source of artifact is due to a patient table vibration and has recently been reported in other

studies [41]. This vibration is simulated by the low-frequency gradient switching associated

with the diffusion weighting [41]. The resulting effect on the image shows as a signal loss

when there is a strong component of the diffusion gradient vector in the left-right direction.

As a result, the colored FA images have a more than normal reddish color as shown in

Figure 4.2. This artifact is also referred to as the red artifact, as the areas affected by the

artifact will have high FA values in the left-right direction (red color denotes the left-right

diffusion in colored FA images).

4.3 T1-weighted Analysis

4.3.1 Image Acquisition and Processing

In addition to the DTI data, T1W images were also obtained for each subject. MP-Rage

was used to obtain 3D T1W images on Siemens scanners with the following parameters:

TR: 2400 ms, TE 3.16 ms. The voxel resolution was 1 × 1 × 1. All the available data

underwent the following steps by our collaborators at Montreal Neurological Institute: 1)
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Figure 4.1: Mean FA values for the left inferior longitudinal fasiculus. Blue circles: HR-,
Purple circles: HR+. The data do not show a consistent increasing trend as is expected

during this age range, most probably due to the large noise level of this special infant DTI
pulse sequence and also some residual scanner vibration artifacts.
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Figure 4.2: Axial and coronal cross-section of a colored FA of subject’s scan at 1 year
demonstrating vibration artifacts.

bias correction using the method of Sled et al. [42] and 2) rigid registration to stereotaxic

space.

Eighty-eight subjects (HR-: 69, HR+: 19) who had available data at 6, 12 or 24 months

and behavioral assessments at age 24 months were selected for this study. In total, 198

scans were available for these subjects: 51 scans at 6 months, 88 scans at 1 year and 59

scans at 2 years. The distribution of the data is shown in Table 4.1.

Unbiased atlas building was used to build a template atlas of all the year 1 T1W

scans [33]. All time points of each subject are registered to the unbiased atlas via linear

and nonlinear transformations [32], first by mapping these images to the year 1 scan and

then cascading the two transformations for a mapping to the atlas. Once all the images are

in a common reference space, we remove the variations in the intensity ranges of images

via intensity normalization. Scans were normalized using a high intensity value of a fatty

tissue region between the skull and the skin.

Similar to previous studies in this dissertation, white matter label maps [39] were

registered to our unbiased atlas via linear and nonlinear B-spline registration [32] to define
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Table 4.1: Distribution of Scans Across Different Time Points for High Risk Infants.

6 months 1 year 2 year Total

HR- 42 69 45 156
HR+ 9 19 14 42

Total 51 88 59 198

anatomical regions of interest.

4.3.2 Statistical Analysis of White Matter Regions

We used the framework proposed in Chapter 2 to estimate the longitudinal trajectories

for mean T1W values of selected ROIs and compare them between HR- and HR+. Figure 4.3

shows the trajectories of T1W for anterior, superior and posterior corona radiata. Low

p-values were observed for posterior corona radiata; however, after multiple comparison

corrections none of the regions were significant between the two groups. Overall, we

analyzed 21 regions, and resulting p-values from a comparison of HR- and HR+ are shown

in Table 4.2. Higher intensity values were observed for HR+ for all the regions considered.

Even though none of the regions showed a significant difference between the two groups, the

average trajectory for HR+ was consistently higher than HR-. We were surprised by this

finding, as autism spectrum disorder is hypothesized by an early brain overgrowth, followed

by slower growth rate after years 2-5 [45].

We performed a second study in which we compared healthy controls (LR-) and HR+

(Table 4.3). We found a pattern similar to that for the comparison of HR+ to HR-.

Figure 4.4 shows the longitudinal trajectories of T1W for anterior, superior and posterior

corona radiata for LR- and HR+. The observed patterns of HR- and LR- are very similar, as

shown in Figure 4.5. Again, HR+ consistently showed a higher average trajectory compared

to LR- and HR-, but no significant differences were found between LR- and HR+. The

results of group testing between growth trajectories of LR- and HR+ are shown in Table 4.4.

4.4 Discussion

In this chapter, we compared growth trajectories of infants at high risk of autism

spectrum disorder and healthy controls in DTI and T1W scans. Our attempts to model the

growth trajectories as represented in the DTI were unsuccessful. We believe this is mainly

due to noisy data and still insufficient correction for subject motion and scanner-related

artifacts. Rigorous measures have been taken as this is a multisite study. However, it



49

10 15 20 25

0.
4

0.
6

0.
8

1.
0

Anterior corona radiata R

Age (Months)

T
1W

HR−
HR+

10 15 20 25

0.
4

0.
6

0.
8

1.
0

Anterior corona radiata L

Age (Months)

T
1W

HR−
HR+

10 15 20 25

0.
4

0.
6

0.
8

1.
0

Superior corona radiata R

Age (Months)

T
1W

HR−
HR+

10 15 20 25

0.
4

0.
6

0.
8

1.
0

Superior corona radiata L

Age (Months)

T
1W

HR−
HR+

10 15 20 25

0.
4

0.
6

0.
8

1.
0

Posterior corona radiata R

Age (Months)

T
1W

HR−
HR+

10 15 20 25

0.
4

0.
6

0.
8

1.
0

Posterior corona radiata L

Age (Months)

T
1W

HR−
HR+

Figure 4.3: Group differences in T1W of white matter regions in 88 infants with (HR+)
and without (HR-) diagnosis of autism spectrum disorder. The thicker lines are the

average trajectories whereas the thin lines are the individual trajectories.



50

Table 4.2: Group Differences in Gompertz Parameters of T1W of White Matter Regions
Between HR- and HR+.

WM Label Asymptote Delay Speed
Raw p p* Raw p p* Raw p p*

Genu of corpus callosum 0.171 0.197 0.145 0.169 0.191 0.201
Body of corpus callosum 0.088 0.181 0.087 0.140 0.116 0.171
Splenium of corpus callosum 0.083 0.181 0.066 0.140 0.070 0.171
Anterior limb of internal capsule R 0.147 0.181 0.153 0.169 0.146 0.171
Anterior limb of internal capsule L 0.147 0.181 0.145 0.169 0.112 0.171
Posterior limb of internal capsule R 0.102 0.181 0.247 0.247 0.122 0.171
Posterior limb of internal capsule L 0.130 0.181 0.225 0.237 0.112 0.171
Retrolenticular part of internal capsule R 0.078 0.181 0.071 0.140 0.064 0.171
Retrolenticular part of internal capsule L 0.111 0.181 0.079 0.140 0.095 0.171
Anterior corona radiata R 0.178 0.197 0.152 0.169 0.257 0.257
Anterior corona radiata L 0.207 0.207 0.093 0.140 0.177 0.196
Superior corona radiata R 0.116 0.181 0.077 0.140 0.114 0.171
Superior corona radiata L 0.139 0.181 0.068 0.140 0.104 0.171
Posterior corona radiata R 0.079 0.181 0.032 0.140 0.048 0.171
Posterior corona radiata L 0.121 0.181 0.045 0.140 0.090 0.171
Posterior thalamic radiation R 0.144 0.181 0.041 0.140 0.055 0.171
Posterior thalamic radiation L 0.084 0.181 0.054 0.140 0.061 0.171
External capsule R 0.128 0.181 0.105 0.147 0.138 0.171
External capsule L 0.113 0.181 0.081 0.140 0.134 0.171
Superior longitudinal fasciculus R 0.139 0.181 0.047 0.140 0.075 0.171
Superior longitudinal fasciculus L 0.191 0.201 0.081 0.140 0.142 0.171

* Based on the false discovery rate adjustment for multiple comparisons introduced by Benjamini and
Hochberg (BH) [43]. Note that it is possible for the adjusted p-values to have the same value. BH

FDR p-value adjustment is defined as QBH
adj (pi) = min

i≤k
{pk.

m

k
} where i = 1, . . . ,m and k = i, . . . ,m

ordered p-values [44].
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Figure 4.4: Group differences in T1W of white matter regions in 88 infants with
diagnosis for autism spectrum disorder (HR+) and healthy controls (LR-). The thicker
lines are the average trajectories whereas the thin lines are the individual trajectories.
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Figure 4.5: Trajectories of T1W of for the posterior limb of the internal capsule and the
posterior corona radiate for infants with (HR+) and without (HR-) diagnosis of autism

spectrum disorder and healthy controls (LR-). HR+ displays higher values of T1W during
this age range, whereas the developmental trajectories of HR- and LR- are very similar.
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Table 4.3: Distribution of Scans Across Different Time Points for Healthy Controls (LR-)
and High Risk Infants Diagnosed with Autism Spectrum Disorder (HR+).

6 months 1 year 2 year Total

LR- 19 23 7 49
HR+ 9 19 14 42

Total 28 42 21 91

appears that the data still contain artifacts despite correcting for motion and eddy current.

A new source of artifacts was discovered that has not been corrected yet, the vibration

artifact. As was shown earlier, this artifact manifests itself as a signal loss and would be

interpreted as higher diffusion in the left-right direction. Due to the high level of artifacts,

we were not able to apply our framework to the DTI data of the autism study. The clinical

sites are aware of the problem and have taken measures to reduce the vibration. For

phase II of this project, a newly developed high angular resolution sequence (HARDI) with

significantly improved image quality was added. In the future, we can try to exclude the

subjects with high levels of artifacts or possibly apply the newly proposed method of [41]

as it does not require modifying the acquisition sequence.

In the second part of this study, we analyzed the T1W scans. As expected for this

age range, the T1W intensity values increased in all the white matter regions that we

analyzed. We performed two sets of experiments: 1) comparison of high risk infants who

were diagnosed with autism vs. those who did not and 2) comparison of high risk infants

who were diagnosed with autism vs. healthy control. Healthy controls were the subjects

who were not at high risk of autism and did not get diagnosed with autism during the

course of the study. Overall, we did not find any regions that showed significant differences

in the parameters of the Gompertz function; however, we observed that average T1W

trajectories were consistently higher compared to controls and high risk infants who did not

get diagnosed with autism. LR- and HR- had nearly indistinguishable growth profiles.

We were surprised by the results as most developmental disorders show a decrease in

myelination, which most likely will appear as a decrease in observed T1W scans. However,

it has been suggested that there is a period of rapid growth during the early years in autism

spectrum disorders [45]. The observed increase values in T1W could be due to overgrowth

early on. We are not aware of any study on intensity values of T1W for subjects at risk

of autism; however, recently there has been increased emphasis on studying infants at risk

of autism through the use of DTI. Bashet et al. [46] observed increased FA and decreased
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diffusivity in white matter. Wolff et al. [29] reported increased FA values at 6 months

for high risk infants diagnosed with autism compared to high risk infants who did not get

diagnosed with autism; however, the pattern was reversed at 24 months when HR- had

higher FA values compared to HR+. Other studies have shown that the FA values are

still higher compared to normal control at 4 years of age [46]. There have not been many

studies comparing intensity values of T1W scans between groups; however, our preliminary

analysis demonstrates that studying T1W images can provide additional insight into early

brain development.
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Table 4.4: Group Differences in Gompertz Parameters of Longitudinal Trajectories of
T1W for White Matter Regions Between LR- and HR+.

WM Label Asymptote Delay Speed
Raw p p* Raw p p* Raw p p*

Genu of corpus callosum 0.166 0.166 0.424 0.511 0.416 0.416
Body of corpus callosum 0.079 0.166 0.370 0.511 0.301 0.368
Splenium of corpus callosum 0.073 0.166 0.417 0.511 0.286 0.368
Anterior limb of internal capsule R 0.135 0.166 0.462 0.511 0.329 0.368
Anterior limb of internal capsule L 0.130 0.166 0.447 0.511 0.314 0.368
Posterior limb of internal capsule R 0.165 0.166 0.531 0.531 0.344 0.368
Posterior limb of internal capsule L 0.158 0.166 0.519 0.531 0.326 0.368
Retrolenticular part of internal capsule R 0.112 0.166 0.414 0.511 0.257 0.368
Retrolenticular part of 0.098 0.166 0.400 0.511 0.259 0.368
Anterior corona radiata R 0.121 0.166 0.348 0.511 0.345 0.368
Anterior corona radiata L 0.137 0.166 0.347 0.511 0.351 0.368
Superior corona radiata R 0.092 0.166 0.367 0.511 0.245 0.368
Superior corona radiata L 0.094 0.166 0.349 0.511 0.240 0.368
Posterior corona radiata R 0.062 0.166 0.278 0.511 0.163 0.368
Posterior corona radiata L 0.080 0.166 0.288 0.511 0.183 0.368
Posterior thalamic radiation R 0.101 0.166 0.379 0.511 0.211 0.368
Posterior thalamic radiation L 0.089 0.166 0.349 0.511 0.213 0.368
External capsule R 0.098 0.166 0.371 0.511 0.260 0.368
External capsule L 0.058 0.166 0.359 0.511 0.250 0.368
Superior longitudinal fasciculus R 0.142 0.166 0.320 0.511 0.253 0.368
Superior longitudinal fasciculus L 0.136 0.166 0.354 0.511 0.289 0.368

* Based on the false discovery rate adjustment for multiple comparisons



CHAPTER 5

TWIN STUDY

5.1 Introduction

Twin studies have contributed substantially to our understanding of the heritability of

many neuropsychiatric and neurodevelopment disorders [47]. Comparing identical (monozy-

gotic twins, MZ) and fraternal (dizygotic, DZ) twins allows researchers to estimate con-

tributions of heritability and environment to individual differences. Monozygotic twins

share the same genetic material whereas dizygotic twins share on average about 50%

of their genes [48]. Therefore, if a trait is heritable, we expect a higher correlation in

MZ compared to DZ assuming twins of the same parents share a common environment.

Twin studies have provided a valuable insight into the heritability of disease; however, it

might be difficult to generalize these findings to a singleton population due to differences

between twins and singletons in pre- and postnatal environments [49, 50]. The intrauterine

environment might be suboptimal as twins share the womb and compete for nutrition.

Also, the family environment can be suboptimal due to limited resources and competition

between the twins [51].

Some studies have suggested the nongeneralizability of twin studies to singletons as they

have found differences in cognitive measures [51, 52]. However, more recent studies have

found no differences in IQ between twins and the singleton population, suggesting that

findings in twin studies can be generalized to singletons [53]. It is not known whether twin

studies provide reliable estimates of heritabilities of integrity of white matter. A recent

study by Knickmeyer et al. found significant differences in gray matter development in MZ

twins compared to DZ twins and singletons, but no difference was found in intracranial

volume, total white matter volume and lateral ventricle volume [49]. In this study we

examine the compatibility of white matter developmental trajectories between twins and

singletons.
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5.2 Materials and Methods

5.2.1 Subjects

Mothers were recruited during their second trimester of pregnancy from clinics at the

University of North Carolina for a longitudinal twin study. In total, 26 singletons and 76

twins who had DTI scans were used for this study. Infants were scanned at about 2 weeks,

1 year and 2 years without sedation during natural sleep. Not all the subjects had all three

scans available. The distribution of scans along with information about zygocity is shown

in Table 5.1. This study was approved by the Institutional Review Board of the University

of North Carolina School of Medicine.

5.2.2 Image Acquisition and Data Processing

All images were acquired using a 3T Allegra head-only MR system using a single shot

echo-planar spin echo diffusion tensor imaging sequence with the following parameters:

TR=5200 ms, TE=73 ms, a slice thickness of 2 mm and in-plane resolution of 2× 2 mm2.

One image without diffusion gradients (b=0) along with six gradient directions with a

b-value of 1000 mm3/s were acquired. The sequence was repeated five times for an improved

signal-to-noise ratio. All DWIs were checked and corrected for motion artifacts using the

DTIChecker tool.1 Tensor maps were calculated for each DTI scan using a weighted least

squares tensor estimation on the images that have been averaged over sequence repeats [54].

T2-weighted structural images were obtained using a turbo spin echo sequence with TR=7

s, TE=15 and 90 ms, a slice thickness of 1.95 mm and in-plane resolution of 1.25×1.25 mm2.

T2W and baseline DWI of all the subjects’ scans were skull stripped using the Brain

Extraction Tool (BET) [55].

Image registration and processing was done in a similar fashion as described in sec-

tion 3.2.2. Unbiased atlas building was used to provide a mapping between individuals to

the template atlas [33]. The atlas was built from the population of data in the study as

the average template. All individuals’ scans were first mapped to their year 1 T2W scan

via the linear and nonlinear registration method of Rueckert et al. [32] and subsequently

to the atlas via deformation maps obtained during the atlas building procedure. The

tensors are registered to the atlas using transformations obtained by registering the DTI

baseline (B0) images to T2W images. Tensor maps were calculated using the weighted

least-squares estimation method and transferred to the atlas using finite strain reorientation

and Riemannian interpolation [35, 36, 37]. In this study, the axial diffusivity (AD), radial

1http://www.ia.unc.edu/dev/download/dtichecker
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Table 5.1: Distribution of Scans Across Different Time Points and Zygocity.

Neonate 1 year 2 year Total

Singletons 23 22 14 59
Dizygotic 34 39 20 93
Monozygotic 35 36 15 86

Total 92 97 49 238

diffusivity (RD) and fractional anisotropy (FA) features are extracted from the registered

tensors.

5.2.3 Statistical Analysis

The nonlinear mixed effects modeling of Chapter 2 is used to estimate trajectories of

development as is shown in DTI within anatomical regions of interest. The Gompertz

growth curve was used to model the mean trajectory. Longitudinal trajectories of mean

FA, MD, RD and AD were compared among monozygotic, dizygotic and singletons. Among

the 102 subjects included in the analysis, 92 had scans at neonate, 97 scans at 1 year and

49 scans at 2 years. The white matter label map that was developed and disseminated

by [39] was used to define anatomical regions of interest. This label map was mapped to

the template atlas via linear followed by nonlinear b-spline registration [32]. The labeling

of regions in the atlas space allows automatic partitioning of each subject’s scans into the

different anatomical regions.

5.3 Results

Comparison of mean trajectories among monozygotic, dizygotic and singletons indicated

that growth trajectories of monozygotic and dizygotic twins are very similar. No significant

differences were found between the growth curves of MZ and DZ in terms of Gompertz

parameters of asymptote, delay and speed for any of the diffusion measurements. To

further investigate whether twins and singletons show any developmental differences, DZ

and MZ individuals were combined as there were no differences in their growth trajectories.

Gestational age was controlled in the analysis as twin subjects are generally born earlier

than singletons. In this study, twins were born about 25 days earlier than singletons on

average. To ensure that the observed differences between MZ and DZ are not due age,

gestation age at the time of MRI scan was taken into account rather than age. Table 5.2

shows the gestational age at birth and at the time of first MRI scan for twins and singletons.
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Table 5.2: Gestational Age of Singletons and Twins.

Singletons Twins

Gestational Age at Birth (days); Mean (SD) 272.43 (14.09) 247.07 (17.74)
Gestational Age at the First MRI (days); Mean (SD) 300.56 (28.67) 290.79 (20.56)

When comparing the combined twin group to singletons, the following regions showed

significant differences in the delay parameter of the axial diffusivity measures: right and

left anterior limb of the internal capsule and right and left anterior corona radiate. There

were no significant differences in asymptote and speed parameters between these two groups

for any of the regions analyzed. There were also no significant differences between FA and

RD measures between these two groups. In the regions in which the delay parameter was

significant, AD reached the same level as singletons by the first 3 months, as though twin

subjects ”catch up” to singletons relatively shortly after birth. The changes from birth to 2

years in the axial diffusivity for the anterior limb of internal capsule and the anterior corona

radiata are shown in Figure 5.1; the changes in delay parameter were significantly different

in the two groups. However, most of the regions analyzed showed no significant differences

between twins and singletons. AD trajectories for the posterior limb of the internal capsule

that showed no difference between the twins and singletons are presented in Figure 5.2.

5.4 Discussion

These preliminary findings suggest that twins and singletons follow similar growth

trajectories for the majority of white matter regions. This study compared 21 anatomical

regions, including projection fibers such as internal capsule and corona radiata, association

fibers including superior longitudinal fasciculus and external capsule, and commissural fibers

such as genu, body and splenium of corpus callosum. Fractional anisotropy and radial

diffusivity did not differ between twins and singletons in all the regions that were analyzed

after correction for multiple comparisons. Analyses of fractional anisotropy and radial

diffusivity are presented in Tables 5.3 and 5.4. These results indicate that heritability

estimates for these measurements made in the twin samples are generalizeable to the

singleton population, and there is no difference in developmental trajectories of monozygotic

and dizygotic twins.

However, twins and singletons did exhibit differences in axial diffusivity measures in the

anterior limb of the internal capsule and the anterior region of the corona radiate (Table 5.5).
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Figure 5.1: Comparison of AD growth trajectory of twins and singletons for the anterior
limb of the internal capsule and the anterior corona radiata. The delay parameter was

significantly different between twins and singletons in these regions.
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Figure 5.2: Comparison of AD growth trajectory of twins and singletons. There were no
significant differences between twin and singleton trajectories in the posterior limb of the

internal capsule.
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Table 5.3: Group Differences in Fractional Anisotropy of White Matter Regions Between
Singletons and Twins.

WM Label Asymptote Delay Speed
Raw p p* Raw p p* Raw p p*

Genu of corpus callosum 0.473 0.660 0.711 0.933 0.296 0.512
Body of corpus callosum 0.566 0.660 0.682 0.933 0.902 0.987
Splenium of corpus callosum 0.641 0.663 0.445 0.849 0.987 0.987
Anterior limb of internal capsule R 0.055 0.388 0.057 0.502 0.268 0.512
Anterior limb of internal capsule L 0.230 0.660 0.995 0.995 0.566 0.793
Posterior limb of internal capsule R 0.504 0.660 0.263 0.703 0.869 0.987
Posterior limb of internal capsule L 0.307 0.660 0.301 0.703 0.984 0.987
Retrolenticular part of internal capsule R 0.306 0.660 0.782 0.966 0.720 0.945
Retrolenticular part of internal capsule L 0.663 0.663 0.624 0.933 0.804 0.987
Anterior corona radiata R 0.542 0.660 0.156 0.656 0.312 0.512
Anterior corona radiata L 0.623 0.663 0.096 0.502 0.236 0.512
Superior corona radiata R 0.287 0.660 0.012 0.246 0.317 0.512
Superior corona radiata L 0.513 0.660 0.208 0.703 0.230 0.512
Posterior corona radiata R 0.433 0.660 0.075 0.502 0.162 0.512
Posterior corona radiata L 0.509 0.660 0.293 0.703 0.160 0.512
Posterior thalamic radiation R 0.096 0.504 0.350 0.734 0.080 0.512
Posterior thalamic radiation L 0.267 0.660 0.948 0.995 0.100 0.512
External capsule R 0.023 0.282 0.569 0.918 0.002 0.051
External capsule L 0.027 0.282 0.832 0.971 0.007 0.072
Superior longitudinal fasciculus R 0.340 0.660 0.955 0.995 0.190 0.512
Superior longitudinal fasciculus L 0.531 0.660 0.567 0.918 0.552 0.793

* Based on the false discovery rate adjustment for multiple comparisons

There were significant differences in the delay parameter of the Gompertz function for these

regions, indicating that twins were delayed compared to singletons. However, twins appear

to have caught up to singletons by 3 to 4 months postterm as though they experience a

period of ”catch-up” growth postbirth. Figure 5.3 shows the relative difference between

twins and singletons during the first 6 months. There were no significant differences in

the asymptote parameter of the Gompertz function, suggesting that the twin-singleton

differences observed early on in these regions disappear by early childhood.

In summary, growth trajectories of fractional anisotropy and radial diffusivity showed

no significant differences. Significant differences were observed only in the axial diffusivity

in the anterior limb of the internal capsule and the anterior region of the corona radiata;

however, these differences seem to disappear early in life. No effect of zygocity on growth

trajectories was found. The findings suggest that twins can be included with singletons in

studies of early brain development, but researchers should control for gestational age.
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Table 5.4: Group Differences in Radial Diffusivity of White Matter Regions Between
Singletons and Twins.

WM Label Asymptote Delay Speed
Raw p p* Raw p p* Raw p p*

Genu of corpus callosum 0.241 0.699 0.338 0.880 0.088 0.185
Body of corpus callosum 0.680 0.714 0.749 0.880 0.189 0.305
Splenium of corpus callosum 0.532 0.699 0.738 0.880 0.213 0.320
Anterior limb of internal capsule R 0.280 0.699 0.808 0.893 0.272 0.356
Anterior limb of internal capsule L 0.569 0.703 0.271 0.880 0.528 0.616
Posterior limb of internal capsule R 0.676 0.714 0.382 0.880 0.899 0.915
Posterior limb of internal capsule L 0.483 0.699 0.950 0.950 0.777 0.859
Retrolenticular part of internal capsule R 0.238 0.699 0.754 0.880 0.151 0.265
Retrolenticular part of internal capsule L 0.532 0.699 0.519 0.880 0.915 0.915
Anterior corona radiata R 0.411 0.699 0.295 0.880 0.046 0.185
Anterior corona radiata L 0.654 0.714 0.096 0.880 0.070 0.185
Superior corona radiata R 0.284 0.699 0.248 0.880 0.034 0.185
Superior corona radiata L 0.375 0.699 0.295 0.880 0.036 0.185
Posterior corona radiata R 0.508 0.699 0.361 0.880 0.087 0.185
Posterior corona radiata L 0.319 0.699 0.518 0.880 0.031 0.185
Posterior thalamic radiation R 0.257 0.699 0.589 0.880 0.088 0.185
Posterior thalamic radiation L 0.152 0.699 0.891 0.935 0.041 0.185
External capsule R 0.176 0.699 0.297 0.880 0.097 0.185
External capsule L 0.336 0.699 0.571 0.880 0.242 0.339
Superior longitudinal fasciculus R 0.437 0.699 0.670 0.880 0.085 0.185
Superior longitudinal fasciculus L 0.783 0.783 0.537 0.880 0.365 0.451

* Based on the false discovery rate adjustment for multiple comparisons
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Table 5.5: Group Differences in Axial Diffusivity of White Matter Regions Between
Singletons and Twins.

WM Label Asymptote Delay Speed
Raw p p* Raw p p* Raw p p*

Genu of corpus callosum 0.211 0.973 0.091 0.166 0.852 0.852
Body of corpus callosum 0.137 0.973 0.918 0.964 0.016 0.333
Splenium of corpus callosum 0.208 0.973 0.833 0.921 0.048 0.431
Anterior limb of internal capsule R 0.362 0.973 0.000 0.001 0.743 0.780
Anterior limb of internal capsule L 0.917 0.973 0.002 0.024 0.258 0.431
Posterior limb of internal capsule R 0.227 0.973 0.531 0.620 0.094 0.431
Posterior limb of internal capsule L 0.711 0.973 0.977 0.977 0.402 0.527
Retrolenticular part of internal capsule R 0.758 0.973 0.142 0.212 0.185 0.431
Retrolenticular part of internal capsule L 0.899 0.973 0.285 0.352 0.650 0.737
Anterior corona radiata R 0.588 0.973 0.009 0.045 0.169 0.431
Anterior corona radiata L 0.352 0.973 0.006 0.042 0.308 0.431
Superior corona radiata R 0.655 0.973 0.079 0.166 0.146 0.431
Superior corona radiata L 0.740 0.973 0.033 0.109 0.243 0.431
Posterior corona radiata R 0.959 0.973 0.211 0.295 0.192 0.431
Posterior corona radiata L 0.478 0.973 0.226 0.296 0.067 0.431
Posterior thalamic radiation R 0.595 0.973 0.036 0.109 0.473 0.584
Posterior thalamic radiation L 0.731 0.973 0.127 0.206 0.292 0.431
External capsule R 0.914 0.973 0.070 0.163 0.273 0.431
External capsule L 0.524 0.973 0.029 0.109 0.667 0.737
Superior longitudinal fasciculus R 0.973 0.973 0.052 0.137 0.259 0.431
Superior longitudinal fasciculus L 0.882 0.973 0.095 0.166 0.155 0.431

* Based on the false discovery rate adjustment for multiple comparisons
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Figure 5.3: Relative percentage difference of AD between singletons and twins for the
first 6 months after birth, ((ADtwins −ADsingletons)/ADsingletons) ∗ 100. Twins have

slightly higher AD values at birth; however, they catch up quickly to singletons during the
first few months after birth. Anterior and posterior limb of the internal capsule are

denoted as ALIC and PLIC, respectively. RLIC is the retrolenticular part of the internal
capsule and PTR is the posterior thalamic radiation.



CHAPTER 6

MULTIVARIATE NONLINEAR MIXED

EFFECTS MODELS

6.1 Introduction

In Chapters 3 and 4, we have primarily shown applications of the nonlinear mixed effects

model to diffusion parameters. In Chapter 7, we showed that T1W anatomical MRI also

shows an interesting pattern as the brain matures. In this chapter, we apply our framework

to analysis of T1W and T2W images in addition to the diffusion measurements. Moreover,

we propose a multivariate nonlinear mixed effects model as opposed to multiple univariate

models as the former takes the correlation among the modalities into account.

Prior studies of diffusion and structural MRI have shown changes in early brain devel-

opment, including changes of diffusion parameters over time [56, 57] and contrast changes

as depicted in T1W and T2W [58]. Relatively few studies have looked at both DTI and

MRI [15] and most of these studies have been cross-sectional. Due to the high water content

of the infant brain, T1 and T2 times are relatively long and result in a low signal in white

matter regions of the brain. As the infant grows, water content decreases, which results in

changes of signal intensity. Also, myelination is associated with low signal intensity in T2W

images and increased signal intensity in T1W images. As the brain matures, the observed

signal intensities of T1W and T2W images change, reflecting the underlying biological

changes.

In this chapter, we extend our nonlinear mixed effects framework to jointly model

temporal changes of T1W, T2W and fractional anisotropy to gain a better insight into

brain maturation. We construct normative growth models for all the modalities, taking into

account the correlation among the modalities and individuals, along with an estimation of

the variability of the population trends.
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6.2 Extension to Multivariate Analysis

T1 and T2 shortening happens more rapidly in the first year of life with gradual but less

dramatic changes in the second year. The signal intensity of T2W decreases over time, in

a pattern similar to RD, and T1W intensities show an increasing pattern similar to FA. As

such, we model the changes of structural MRI with the Gompertz function. In Chapter 2,

we showed the Gompertz function can appropriately model changes during early brain

development. We extend the nonlinear mixed effects model introduced in Chapter 2 to

multivariate modeling of multimodal MRI data to study the variation of different imaging

modalities in space and time using intuitive parameterization of growth trajectories.

Specifically, we model temporal growth for an individual i, time points tij and image

channel/modality c ∈ {c1 . . . ck} by the nonlinear mixed effect model of the Gompertz

function [
ycij
...

]
=

[
f(φci , tij)

...

]
+ eij =

[
φc1i exp{−φc2iφc3i

tij}
...

]
+ eij (6.1)

where the mixed effects are φci = [φc1i φ
c
2i φ

c
3i]
T = βc + bci . The fixed effects for modality

c, βc = [βc1 βc2 βc3]
T , represent mean values of parameter φci in the population. This

parameterization intuitively decomposes the mean of temporal changes of a population

as saturation (β1), delay (β2) and speed (− log β3). The random effects for each subject i

and modality c , bci = [bc1i b
c
2i 0]T , explain individual variation from the mean. We set one of

the random effects to zero to reduce the number of random effects in the model. Most of the

variation of individuals can be captured by b1 and b2 and including extra random effects in

the model may cause the matrix Ψ to be rank-deficient. Also, in Section 2.4.1, we concluded

that the Gompertz function with asymptote and delay as random effects does well in fitting

the growth trajectories during early brain development. By imposing joint multivariate

distribution on random effects of all the modalities, bi = [bc11i , b
c1
2i , . . . , b

ck
1i , b

ck
2i ] ∼ N (0,Ψ),

we capture both interindividual variability within a modality as well as associations among

the growth patterns seen in different modalities.

6.3 Results

We perform an analysis on a set of repeated scans of 26 healthy subjects acquired at

approximately 2 weeks, 1 year and 2 years of age. These are the same subjects used in the

studies in Chapter 3. However, in addition to the DTI data, T1W and T2W of subjects

are also included. As was mentioned previously, four of the subjects had suboptimal DTI

scans at 1 year that were removed, but their scans for other time points and modalities

were included. The images include T1W, T2W and DTI. The registration methodology
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introduced in 3.2.2 was utilized where the unbiased atlas building framework [33] was

applied to the set of T2W images at 1 year to obtain spatial mappings between each

subject through the estimated atlas. Intrasubject registration was performed by IRTK

software [32]. All time points of each subject are registered to this atlas via linear and

nonlinear transformations, first by mapping these images to the year 1 scan and then

cascading the two transformations for a mapping to the atlas. Tensor maps are calculated for

each DTI scan, and are registered to the atlas using transformations obtained by registering

the DTI baseline (B0) images to T2W images. T1W images were normalized using the

intensity value of fatty tissue between the skull and skin. For T2W, the csf region of the

ventricles was used for normalization. Fractional anisotropy features from the registered

tensors were used for the joint analysis between DTI and structural MRI.

We analyzed growth trajectories in white and gray matter anatomical regions, using

atlases developed and disseminated by Mori et al. [39] and the Harvard Center for Morpho-

metric Analysis [59]. A parcellation map was registered to our year 1 atlas to define lobar

regions. Also, in addition to regions defined by Mori et al., we were interested in comparing

white matter and gray matter regions in specific lobar regions. To accomplish this task,

we applied the Prastawa et al. [60] segmentation method to obtain maps of gray and white

matter. This segmentation map combined with the lobar regions was used to define white

matter regions of interest in addition to white matter regions defined by Mori et al. [39].

Figure 6.1 shows the parcellation map along with the segmentation results for the atlas.

Regions of interest are extracted based on the lobe and tissue of interest. For example,

Figure 6.1: Parcellation and segmentation results. Left: Parcellation map of the atlas.
Middle: Segmentation results, darker gray indicates white matter regions, light gray is

gray matter and white areas are cerebrospinal fluid. Right: Parcellation map overlaid on
top of the segmented atlas.
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if one is interested in analyzing the frontal white matter, the white matter region in the

frontal lobe is selected for further analysis.

Figure 6.2 shows the right posterior thalamic radiation (PTR) overlaid on the longitudi-

nal T1W, T2W and FA images of one subject. Original data and the estimated multivariate

population trend for T1W, T2W and FA are shown in Figure 6.3. PTR includes optic

radiation and it is one of the white matter tracts that matures early [61]. There is a rapid

change in T1W and T2W in the first year followed by slower maturation during the second

year.

Figure 6.4 show the population trends and confidence intervals for the body of corpus

callosum (BCC), posterior limb of the internal capsule (PLIC) and superior longitudinal

Figure 6.2: Coregistered multimodal MRI data. Left to right: Images taken at 2 weeks,
1 year and 2 years. Top to bottom: T1W, T2W and FA. Posterior thalamic radiation is

shown by the red label on the images.



69

Age (days)

T
2W

0.2

0.4

0.6

0.8

0 200 400 600 800

●
●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●
●

●
●
●

●
●

●

●●●●●
●
●●●●●
●●●

●

●●
●●●●

●●●●
●●●
●
●
●
●

●

T2W

200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age (days)

T
2W

Age (days)

FA

0.2

0.4

0.6

0.8

0 200 400 600 800

●
●
●
●

●

●

●●
●●
●

●
●
●●

●

●

●
●
●
●

●

●

●

●

●

●

●
●●●
●
●

●●
●
●
●●●

●
●

●
●
●

●●
●
●●
●●●

●
●

FA

200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age (days)

FA

Age (days)

T
1W

0.2

0.4

0.6

0.8

0 200 400 600 800

●

●●
●

●●●

●

●
●●
●
●

●●
●

●

●

●

●●●

●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

● ●

T1W

200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age (days)

T
1W

Figure 6.3: Age-related changes of T2W, T1W and FA for PTR. Left: Original observed
values for PTR from top to bottom: T2W, FA and T1W. Right: Estimated population

trajectory along with 95% confidence and predictive intervals. The shaded region denotes
the confidence interval of the average trajectory whereas the predictive intervals are shown

as thin lines above and below the mean trajectory.
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Figure 6.4: Population growth trajectories (bold) and confidence intervals (light). From
top to bottom: body of corpus callosum (BCC), posterior limb of internal capsule (PLIC)
and superior longitudinal fasciculus (SLF). Bold curves are the average growth trajectories
for normalized T1W (red), T2W (green) and FA (blue), while the 95% confidence interval

of the curves is shown as shaded regions. Light color curves show the 95% predicted
intervals for each region.
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Figure 6.5: Plots of T1W, T2W and FA of the prefrontal lobe during early years of life.
Bold curves are the average growth trajectories for normalized T1W (red), T2W (green)

and FA (blue), while the 95% confidence interval of the curves is shown as shaded regions.
Light color curves show the 95% predicted intervals for each region.
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fasciculus (SLF). The body of corpus callosum is known to have a very limited myelination

at birth, whereas the PLIC is known to be one of the regions that shows early myelination.

This pattern is evident as PLIC has higher FA and T1W values, with lower T2W values

compared to BCC and the SLF. However, BCC and SLF show a quick maturation during

the first year, especially in T2W.

We also analyze growth trajectories in gray matter, even though DTI analysis has been

typically performed only in white matter. We observe small changes in FA values as gray

matter matures; however, the changes of T1W and T2W are larger, as expected. Figure 6.5

shows the changes of white and gray matter of the prefrontal lobe. T1W and FA increase

with age and T2W intensities decrease with age. Intensity changes are higher for white

matter compared to gray matter as shown in the right part of Figure 6.5. Higher FA values

are observed in white matter compared to gray matter due to the fiber structure in white

matter. We also observe high variability of FA and T2W at birth for white matter, whereas

T1W has high variability throughout early brain development.

6.4 Conclusion

Chapter 6 extended the nonlinear mixed effect modeling of Chapter 2 to multivariate

data. By imposing a joint multivariate distribution on the random effects, we were able to

capture the correlation among different types of scans (T1W, T2W and FA) and account

for the correlations that exist among these modalities. We showed a good match between

the raw data and the estimated population trajectories. Further validation is needed to

compare the multivariate growth trajectories versus multiple univariate model fitting. The

work presented in this chapter indicates that the nonlinear mixed effects modeling can be

extended to multimodal data. However, as the dimensionality of the data increases, the

estimation of the covariance of random effects can become problematic. Methods utilizing

pseudo-likelihood estimation might prove to be useful in these cases.



CHAPTER 7

SUBJECT-SPECIFIC ANALYSIS

Chapters 3, 4, 5 and 6 addressed two major motivations of longitudinal data analysis,

which are characterization of normal brain development (Chapters 3 and 6) and com-

parison of group trajectories (Chapters 4 and 5). Another equally important aspect of

our method is the prediction of individual trajectories. Longitudinal population analysis

is important in understanding normal brain development or pathophysiology of disease

(i.e., different regions in the normative model, or comparison of typical development versus

atypical development), but individuals will likely benefit from subject-specific assessments

and personalized continuous trajectories. For example, in the study of growth, one might

be interested in obtaining the subject-specific growth profile. In this chapter, two methods

are proposed to address subject-specific analysis: comparison of an individual scan to the

normative model and prediction of an individual trajectory based on a new scan(s).

First, we discuss the calculation of prediction interval, which will serve as a reference

range for future observations. Later, we discuss the subject-specific assessments utilizing

this prediction interval.

7.1 Prediction Interval

Monte Carlo simulation is employed to estimate the prediction intervals. Prediction

intervals provide a range of values and a probability that a future observation will fall

within the range. The maximum likelihood estimates of fixed effects, β̂, covariance of

random effects, Ψ̂, and noise, σ̂ are used to estimate the prediction interval. One thousand

samples of β ∼ N
(
β̂,
[∑M

i=1 X̂
T
i V̂
−1
i X̂i

]−1)
, b ∼ N (0, Ψ̂) and e ∼ N (0, σ̂) were generated

from their respective distributions. Subsequently, 1000 trajectories were constructed by the

NLME model:

y = f(φ, t) + e (7.1)

where φ = Aβ + Bb and f is the Gompertz function. A is the identity matrix and B

is [1 0 0; 0 1 0; 0 0 0]. The approximate 100(1 − α)% prediction interval was calculated
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point-wise at each tj , where j = 1, · · · , 800 days and α = .05. At each tj , α/2 and

1− α/2 percentiles were calculated as the lower and upper limit of the interval. Figure 7.1

shows the calculated 95% prediction interval for FA values of posterior thalamic radiation.

The prediction interval can serve as a reference range; upon availability of a new scan, the

diffusivity measures or intensity of structural MRI can be compared to the normative model

for a region of interest to indicate whether the scan is within the normal range or outside.

Percentiles also can be calculated for the individual. Here, an arbitrary α = .05 was selected

corresponding to the 95% predictive interval. This parameter can be adjusted based on the

needs of clinicians.
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Figure 7.1: Prediction interval for posterior thalamic radiation (PTR). Top: PTR is
shown as the red label on the longitudinal FA images of one subject. Bottom: The mean
trajectory along with the 95% prediction interval (shaded area) is shown for PTR. Black

circles indicate mean FA value of PTR for a scan of an individual.
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7.2 Evaluation of Individual Scan

This section describes the necessary steps to compare an individual scan to the normative

model. Upon availability of an individual scan, we can compare the intensity values of

T1W, T2W or diffusion parameters of DTI by first registering the scan(s) to the template

of the normative model. The tensors are estimated using weighted least squares tensor

estimation [54]. If only DTI data are available, the tensors are registered to the template

using transformations obtained by registering the DTI baseline (B0) images to the template.

Tensors are resampled using finite strain reorientation and Riemannian interpolation [35,

36, 37].

Once the scan is in the same space as the template, intensity values or diffusion parame-

ters of regions of interest are extracted. Here the Mori et al. white matter label map [39] is

used as this label map is already in the atlas space (as described in Chapter 2). The intensity

and diffusion parameters of region of interest can be compared to the predictive interval

to indicate whether the scan is within the normal range or outside. Figure 7.2 shows two

cases compared to the normative model. Both of these cases are healthy subjects randomly

selected from the normative population. For each scenario, the prediction interval has been

estimated from the approximate maximum likelihood estimates of nonlinear mixed effects

model parameters without including the subject in the model estimation. As is shown in

Figure 7.2, both of these subjects’ scans fall within the normal range.
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Figure 7.2: Demonstration of automated abnormality detection using the predicted
interval. Scans of new subjects (blue dots) are shown in comparison to the predicted

interval. Both of these individuals have values that fall within the normal range.
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7.3 Prediction of Individual Trajectory

Longitudinal data analysis can provide further insight into growth by analyzing the

growth trajectories themselves rather than a snapshot through time. In this setting, in-

dividual subjects’ trajectories can be compared to the normative model. The timing of

deviation from typical trajectories can be identified and interventions can be targeted

toward a specific developmental period. Because each trajectory is parameterized in terms

of intuitive Gompertz parameters, it is possible to determine the effect of developmental

differences for future time points. The patients can receive personalized treatment based

on their developmental trajectory, and the effectiveness of the therapy (e.g., speech, visual,

drug) can be assessed by monitoring the changes of the patients’ trajectories.

In the mixed effects model, we can predict the individual growth trajectory over time

as these models distinguish between fixed effects (population) and random effects (subject-

specific). To be more specific, we can obtain predictions of subject-specific effects bi and

subject-specific growth trajectory Xiβ + Zibi if the growth is modeled via linear mixed

effects or f(φi, ti) for nonlinear mixed effects where φi = Aiβ + Bibi. In order to compute

bi, we need to predict the conditional mean of bi given the responses yi, E(bi|yi). In the

case of LME and when all the covariance parameters of random effects are known, this

prediction is well known: bi = ΨZTi V
−1
i (yi−Xiβ) where Vi = ZiΨZ

T
i + Iσ2 [62]. However,

in general the covariance parameters are unknown and the maximum likelihood estimates

of the covariance parameters are used in place of the unknown true covariance parameters.

The resulting predictor is

b̂i = Ψ̂ZTi V̂
−1
i (yi −Xiβ̂). (7.2)

Replacing b̂i and β̂ in the LME model, the Xiβ +Zibi, growth profile of the ith subject

is as follows:

E [ŷi|bi] = xiβ̂ + zib̂i (7.3)

where xi represents a vector of fixed effects covariates and zi represents a vector of covariates

corresponding to random effects.

In the nonlinear mixed effects model, the prediction of bi is not a simple closed form

solution; however, it can be calculated from the posterior distribution of p(bi|yi) using Baye’s

rule:
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p(bi|yi, β,Ψ, σ2) =
p(yi|β, bi,Ψ, σ2)p(bi|Ψ)

p(yi|β,Ψ, σ2)
. (7.4)

By maximizing the log of the posterior density of bi, we obtain the following objective

function:

l(bi) = − 1

σ2
(yi − f(β, bi))

T (yi − f(β, bi))− bTi Ψ−1bi. (7.5)

Once b̂i is estimated, we can construct continuous growth trajectories of the ith subject.

The ith subject prediction for the corresponding responses yi is:

E [ŷi|bi] = f(xTi β̂ + zTi b̂i, t). (7.6)

Figure 7.3 shows the predicted individual trajectories for the posterior thalamic radiation

region. All the individuals show a rapid increase in FA value during the first year with

continued growth but at a slower rate in the second year.

7.4 Subject-Specific Prediction Interval

In section 7.2 we showed how prediction intervals can be used as a reference range for

future observations. These intervals can indicate whether an individual scan is within the

normal range. An alternative and perhaps a more useful approach would be to predict the

individual’s trajectory upon availability of new observation(s). We first predict individual

random effects, bi, and use these values to estimate the subject’s individual trajectory and

subject-specific prediction interval. In the linear mixed effects model and when Ψ and σ

are known, bi is the empirical Bayes estimator with the following posterior distribution:

bi|yi, β,Ψ, σ ∼ N (b̂i, Ŵi), (7.7)

where b̂i = ΨZTi V
−1
i (yi − Xiβ̂) and Wi = Ψ − ΨZTi V

−1
i ZiΨ [63] . When β, Ψ and

σ are unknown, they are replaced by their corresponding estimates. For the nonlinear

mixed effects model, we follow the Lindstrom and Bates [20] approximation by taking the

first-order expansion of f(φi, ti) around bi = b̂i. Note that φi = Aiβ + Bibi. Using this

approximation, the posterior mean and variance of bi|β,Ψ, σ are as follows:

E[bi|yi, β, σ] = ΨẐTi V
−1
i (yi − f(Aiβ +Bib̂i, ti) + Ẑib̂i), (7.8)

V ar[bi|yi, β, σ] = W = Ψ−ΨẐTi V
−1
i ẐiΨ, (7.9)

where Ẑi = ∂fi
∂bTi
|β̂,b̂i and X̂i = ∂fi

∂βT |β̂,b̂i . We substitute β̂,Ψ̂ and σ̂ of the reference population

for the unknown parameters to predict an approximate empirical Bayes estimate of bi:
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Figure 7.3: The fitted curves from the Gompertz model to the FA values of posterior
thalamic radiation of 26 individuals. Blue curves show the estimated population

trajectory (fixed) whereas purple curves show the individual trajectories (subject). The
blue circles are the observed FA values.
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b̂i ' Ψ̂ẐTi V̂
−1
i (yi − f(Aiβ̂ +Bib̂i, ti) + Ẑib̂i) (7.10)

By knowing the sampling distribution bi ∼ N (b̂i, Ŵ ), we can employ a Monte Carlo

simulation similar to section 7.1 to approximate the subject-specific prediction interval.

One thousand samples of β ∼ N
(
β̂,
[∑M

i=1 X̂
T
i V̂
−1
i X̂i

]−1)
, b ∼ N (b̂i, Ψ̂ − Ψ̂ẐTi V

−1
i ẐiΨ̂)

and e ∼ N (0, σ̂) were generated from their respective distributions. Subsequently, 1000

trajectories were constructed by the NLME model of equation 7.1. The prediction interval

for the ”new” subject can be calculated by constructing 1 − α range of values for a given

time point, tij . At each tij , α/2 and 1 − α/2 percentiles were calculated as the lower and

upper limit of the subject-specific interval.

Figure 7.4 shows the approximate subject growth trajectory along with the subject-

specific prediction interval for FA values of one subject. With availability of only one

scan, the growth trajectory of the individual is predicted using the estimated population

parameters of the normative model β̂ and variance and covariance parameters, σ̂ and Ψ̂

of the reference population. The reference population for this analysis is all the subjects

excluding the one used for testing. The model parameters estimated by fitting the nonlinear

mixed effects model to all the available data excluding the test subject are used in place of

β, σ and Ψ.

Figure 7.5 shows the growth trajectory for radial diffusivity of one individual. The

predicted growth trajectory is in agreement with the left out time points. Upon availability

of more time points, future time points are predicted with increased precision as is shown

in Figures 7.4 and 7.5.

Since the prediction intervals are based on a continuous growth trajectory, we can also

predict earlier growth characteristics. We used the available scans at 1 year and 2 years to

predict diffusion values for an individual at 2 weeks. Figure 7.6 shows the predicted RD

values for two individuals. In one case, two scans were available and used (1 year and 2

years) to predict diffusivity values at neonate, whereas the other individual did not have

a scan at 2 years, so only the scan at 1 year was used for prediction. In both cases, the

predicted RD values at 2 weeks fall within the individual’s approximate predicted interval.

In total, we had 26 subjects available in this study from the normative study of Chap-

ter 3. The distribution of the data is shown in Table 3.1. Nine of the subjects had the data

available for all the time points (2 weeks, 1 year and 2 year). In the first experiment, we

used the population parameters and individual’s scans at 2 weeks and 1 year to predict the

FA and RD values at 2 years. Tables 7.1 and 7.2 show the resulting prediction of FA for the
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posterior thalamic radiation (PTR) and the posterior limb of the internal capsule (PLIC).

The predicted FA values are in a close approximation of the actual observed FA for these

regions with root mean squared prediction error (RMSPE) of .02718 for PTR and .02669

for PLIC. Tables 7.3 and 7.4 show the prediction for RD values of the same regions. Again,

the predicted values show a close approximation of the actual observed RD values for these

regions with RMSPE of 2.437× 10−5 for PTR and RMSPE of 2.060× 10−5 for PLIC.

In the second experiment, we used only the neonate scan (about 2 weeks) along with the

estimated population parameters to predict the FA and RD values for future time points

(i.e., 1 year and 2 years). Overall, 20 subjects had scans available at 2 weeks and either 1

year or 2 year scans, which were used for testing. Tables 7.5 and 7.6 show the prediction

results of RD and FA of posterior thalamic radiation for 30 scans. There is an increased

level of error in the estimation by using only one scan as shown in Table 7.7; however, the

results indicate that even by using one scan, we are able to approximate the future value.

This result is potentially of utmost interest for imaging subjects at risk and for the infant

autism study discussed previously. The main goal of the NIH funded study is to determine

if image-derived phenotypes at a very early age may predict expected values much later, and

thus also if these values may match the estimation intervals for high-risk subjects diagnosed

or not diagnosed for ASD.

7.5 Conclusion

In this chapter, we have provided two methods for subject-specific analysis. The first

approach utilized the available population parameters to provide a prediction interval for

new scans. Once an individual scan is available, it can be compared to the normative

range. However, once an individual subject’s observations are available, we can predict a

subject-specific prediction interval that not only takes into account the population estimated

parameters, but also considers the new individual’s available data. The subject-specific

prediction interval yields a more precise interval that is specific to an individual. Here we

are making the assumption that an individual will have a timewise trajectory similar to

that of the reference population. This allows transfer of information from the estimated

population model to the prediction of a new individual trajectory.

Prediction of growth characteristics can have significant clinical implications. It can be

used to detect early signs of abnormalities. Taking the heterogeneity of individuals into

account, this method provides an individualized type of assessment where an individual is

compared to its own subject-specific growth trajectory. This could help clinicians develop
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Table 7.1: Predicted and Observed Values of FA for Posterior Thalamic Radiation.
Neonate and 1 Year Scans Were Used to Predict Values of FA at About 2 Years.

SubjectId Age(Days) Observed FA Predicted FA % of Observed FA

1 1021 763 0.562 0.538 95.7
2 1061 727 0.434 0.426 98.2
3 1301 749 0.453 0.435 96.2
4 1461 717 0.400 0.446 111.6
5 1472 740 0.497 0.455 91.7
6 1541 741 0.483 0.510 105.7
7 1741 756 0.507 0.482 95.2
8 1801 733 0.529 0.551 104.1
9 2271 727 0.515 0.521 101.0

*Percentage of observed FA is calculated based on ((predicted FA)/(observed FA)) *100

Table 7.2: Predicted and Observed Values of FA for Posterior Limb of Internal Capsule.
Neonate and 1 Year Scans Were Used to Predict Values of FA at About 2 Years.

SubjectId Age(Days) Observed FA Predicted FA % of Observed FA

1 1021 763 0.636 0.601 94.5
2 1061 727 0.595 0.574 96.5
3 1301 749 0.591 0.562 95.1
4 1461 717 0.552 0.557 100.9
5 1472 740 0.584 0.543 92.9
6 1541 741 0.491 0.472 96.2
7 1741 756 0.572 0.544 95.2
8 1801 733 0.433 0.465 107.4
9 2271 727 0.627 0.622 99.2

*Percentage of observed FA is calculated based on ((predicted FA)/(observed FA)) *100
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Table 7.3: Predicted and Observed Values of RD for Posterior Thalamic Radiation.
Neonate and 1 Year Scans Were Used to Predict Values of RD at About 2 Years.

SubjectId Age(Days) Observed RD Predicted RD % of Observed RD

1 1021 763 0.000542 0.000551 101.6
2 1061 727 0.000653 0.000655 100.3
3 1301 749 0.000644 0.000665 103.2
4 1461 717 0.000646 0.000604 93.5
5 1472 740 0.000629 0.000665 105.7
6 1541 741 0.000633 0.000609 96.2
7 1741 756 0.000622 0.000611 98.2
8 1801 733 0.000583 0.000551 94.6
9 2271 727 0.000559 0.000549 98.3

*Percentage of observed RD is calculated based on ((predicted RD)/(observed RD)) *100

Table 7.4: Predicted and Observed Values of RD for Posterior Limb of Internal Capsule.
Neonate and 1 Year Scans Were Used to Predict Values of RD at About 2 Years.

SubjectId Age(Days) Observed RD Predicted RD % of Observed RD
1 1021 763 0.000424 0.000442 104.1
2 1061 727 0.000467 0.000482 103.2
3 1301 749 0.000464 0.000480 103.5
4 1461 717 0.000487 0.000483 99.3
5 1472 740 0.000470 0.000493 104.9
6 1541 741 0.000537 0.000541 100.7
7 1741 756 0.000475 0.000485 102.2
8 1801 733 0.000601 0.000554 92.2
9 2271 727 0.000434 0.000420 96.9

*Percentage of observed RD is calculated based on ((predicted RD)/(observed RD)) *100
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Figure 7.4: Subject prediction interval compared to the overall prediction for FA of
posterior thalamic radiation. Top: subject-specific interval calculated based on only one

time point (neonate). Bottom: subject-specific interval calculated based on scans at
neonate and 1 year.
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Figure 7.5: Subject prediction interval compared to the overall prediction for RD of
posterior thalamic radiation. Top: subject-specific interval calculated based on only one

time point (neonate). Bottom: subject-specific interval calculated based on scans at
neonate and 1 year.
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Figure 7.6: Subject prediction interval compared to the overall prediction for RD of
posterior thalamic radiation. Top: subject-specific interval calculated based on only one

time point (neonate). Bottom: subject-specific interval calculated based on neonate and 1
year time points.
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individualized treatment and monitor progress over time.

Table 7.5: Observed and Predicted Values for RD of Posterior Thalamic Radiation.
Neonate Scan Was Used to Predict Values of RD at About 1 Year and 2 Years.

SubjectId Age(Days) Observed RD Predicted RD % of Observed RD*

1 192 373 0.000660 0.000641 97.1
2 522 750 0.000545 0.000618 113.3
3 1021 371 0.000594 0.000650 109.4
4 1021 763 0.000542 0.000598 110.3
5 1061 403 0.000709 0.000662 93.5
6 1061 727 0.000653 0.000615 94.2
7 1291 420 0.000694 0.000665 95.8
8 1292 411 0.000684 0.000635 92.8
9 1301 420 0.000714 0.000692 96.9

10 1301 749 0.000644 0.000641 99.5
11 1461 367 0.000675 0.000700 103.6
12 1461 717 0.000646 0.000632 97.8
13 1472 369 0.000714 0.000647 90.6
14 1472 740 0.000629 0.000599 95.3
15 1541 371 0.000666 0.000664 99.7
16 1541 741 0.000633 0.000607 95.9
17 1671 373 0.000611 0.000641 105.0
18 1741 385 0.000653 0.000630 96.4
19 1741 756 0.000622 0.000585 94.0
20 1801 369 0.000600 0.000650 108.4
21 1801 733 0.000583 0.000598 102.7
22 1931 415 0.000621 0.000599 96.4
23 1961 811 0.000582 0.000587 100.7
24 2131 375 0.000618 0.000633 102.5
25 2271 349 0.000596 0.000637 106.9
26 2271 727 0.000559 0.000586 105.0
27 2281 391 0.000631 0.000622 98.5
28 2341 366 0.000701 0.000624 89.0
29 2701 368 0.000698 0.000653 93.6
30 2721 379 0.000547 0.000641 117.2
*Percentage of observed RD is calculated based on ((predicted RD)/(observed RD)) *100



87

Table 7.6: Observed and Predicted Values for FA of Posterior Thalamic Radiation.
Neonate Scan Was Used to Predict Values of FA at About 1 Year and 2 Years.

SubjectId Age(Days) Observed FA Predicted FA % of Observed FA

1 192 373 0.486 0.468 96.4
2 522 750 0.570 0.494 86.7
3 1021 371 0.528 0.481 91.0
4 1021 763 0.562 0.500 89.0
5 1061 403 0.399 0.449 112.4
6 1061 727 0.434 0.468 107.8
7 1291 420 0.406 0.454 111.7
8 1292 411 0.463 0.501 108.2
9 1301 420 0.418 0.405 96.7

10 1301 749 0.453 0.420 92.8
11 1461 367 0.421 0.437 103.8
12 1461 717 0.400 0.466 116.5
13 1472 369 0.434 0.484 111.5
14 1472 740 0.497 0.502 101.1
15 1541 371 0.486 0.471 96.8
16 1541 741 0.483 0.494 102.3
17 1671 373 0.504 0.506 100.3
18 1741 385 0.473 0.517 109.3
19 1741 756 0.507 0.532 105.0
20 1801 369 0.510 0.427 83.6
21 1801 733 0.529 0.452 85.5
22 1931 415 0.496 0.489 98.6
23 1961 811 0.516 0.508 98.5
24 2131 375 0.483 0.484 100.0
25 2271 349 0.500 0.482 96.4
26 2271 727 0.515 0.505 98.0
27 2281 391 0.510 0.520 102.0
28 2341 366 0.474 0.511 107.8
29 2701 368 0.412 0.471 114.1
30 2721 379 0.572 0.501 87.5
*Percentage of observed FA is calculated based on ((predicted FA)/(observed FA)) *100
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Table 7.7: Summary of Prediction Results for FA and RD of Posterior Thalamic
Radiation.

FA RD

Input Time Points neo neo + year 1 neo neo + year 1
Predict Time Points year 1, 2 or both year 2 year 1, 2 or both year 2
Total Number of Pre-
dictions

30 9 30 9

Mean Observed Value 0.4814008 0.4865759 0.0006341 0.0006123
RMSPE 0.0425242 0.0271860 0.0000416 0.0000244
RMSPE Normalized
to the Mean

0.0883343 0.0558721 0.0655904 0.0398097

Average
(Predicted/Observed)

100.38% 99.93% 100.07% 99.07%

Standard Deviation
(Predicted/Observed)

8.99% 6.26% 6.92% 4.02%



CHAPTER 8

DISCUSSION

8.1 Summary of Contributions

In summary, this dissertation provides a new methodological framework to model change

trajectories from time-discrete image data. This framework includes statistical tests be-

tween populations and the testing of subject-specific individual profiles in the context of

normative models. The proposed modeling framework has been rigorously tested with

synthetic simulation data in order to determine its feasibility and statistical properties.

We applied this novel methodology to several longitudinal clinical neuroimaging studies of

the early developing brain. Our results have increased our understanding of early brain

development by providing: 1) a statistical framework to model growth trajectories of early

brain development as represented in structural and diffusion MRI, 2) characterization of

longitudinal changes of MRI parameters in multiple clinical studies and 3) prediction of

subject-specific growth trajectories.

To our knowledge, this is the first presentation of a comprehensive multimodal NLME-

based parametric growth curve modeling to study temporal changes in neuroimaging data.

The processing system integrates registration of multiple modalities and time points into

a population-specific unbiased template, selection of regions of interest that are consistent

over all time points and parametric modeling and NLME analysis in an analysis package

that is generic with respect to any type of clinical applications using longitudinal imaging.

The methodologies presented in this dissertation enable characterization of a normative

model to better understand typical brain development, to model growth trajectories for

groups at risk of mental disorders and for individuals who do get diagnosed with a disorder

to gain a better understanding of the pathology of the disease and enable subject-specific

analysis to better help individuals.
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8.1.1 Statistical Framework

In Chapter 2, we presented multiple growth functions that could be used to model

appearance and diffusion changes of MRI during early brain development. We favored

parametric over nonparameteric methods as the former can capture the growth trajectories

in relatively few parameters. Among parametric curves considered (polynomials, expo-

nential, monomolecular, logistic and Gompetz), we recommended the use of the Gompertz

function, which has asymptotic properties and can capture the observed signal and intensity

changes of MRI. The Gompertz model with asymptote and delay as random effects in

general had the lowest AIC for the majority of regions analyzed. The Gompertz function

provides an intuitive parameterization of growth trajectory in terms of asymptote, delay

and speed. The Gompertz model provides a description of longitudinal changes with the

potential for detecting deviations from a typical growth trajectory sensitive to multiple

neurodevelopmental phenomena.

In contrast to previous studies, we used nonlinear mixed effects modeling that can

capture the nonlinear changes as observed in MRI via the Gompertz growth curve. Such

modeling takes into account the correlation among repeated scans of individuals, handles

unbalanced data (i.e., variable timing, missing time points) and can also incorporate subjects

with only one or two time points, thus accounting for missing data. Growth modeling from

longitudinal data via NLME jointly estimates individual and population trajectories, results

in significantly improved models of growth and growth variability and can differentiate

between cohort and age effects [19].

This longitudinal data analysis can be done voxel-wise or based on regions of interest

(ROI). In the voxel-based approach, images are all aligned to a template, and growth model

trajectories are estimated for each voxel. Voxel-based analysis assumes that the normaliza-

tion procedure (aligning all the images to the template) is accurate. An alternative approach

pursued in this work is to group voxels into regions and to model growth trajectories for each

region. Defining ROI can be a time consuming and user dependent task. To overcome these

shortcomings, we registered all the images to the template atlas built from the population

of images and used an expert defined white matter label map [39] to automatically group

voxels into regions via registration of this label map to the template atlas. The labeling of

regions in the atlas space allowed automatic partitioning of each subject’s scans into the

different anatomical regions.

Once all the subjects’ scans and label maps are in the atlas space, we can estimate

growth trajectories for ROIs using the NLME model. Hypothesis testing can be performed
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to determine modes of longitudinal changes in terms of Gompertz growth parameters. A

simulation study indicated that the methodology presented in Chapter 2 can capture the

underlying differences as presented in the synthetic data.

8.1.2 Characterization of Longitudinal Changes of MRI
Parameters in Multiple Clinical Studies

The framework developed in Chapter 2 was applied to multiple clinical studies as de-

scribed in Chapters 3, 4, 5 and 6 to capture longitudinal changes of early brain development.

In Chapter 3, the framework was applied to characterize the heterogeneous pattern of

maturation in normal brain development to establish a normative reference model. We

presented a method for making inferences about regional differences in diffusion properties

known to vary by microstructural properties and developmental course [64, 65, 66, 67].

Assessment of brain growth patterns in these regions revealed a nonlinear pattern of

maturation with considerable regional variation as also shown in previous studies [68, 57,

69]. In agreement with previous studies, increased FA and decreased MD, AD and RD

were observed within all the white matter regions during this period [70, 68, 69, 71]. This

longitudinal pediatric study supports a rapid change during the first 12 months followed by

slower maturation during the second year similar to previous studies [57, 56]. Our study,

in addition to supporting earlier cross-sectional reports on negative correlation between age

and diffusion parameters, provides greater statistical power to examine nonlinear patterns

of maturation in various white matter regions. In addition to regional differences, our

methodology revealed the type, timing and nature of differences. Moreover, the normative

growth trajectories provide a normative spatiotemporal model of tissue appearance changes

of early brain development that can be used as a reference for testing individual subjects.

In Chapter 4, the methodology was applied to a pediatric autism study. In this study,

children at high risk of autism (by virtue of having a sibling diagnosed with autism) were

recruited. The analysis was performed between high risk infants who were eventually

diagnosed with autism versus the ones who did not develop the disorder. This study

presented some unique challenges as the DTI data were extremely noisy due to the choice of

a special short imaging protocol. Many regions of the brain and many individuals exhibited

trajectories that are not expected for this age range. For example, FA values in many regions

showed an increasing trend followed by a decreasing trend at year 1. This trend was also

apparent for individuals who did not get diagnosed with autism. We speculate this pattern

is due to noise in acquired diffusion weighted images rather than the underlying biology.

Nonetheless we performed tests for group differences among different fiber tracts. We found
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asymptote and speed parameters to be significantly different in the radial diffusivity of the

right inferior longitudinal fasciculus. Wolff et al. [29] also found differences in slope in this

tract, but they used a linear growth model. For many regions, due to high levels of noise, we

were not able to estimate model parameters. We also considered changes of T1W images.

We found a surprising result: the individuals who did get diagnosed with autism had higher

signal intensities in T1W scans. Further research needs to be done to validate the findings

as these changes could be due to the intensity normalization of these images, a topic under

current investigation by developing a new tissue contrast model [72].

We compared growth trajectories of twins and singletons in Chapter 5. First, we

considered growth trajectories of monozygotic and dizgyotic twins; however, we found no

effect of zygocity on the developmental trajectories. As a result, we combined MZ and

DZ twins into one group and compared them against singletons. We found no significant

differences in FA and RD values for regions that we analyzed; however, we found significant

differences in the delay parameter of AD for the anterior limb of the internal capsule and

the anterior region of the corona radiata.

In Chapter 6, we extended the univariate modeling of longitudinal trajectories to multi-

variate modeling where multiple growth curves are modeled simultaneously. The multivari-

ate approach imposes a joint distribution on random effects of all the modalities. As a result,

the correlations among modalities are taken into account. We used a trivariate nonlinear

mixed effects model to estimate growth trajectories of T1W, T2W and FA simultaneously.

Further research will be necessary to compare the result of multiple univariate models versus

one multivariate model. Overall, T1W and FA showed an increasing pattern during early

brain development, whereas T2W showed a decreasing pattern over the 2 years after birth.

The rate of change for all the modalities was higher in the white matter regions than in

the gray matter regions. T1W and T2W showed a very rapid change during the first year,

followed by slower maturation during the second year.

8.1.3 Subject-Specific Analysis

By utilizing nonlinear mixed effects modeling, we jointly estimate the population tra-

jectory along with individual trajectories. This allows for a better modeling of longitudinal

changes as the group trend reflects how individuals progress on average. As a by product

of the application of NLME, each individual’s growth trajectory is also estimated. This

property will be crucial for efforts to improve prediction and diagnosis for individuals.

In Chapter 7, we presented methods for subject-specific analysis. We showed how

prediction intervals can be estimated via Monte Carlo simulation. Once the prediction



93

intervals are estimated for the normative models, new scans of individuals can be compared

to this normative model to indicate whether subjects’ observed MRI values are within the

normal range for their age. As discussed with our clinical colleagues, there is significant

potential use of such normative models of brain development for diagnosis in pediatrics.

We also provided methodology for the prediction of subject-specific growth trajectories

based on limited MRI data. By using the normative model as a reference population, we

took advantage of already estimated population parameters and intersubject variability to

predict posterior modes of random effects and subject-specific growth trajectories. Using

posterior distribution of random effects, prediction intervals are estimated via Monte Carlo

simulation. Predictions for past and future observations can be made. This could have

significant clinical implications by improving early recognition of growth abnormalities, a

concept that is also highlighted in our laboratory’s collaborative publication with the autism

consortium [29].

Overall the methodology and analysis presented in this dissertation have been developed

with the strong motivation that by better understanding the typical trajectory and more

precisely determining when deviations occur, we can preempt mental illness or at least

improve the quality of life by choosing type and optimal timing of therapeutic intervention.

This study might be a small step, but we hope that it will get us closer to identifying

differences early on when therapy or drug treatment can be most effective.

8.2 Limitations

8.2.1 Registration

One of the key assumptions in this work is that all the subjects’ scans can be registered

to a common template. Misregistration in the atlas building procedure and subsequent

mapping of all the individuals’ scans to the common template can confound the statistical

results. However, in this study, subjects with significant medical conditions that would

affect brain development were excluded. Also, all the analyses were done on regions of

interest that we expect to be more robust if compared to voxel-based analysis. Nonetheless,

improved spatial registration will potentially improve the accuracy of the model as brain de-

velopment is characterized by a rapid change of contrast and size, which makes registration

a challenging task.

8.2.2 Approximation of Nonlinear Mixed Effects Model

As discussed in section 2.3.1.1, there is no closed form solution to the maximum likeli-

hood of marginal density of y given in equation 2.15. Different approximations have been
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proposed for estimating the log likelihood of y in the nonlinear mixed effects model. In this

dissertation, we have considered the approximation by taking the first order Taylor expan-

sion of the model function f around the conditional modes of random effects [20]. Others

have proposed alternating methods such as Laplacian approximation [73] and Gaussian

quadrature [74]. Both Laplacian approximation and Gaussian quadrature have increasing

levels of accuracy and complexity. Pinheiro provides a comprehensive comparison of approx-

imation methods in his dissertation [75]. He concludes that the alternating method of [20]

provides accurate and reliable estimation of the likelihood function. We have adopted this

approximation in this work [75]; however, in the future other approximation methods that

provide higher levels of accuracy can be utilized.

8.2.3 Intensity Normalization

T1W and T2W scans have mostly been used for qualitative assessment by radiologists

and have been qualitatively explored. They also have been used for volumetric studies [2, 3,

5, 26]. However, the appearance of signal intensity of these images has been quantitatively

explored in only a few studies [58, 13]. The lack of research in quantitative analysis of T1W

and T2W images could be that the scans acquired at different times with different scanners

can have arbitrary intensity profiles as these measures can vary due to a number of factors,

such as pulse sequence, hardware calibration and coil loading, to name a few. Some of these

variations can be removed by intensity normalization. In this study, T1-weighted images

were normalized using the high intensity value of fatty tissue between the skull and skin. For

T2-weighted images, the high intensity csf region of ventricles was used for normalization.

The normalization presented here relies heavily on accurate registration of all the subjects’

scans to the atlas. An alternative to T1W and T2W is to acquire spatial maps of T1 and

T2 that measure the underlying tissue’s T1 and T2 relaxation times [76, 77, 78]; however,

these methods increase the acquisition time. Better normalization techniques are needed to

improve the results of quantitative analysis of T1W and T2W.

8.2.4 Combining Multimodal MRI Data into Physical
Meaning

The methodologies presented in this dissertation have been used to analyze changes in

RD, AD, MD, FA, T1W and T2W. Each measure can provide complementary information

in regard to the underlying physiology. For example, T1 and T2 have been shown to

be influenced by myelin concentration, whereas high anisotropy (FA) could be observed in

unmyelinated regions, indicating that the axon is an important factor for the anisotropy [10,
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79]. We also showed in Chapter 3 that regions with varying AD and RD can show similar FA

profiles and that AD and RD can provide additional information to better explain changes

observed in MD and FA. Song et al. [80] have shown evidence that demyelination often leads

to increased RD and axonal injury reduces AD. Recent methods for more directly measuring

the number of axons and axon radius [81] are needed to better explain the observed changes

in DTI, T1W and T2W.

8.3 Future Work

8.3.1 Longitudinal Tract-based Analysis

In this work, modeling changes of signal intensity and diffusion parameters for specific

regions of interest have been considered. Mean values of parameters of interest for a given

region (i.e., mean FA for the anterior limb of the internal capsule) were calculated and

statistical modeling was performed based on the average values. In the future, we can

consider tract-based analysis where changes are modeled both across the tract and along

time. Functional data analysis and functional mixed effects can be utilized to model changes

along the tract [82, 83, 84]. This type of analysis will provide more detailed information

about changes within an anatomical region of interest, and it will also take correlations

along the tract into account [85, 86]. Tract-based statistic is an active area of research [85],

and modeling these tract changes over time has been proposed [86]. However, these methods

cannot include subjects with only one or two scans [86]. Extension of mixed effects modeling

along tract and time can overcome some of the limitations of these methods, but these

methods are not yet available.

8.3.2 Incorporating Covariates

In the current study, we have considered only age as a covaraite, but in a scenario of

a clinical study, we will also need to control for other covariates such as gender or patient

scores. The mixed effects model can easily be extended to include additional covaraite such

as gender or clinical scores.

8.3.3 Multivariate Mixed Effects Modeling

This work has been based mainly on the univariate analysis of the signal intensities and

the diffusion parameters of DTI. In Chapter 2, we provided the methodology to extend

univariate mixed effects models to multivariate mixed effects. These univariate mixed

effects models can be tied together into multivariate mixed effects by specifying a joint

distribution for the random effects. However, increases in the number of random effects
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can create computational problems. In the future, a pairwise modeling approach similar

to [87] where all possible bivariates mixed effects models are fit can be used to avoid the

dimensional limitation of multivariate mixed effects. Pairwise modeling can circumvent the

dimensionality limitation of multivariate mixed effects models.

8.3.4 Twin Study

In Chapter 7, we presented a twin study in which we compared developmental trajecto-

ries of singletons to twins. We also compared the developmental trajectories of monozygotic

versus dizygotic twins and found no differences in the developmental trajectories based

on zygocity. We can extend our study by evaluating the contributions of environment

and genetics on brain development by measuring these variations over time. Previous

neuroimaging studies have enabled creation of a genetic map of the brain [88]. Infant

longitudinal twin studies provide a unique opportunity to extend previous research by

providing continuous maps of the effects of genes and the environment on the development

of brain structure.
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